Jake Kalstad пре 4 година
комит
6f60c12211
3 измењених фајлова са 16861 додато и 0 уклоњено
  1. 16733 0
      load_model_ipfs.ipynb
  2. 120 0
      load_model_ipfs.py
  3. 8 0
      readme.md

+ 16733 - 0
load_model_ipfs.ipynb

@@ -0,0 +1,16733 @@
+{
+ "cells": [
+  {
+   "cell_type": "code",
+   "execution_count": 18,
+   "metadata": {},
+   "outputs": [],
+   "source": [
+    "import errno\n",
+    "import os\n",
+    "import sys\n",
+    "import torch\n",
+    "import io \n",
+    "import errno\n",
+    "import hashlib\n",
+    "import os\n",
+    "import shutil\n",
+    "import sys\n",
+    "import tempfile\n",
+    "import torch\n",
+    "import requests\n",
+    "import tarfile\n",
+    "\n",
+    "def download_cid_to_file(url, cid, dst, hash_prefix=None):\n",
+    "    r\"\"\"Download object at the given CID to a local path.\n",
+    "\n",
+    "    Args:\n",
+    "        url (string): URL of the IPFS instance\n",
+    "        cid (string): CID of the model to download\n",
+    "        dst (string): Full path where object will be saved, e.g. ``/tmp/temporary_file``\n",
+    "        hash_prefix (string, optional): If not None, the SHA256 downloaded file should start with ``hash_prefix``.\n",
+    "            Default: None\n",
+    "        progress (bool, optional): whether or not to display a progress bar to stderr\n",
+    "            Default: True\n",
+    "\n",
+    "    Example:\n",
+    "        >>> torch.hub.download_url_to_file('the-models-ipfs-cid-here', '/tmp/temporary_file')\n",
+    "\n",
+    "    \"\"\" \n",
+    "    # We deliberately save it in a temp file and move it after\n",
+    "    # download is complete. This prevents a local working checkpoint\n",
+    "    # being overridden by a broken download.\n",
+    "    dst = os.path.expanduser(dst)\n",
+    "    dst_dir = os.path.dirname(dst)\n",
+    "    f = tempfile.NamedTemporaryFile(delete=False, dir=dst_dir)\n",
+    "    response = requests.post(url+\"/get?arg=\"+cid)\n",
+    "    contents = response.content\n",
+    "    tar = tarfile.open(fileobj=io.BytesIO(contents))\n",
+    "    for member in tar.getmembers():\n",
+    "        if member.isfile: \n",
+    "            extractedFile = tar.extractfile(member)\n",
+    "            if extractedFile is not None:\n",
+    "                f.write(extractedFile.read())            \n",
+    "    try:\n",
+    "        if hash_prefix is not None:\n",
+    "            sha256 = hashlib.sha256()\n",
+    "        f.close()\n",
+    "        if hash_prefix is not None:\n",
+    "            digest = sha256.hexdigest()\n",
+    "            if digest[:len(hash_prefix)] != hash_prefix:\n",
+    "                raise RuntimeError('invalid hash value (expected \"{}\", got \"{}\")'\n",
+    "                                   .format(hash_prefix, digest))\n",
+    "        shutil.move(f.name, dst)\n",
+    "    finally:\n",
+    "        f.close()\n",
+    "        if os.path.exists(f.name):\n",
+    "            os.remove(f.name)\n",
+    "\n",
+    "def load_state_dict_from_ipfs(cid, model_dir=None, url=\"http://127.0.0.1:5001/api/v0\", map_location=None, check_hash=False, file_name=None):\n",
+    "    r\"\"\"Loads the Torch serialized object at the given IPFS CID.\n",
+    "\n",
+    "    If downloaded file is a zip file, it will be automatically\n",
+    "    decompressed.\n",
+    "\n",
+    "    If the object is already present in `model_dir`, it's deserialized and\n",
+    "    returned.\n",
+    "    The default value of ``model_dir`` is ``<hub_dir>/checkpoints`` where\n",
+    "    ``hub_dir`` is the directory returned by :func:`~torch.hub.get_dir`.\n",
+    "\n",
+    "    Args:\n",
+    "        cid (string): CID of the model to download\n",
+    "        url (string): URL of the IPFS instance\n",
+    "        model_dir (string, optional): directory in which to save the object\n",
+    "        map_location (optional): a function or a dict specifying how to remap storage locations (see torch.load)\n",
+    "        progress (bool, optional): whether or not to display a progress bar to stderr.\n",
+    "            Default: True\n",
+    "        check_hash(bool, optional): If True, the filename part of the URL should follow the naming convention\n",
+    "            ``filename-<sha256>.ext`` where ``<sha256>`` is the first eight or more\n",
+    "            digits of the SHA256 hash of the contents of the file. The hash is used to\n",
+    "            ensure unique names and to verify the contents of the file.\n",
+    "            Default: False\n",
+    "        file_name (string, optional): name for the downloaded file. Filename from ``url`` will be used if not set.\n",
+    "\n",
+    "    Example:\n",
+    "        >>> state_dict = torch.hub.load_state_dict_from_ipfs('my-cid-goes-here')\n",
+    "\n",
+    "    \"\"\"\n",
+    "    if model_dir is None:\n",
+    "        hub_dir = torch.hub.get_dir()\n",
+    "        model_dir = os.path.join(hub_dir, 'checkpoints')\n",
+    "\n",
+    "    try:\n",
+    "        os.makedirs(model_dir)\n",
+    "    except OSError as e:\n",
+    "        if e.errno == errno.EEXIST:\n",
+    "            # Directory already exists, ignore.\n",
+    "            pass\n",
+    "        else:\n",
+    "            # Unexpected OSError, re-raise.\n",
+    "            raise\n",
+    "    filename = cid\n",
+    "    if file_name is not None:\n",
+    "        filename = file_name\n",
+    "    cached_file = os.path.join(model_dir, filename)\n",
+    "    if not os.path.exists(cached_file):\n",
+    "        sys.stderr.write('Downloading: \"{}\" to {}\\n'.format(url, cached_file))\n",
+    "        hash_prefix = None\n",
+    "        if check_hash:\n",
+    "            r = torch.hub.HASH_REGEX.search(filename)  # r is Optional[Match[str]]\n",
+    "            hash_prefix = r.group(1) if r else None\n",
+    "        download_cid_to_file(url, cid, cached_file, hash_prefix)\n",
+    "\n",
+    "    if torch.hub._is_legacy_zip_format(cached_file):\n",
+    "        return torch.hub._legacy_zip_load(cached_file, model_dir, map_location)\n",
+    "    return torch.load(cached_file, map_location=map_location)"
+   ]
+  },
+  {
+   "cell_type": "code",
+   "execution_count": 19,
+   "metadata": {},
+   "outputs": [
+    {
+     "name": "stderr",
+     "output_type": "stream",
+     "text": [
+      "Downloading: \"http://127.0.0.1:5001/api/v0\" to ./QmSQNrvnuqqfN8NpiXKBwjLnLhNFpbKRPajhgGZ8gYVjua\n"
+     ]
+    },
+    {
+     "name": "stdout",
+     "output_type": "stream",
+     "text": [
+      "OrderedDict([('pretrained_model.conv1.weight', tensor([[[[ 2.7519e-02,  2.8677e-02, -1.8541e-05,  ..., -2.5319e-02,\n",
+      "           -3.3679e-02, -6.0463e-02],\n",
+      "          [ 1.4361e-02,  1.4418e-02,  2.4424e-02,  ...,  1.4546e-02,\n",
+      "           -1.0213e-02, -2.0122e-02],\n",
+      "          [ 2.7500e-02,  2.4852e-02,  1.6560e-02,  ...,  1.0633e-01,\n",
+      "            6.4066e-02,  6.0101e-02],\n",
+      "          ...,\n",
+      "          [-9.6644e-04,  2.6493e-02, -1.4357e-02,  ..., -1.2618e-01,\n",
+      "           -7.2640e-02,  1.0260e-02],\n",
+      "          [ 5.2445e-03,  4.8640e-02,  6.0996e-02,  ...,  2.4954e-02,\n",
+      "           -2.9001e-02, -1.4220e-02],\n",
+      "          [-8.3626e-02, -3.4136e-02, -1.6699e-02,  ...,  3.8997e-02,\n",
+      "            2.5561e-02,  3.2749e-03]],\n",
+      "\n",
+      "         [[-1.7833e-02,  1.2781e-02,  2.5214e-02,  ...,  5.3949e-02,\n",
+      "            3.7740e-02, -1.6311e-02],\n",
+      "          [-1.5977e-04,  2.6696e-02,  7.4514e-02,  ...,  1.6484e-01,\n",
+      "            1.4943e-01,  1.2897e-01],\n",
+      "          [-4.2746e-02, -7.3616e-02, -9.0968e-02,  ...,  1.1636e-01,\n",
+      "            1.5802e-01,  1.7329e-01],\n",
+      "          ...,\n",
+      "          [ 2.8930e-02,  1.6560e-02, -8.7232e-02,  ..., -3.8202e-01,\n",
+      "           -3.0298e-01, -1.4206e-01],\n",
+      "          [ 8.2078e-02,  1.4121e-01,  1.5156e-01,  ..., -7.7058e-03,\n",
+      "           -1.2266e-01, -1.3140e-01],\n",
+      "          [-1.1127e-02,  8.0467e-02,  1.4474e-01,  ...,  1.8766e-01,\n",
+      "            1.1361e-01,  2.4838e-02]],\n",
+      "\n",
+      "         [[-2.1269e-02, -7.3843e-03,  8.0067e-03,  ...,  2.6948e-02,\n",
+      "            2.4946e-02, -6.9996e-03],\n",
+      "          [-1.6499e-02, -3.0560e-03,  4.2840e-02,  ...,  1.1789e-01,\n",
+      "            1.1270e-01,  1.1018e-01],\n",
+      "          [-6.9248e-02, -1.0952e-01, -1.0694e-01,  ...,  9.5860e-02,\n",
+      "            1.2501e-01,  1.3897e-01],\n",
+      "          ...,\n",
+      "          [ 2.0256e-02,  7.8053e-03, -7.9308e-02,  ..., -3.1791e-01,\n",
+      "           -2.5821e-01, -1.2956e-01],\n",
+      "          [ 6.8015e-02,  1.0876e-01,  1.2803e-01,  ..., -1.1032e-02,\n",
+      "           -1.2626e-01, -1.2820e-01],\n",
+      "          [-1.6247e-02,  6.0631e-02,  1.2150e-01,  ...,  1.9075e-01,\n",
+      "            1.1394e-01,  2.4247e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 5.4735e-02,  1.3839e-02,  3.1951e-02,  ...,  1.0310e-02,\n",
+      "            3.0134e-02,  4.0199e-02],\n",
+      "          [ 4.1176e-02, -1.5004e-02, -1.5688e-03,  ..., -6.2486e-02,\n",
+      "           -4.2403e-02, -2.5269e-02],\n",
+      "          [ 4.3124e-02, -1.0962e-02, -2.8973e-02,  ..., -1.3921e-01,\n",
+      "           -1.0920e-01, -7.0934e-02],\n",
+      "          ...,\n",
+      "          [ 3.8858e-04, -6.1052e-02, -1.1503e-01,  ..., -2.5645e-01,\n",
+      "           -2.3661e-01, -1.9909e-01],\n",
+      "          [ 3.2019e-02, -3.3252e-02, -7.3689e-02,  ..., -2.4638e-01,\n",
+      "           -2.0383e-01, -1.7039e-01],\n",
+      "          [ 3.8119e-02, -1.1321e-02, -6.9494e-02,  ..., -1.8140e-01,\n",
+      "           -1.5976e-01, -1.1635e-01]],\n",
+      "\n",
+      "         [[-8.9584e-02, -6.4635e-02, -5.9344e-02,  ..., -1.4238e-02,\n",
+      "           -6.1031e-02, -7.1452e-02],\n",
+      "          [-5.9996e-02, -3.2641e-02,  7.0863e-03,  ...,  8.7952e-02,\n",
+      "            4.4877e-02,  8.4163e-03],\n",
+      "          [-7.8034e-02, -1.6015e-02,  4.1796e-02,  ...,  2.2686e-01,\n",
+      "            1.7590e-01,  1.0856e-01],\n",
+      "          ...,\n",
+      "          [-3.7656e-02,  8.2355e-02,  1.8880e-01,  ...,  4.6959e-01,\n",
+      "            3.9520e-01,  2.8222e-01],\n",
+      "          [-6.0585e-02,  3.3816e-02,  1.4374e-01,  ...,  3.7650e-01,\n",
+      "            3.3631e-01,  2.2781e-01],\n",
+      "          [-9.2649e-02, -3.7758e-03,  5.7024e-02,  ...,  2.4165e-01,\n",
+      "            2.0820e-01,  1.4904e-01]],\n",
+      "\n",
+      "         [[ 4.7080e-02,  4.3292e-02,  1.4925e-02,  ...,  3.6737e-02,\n",
+      "            3.1615e-02,  4.4300e-02],\n",
+      "          [ 3.7865e-02,  2.4010e-02, -3.7087e-03,  ...,  4.0764e-03,\n",
+      "           -4.5214e-04,  2.4747e-02],\n",
+      "          [ 3.1135e-02,  1.2455e-02, -2.0514e-02,  ..., -7.3370e-02,\n",
+      "           -7.7067e-02, -2.3757e-02],\n",
+      "          ...,\n",
+      "          [ 2.4062e-02,  8.6232e-03, -6.9367e-02,  ..., -1.8055e-01,\n",
+      "           -1.6672e-01, -5.8326e-02],\n",
+      "          [ 3.2119e-02, -1.7151e-03, -5.2193e-02,  ..., -1.5199e-01,\n",
+      "           -1.2513e-01, -3.9191e-02],\n",
+      "          [ 5.7940e-02,  4.4883e-02, -1.1001e-02,  ..., -4.4332e-02,\n",
+      "           -4.6884e-02,  1.3706e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 4.1027e-03,  9.2122e-03, -4.1160e-03,  ..., -2.5288e-02,\n",
+      "           -1.5969e-02, -1.6601e-02],\n",
+      "          [ 6.5552e-03,  2.1999e-02,  1.2007e-02,  ..., -3.6359e-03,\n",
+      "            1.7491e-03, -1.7372e-02],\n",
+      "          [ 4.7474e-03,  3.2278e-02,  3.0879e-02,  ...,  1.9123e-02,\n",
+      "            9.9469e-03,  7.2616e-03],\n",
+      "          ...,\n",
+      "          [ 1.9260e-03,  2.0911e-02,  1.5164e-02,  ...,  5.2703e-02,\n",
+      "            6.0934e-02,  8.7346e-02],\n",
+      "          [-1.0326e-02,  1.6308e-02,  7.7865e-03,  ...,  2.0335e-02,\n",
+      "            3.8766e-02,  8.8587e-02],\n",
+      "          [-1.9870e-02,  7.2531e-04, -3.8362e-03,  ...,  1.0955e-02,\n",
+      "            4.4972e-02,  9.5313e-02]],\n",
+      "\n",
+      "         [[ 7.5493e-03, -6.6508e-03, -1.3260e-02,  ...,  3.4655e-03,\n",
+      "            3.0915e-02,  4.1757e-02],\n",
+      "          [ 7.6914e-03, -3.1821e-03, -1.6752e-02,  ...,  1.3856e-02,\n",
+      "            4.6228e-02,  3.3462e-02],\n",
+      "          [-1.9359e-03, -2.6721e-03, -1.4627e-02,  ...,  3.0582e-02,\n",
+      "            4.7084e-02,  3.9195e-02],\n",
+      "          ...,\n",
+      "          [-1.9785e-02, -4.7421e-02, -8.2575e-02,  ..., -4.7608e-02,\n",
+      "           -2.5378e-02, -2.5066e-03],\n",
+      "          [-4.7273e-03, -1.4393e-02, -5.3033e-02,  ..., -8.4943e-02,\n",
+      "           -6.7656e-02, -2.4877e-02],\n",
+      "          [ 2.2520e-02,  1.2509e-02, -1.5899e-02,  ..., -5.3568e-02,\n",
+      "           -3.9304e-02, -1.4046e-02]],\n",
+      "\n",
+      "         [[ 1.4815e-02, -3.9150e-02, -3.6097e-02,  ..., -3.0941e-04,\n",
+      "            4.2009e-02,  4.3603e-02],\n",
+      "          [-1.0477e-02, -6.3929e-02, -7.1232e-02,  ..., -2.9585e-02,\n",
+      "            1.0820e-02, -1.3248e-02],\n",
+      "          [ 1.5019e-02, -3.5157e-02, -5.2298e-02,  ..., -1.1939e-02,\n",
+      "           -1.5373e-03, -1.5859e-02],\n",
+      "          ...,\n",
+      "          [ 7.6947e-03, -5.3033e-02, -9.0051e-02,  ..., -9.0148e-02,\n",
+      "           -1.0608e-01, -1.2070e-01],\n",
+      "          [ 1.8729e-02, -1.8508e-02, -5.1732e-02,  ..., -1.1506e-01,\n",
+      "           -1.4671e-01, -1.5077e-01],\n",
+      "          [ 5.5180e-02,  1.0919e-02, -1.4423e-02,  ..., -8.0009e-02,\n",
+      "           -1.1718e-01, -1.3547e-01]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 9.6781e-03,  1.6354e-02,  2.6897e-02,  ..., -6.7033e-03,\n",
+      "            4.1303e-02, -4.5899e-03],\n",
+      "          [-1.8209e-02,  5.7198e-02,  5.4168e-02,  ..., -6.2001e-02,\n",
+      "            8.4316e-02, -1.9738e-02],\n",
+      "          [-3.8774e-02,  1.0809e-01,  7.1843e-02,  ..., -8.5447e-02,\n",
+      "            1.5296e-01, -2.4184e-02],\n",
+      "          ...,\n",
+      "          [ 4.8081e-03,  1.3226e-01, -4.5027e-02,  ...,  5.5631e-02,\n",
+      "            1.5540e-01, -3.9420e-02],\n",
+      "          [ 2.1883e-03,  6.7381e-02, -5.4556e-02,  ...,  4.1545e-02,\n",
+      "            7.8821e-02, -4.9251e-02],\n",
+      "          [ 4.2671e-03,  6.9121e-03, -6.5191e-02,  ...,  4.4417e-02,\n",
+      "            4.7553e-02, -1.5546e-02]],\n",
+      "\n",
+      "         [[ 7.9824e-03,  4.1032e-02, -8.1557e-03,  ..., -8.2309e-02,\n",
+      "            4.1075e-02,  5.0941e-02],\n",
+      "          [ 9.7355e-03,  1.2695e-01,  1.8947e-02,  ..., -1.5573e-01,\n",
+      "            1.4253e-01,  8.6931e-02],\n",
+      "          [ 1.4016e-02,  2.1205e-01,  1.9179e-02,  ..., -1.8642e-01,\n",
+      "            2.5599e-01,  9.7356e-02],\n",
+      "          ...,\n",
+      "          [ 4.9181e-02,  1.9574e-01, -1.4247e-01,  ...,  3.0817e-02,\n",
+      "            2.7878e-01,  5.3509e-02],\n",
+      "          [ 2.2162e-02,  9.6618e-02, -1.3404e-01,  ...,  4.5292e-02,\n",
+      "            1.5361e-01, -1.3753e-02],\n",
+      "          [ 3.7838e-03,  2.8571e-02, -1.0539e-01,  ...,  6.3929e-02,\n",
+      "            8.4834e-02, -5.4725e-03]],\n",
+      "\n",
+      "         [[ 9.0043e-03,  3.4124e-02,  1.6380e-02,  ..., -4.5165e-02,\n",
+      "            1.5138e-02,  2.6393e-02],\n",
+      "          [-1.2971e-02,  8.7383e-02,  6.2562e-02,  ..., -5.9370e-02,\n",
+      "            8.1023e-02,  2.8704e-02],\n",
+      "          [-3.0217e-02,  1.2911e-01,  7.2007e-02,  ..., -7.6940e-02,\n",
+      "            1.3878e-01,  9.3782e-03],\n",
+      "          ...,\n",
+      "          [-8.8465e-04,  1.2895e-01, -4.8307e-02,  ...,  2.9814e-02,\n",
+      "            1.2671e-01, -1.8690e-02],\n",
+      "          [-7.7237e-03,  7.1088e-02, -4.7727e-02,  ...,  2.6105e-02,\n",
+      "            6.5793e-02, -4.0895e-02],\n",
+      "          [-4.8564e-03,  3.6733e-02, -4.0654e-02,  ...,  3.3611e-02,\n",
+      "            3.7400e-02, -2.0755e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 3.9633e-02,  4.1664e-02,  2.7553e-02,  ..., -4.2572e-02,\n",
+      "           -6.9579e-03,  4.3631e-03],\n",
+      "          [ 4.6811e-02,  4.2834e-02,  3.2136e-02,  ..., -1.2137e-01,\n",
+      "           -9.1740e-02, -3.8282e-02],\n",
+      "          [ 9.0410e-02,  7.4272e-02,  5.6910e-02,  ..., -2.1212e-01,\n",
+      "           -1.1153e-01, -2.4536e-02],\n",
+      "          ...,\n",
+      "          [ 2.7903e-02, -8.1049e-03, -1.5831e-01,  ..., -2.6221e-01,\n",
+      "           -1.2221e-01,  2.4679e-02],\n",
+      "          [ 1.6760e-02, -2.8602e-02, -1.4634e-01,  ..., -2.5330e-01,\n",
+      "           -3.6897e-02,  6.7895e-02],\n",
+      "          [-7.3370e-03, -5.8795e-02, -1.5544e-01,  ..., -1.9965e-01,\n",
+      "           -1.6426e-03,  8.5670e-02]],\n",
+      "\n",
+      "         [[ 1.4553e-02,  3.0367e-02,  2.4639e-02,  ...,  9.5683e-03,\n",
+      "            1.4263e-02,  1.5918e-02],\n",
+      "          [ 3.4498e-02,  3.2616e-02,  4.0922e-02,  ..., -7.8634e-04,\n",
+      "           -8.6488e-03,  3.0770e-03],\n",
+      "          [ 3.7255e-02,  2.9209e-02,  5.7338e-02,  ..., -5.5335e-02,\n",
+      "            3.4131e-03,  2.8693e-02],\n",
+      "          ...,\n",
+      "          [ 2.8835e-03,  2.2468e-02, -3.2225e-02,  ..., -4.4550e-02,\n",
+      "           -1.9005e-02,  5.3533e-02],\n",
+      "          [ 2.1881e-02,  2.8580e-02,  1.2423e-03,  ..., -6.1441e-02,\n",
+      "            1.9847e-02,  4.5224e-02],\n",
+      "          [ 2.4791e-02,  2.2727e-02,  1.0304e-02,  ..., -3.3662e-02,\n",
+      "            3.0583e-02,  4.0390e-02]],\n",
+      "\n",
+      "         [[-3.5557e-02, -1.2604e-02, -2.0337e-02,  ...,  1.8147e-02,\n",
+      "            1.8639e-02, -8.8859e-03],\n",
+      "          [-2.6728e-02, -1.7032e-02,  2.1964e-03,  ...,  4.3257e-02,\n",
+      "            2.1420e-02, -3.3650e-03],\n",
+      "          [-3.3569e-02, -3.3347e-02,  1.7945e-02,  ...,  3.5852e-02,\n",
+      "            4.5340e-02, -3.3639e-03],\n",
+      "          ...,\n",
+      "          [-3.0014e-02,  1.2640e-02,  2.1324e-02,  ...,  5.9787e-02,\n",
+      "            6.0952e-03, -2.9153e-02],\n",
+      "          [-1.3749e-02,  2.2061e-02,  5.4079e-02,  ...,  4.1307e-02,\n",
+      "            2.5082e-02, -4.2155e-02],\n",
+      "          [-2.0211e-02,  7.7183e-03,  4.5236e-02,  ...,  2.1851e-02,\n",
+      "            5.7453e-03, -4.9783e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.5827e-02, -3.0523e-02,  5.4483e-02,  ..., -5.6024e-02,\n",
+      "            4.5840e-04, -6.3176e-03],\n",
+      "          [-4.8395e-02,  5.2706e-02, -1.8550e-02,  ...,  1.4648e-02,\n",
+      "           -2.4137e-02, -9.6122e-03],\n",
+      "          [ 4.5519e-02, -4.3223e-02, -1.9845e-02,  ..., -2.2535e-01,\n",
+      "           -7.3214e-04,  3.7002e-02],\n",
+      "          ...,\n",
+      "          [-3.4112e-02,  9.6268e-02,  1.1501e-01,  ...,  5.2761e-01,\n",
+      "           -2.9859e-02, -5.7415e-02],\n",
+      "          [-1.2317e-02,  9.5468e-02, -2.0668e-01,  ...,  2.5431e-01,\n",
+      "           -2.4786e-01,  1.2268e-01],\n",
+      "          [-1.3750e-02, -4.5305e-03, -8.2722e-02,  ..., -4.0224e-02,\n",
+      "            3.7718e-02, -3.6208e-02]],\n",
+      "\n",
+      "         [[ 1.5035e-02, -4.0462e-02,  3.8111e-02,  ..., -4.0778e-02,\n",
+      "            2.2048e-02, -9.4770e-03],\n",
+      "          [-4.6743e-02,  5.7013e-02, -1.4148e-02,  ...,  2.4947e-02,\n",
+      "           -3.9034e-03, -1.1529e-03],\n",
+      "          [ 3.2613e-02, -6.6959e-02, -4.3525e-03,  ..., -2.7013e-01,\n",
+      "            5.0818e-02,  3.2916e-02],\n",
+      "          ...,\n",
+      "          [-3.0023e-02,  1.2834e-01,  1.1642e-01,  ...,  6.4349e-01,\n",
+      "           -1.4256e-02, -1.3288e-01],\n",
+      "          [-1.5875e-02,  1.1439e-01, -2.5802e-01,  ...,  3.4063e-01,\n",
+      "           -3.1907e-01,  7.9313e-02],\n",
+      "          [ 7.4912e-03,  1.3621e-02, -9.1905e-02,  ..., -6.3741e-02,\n",
+      "            7.5139e-03, -3.0775e-02]],\n",
+      "\n",
+      "         [[ 1.4634e-02, -3.9686e-02,  1.6748e-02,  ..., -4.5807e-02,\n",
+      "            2.5924e-02, -6.4950e-04],\n",
+      "          [-2.9060e-02,  7.0667e-02, -2.1592e-02,  ...,  4.6576e-02,\n",
+      "           -3.3119e-03, -8.9531e-03],\n",
+      "          [ 6.2911e-02, -4.4774e-02, -1.1321e-01,  ..., -1.3367e-01,\n",
+      "            1.5210e-02,  1.8586e-02],\n",
+      "          ...,\n",
+      "          [-7.4208e-03,  1.1582e-02,  1.4759e-01,  ...,  4.7057e-01,\n",
+      "           -1.5096e-01, -3.3840e-02],\n",
+      "          [-4.3497e-02,  2.8955e-02, -1.3235e-01,  ...,  1.2225e-01,\n",
+      "           -2.7208e-01,  1.5119e-01],\n",
+      "          [ 1.7887e-02,  1.1802e-02, -1.7417e-02,  ..., -1.0451e-01,\n",
+      "            6.1613e-02, -1.8356e-02]]]])), ('pretrained_model.bn1.weight', tensor([2.1173e-01, 3.3442e-01, 3.3077e-01, 2.6739e-01, 1.7097e-01, 3.0509e-01,\n",
+      "        1.7064e-01, 1.6105e-01, 1.5702e-01, 2.6390e-01, 1.7222e-01, 2.9898e-01,\n",
+      "        1.4466e-01, 1.0987e-08, 1.7684e-01, 1.7392e-01, 2.2964e-01, 1.7156e-01,\n",
+      "        1.0949e-01, 3.7808e-01, 1.2066e-01, 1.7419e-01, 1.4064e-01, 2.5003e-01,\n",
+      "        2.0552e-01, 2.9250e-01, 1.7261e-01, 1.7531e-01, 1.2329e-01, 3.1010e-01,\n",
+      "        2.0503e-01, 9.2192e-02, 3.7802e-01, 1.1046e-01, 2.0446e-01, 3.3506e-01,\n",
+      "        2.8385e-01, 2.2912e-01, 1.7664e-01, 1.8668e-01, 3.1790e-01, 1.7006e-01,\n",
+      "        3.5324e-01, 3.2237e-01, 5.1254e-01, 1.6822e-01, 1.8359e-01, 2.3061e-01,\n",
+      "        3.7184e-01, 1.3890e-01, 1.6420e-01, 2.3126e-01, 4.4589e-01, 1.7967e-01,\n",
+      "        1.6983e-01, 2.2988e-01, 2.6264e-01, 1.6766e-01, 4.2688e-01, 1.5796e-01,\n",
+      "        2.1983e-01, 2.2968e-01, 3.2065e-01, 1.2382e-01])), ('pretrained_model.bn1.bias', tensor([ 2.2515e-01,  6.6806e-01,  1.9438e-02,  1.4186e-01,  2.1116e-01,\n",
+      "         1.7388e-01,  2.1308e-01,  1.8843e-01,  2.4752e-01,  2.4207e-01,\n",
+      "         1.4962e-01, -2.0234e-01,  1.6616e-01, -3.8305e-08,  2.3327e-01,\n",
+      "         2.2490e-01,  5.5599e-01,  2.3568e-01,  2.3225e-01,  5.7884e-01,\n",
+      "         2.2272e-01,  2.1363e-01,  1.9373e-01,  6.5369e-01,  2.7162e-01,\n",
+      "         6.7023e-01,  2.1986e-01,  2.2732e-01,  1.2489e-01,  3.8220e-01,\n",
+      "         1.7802e-01,  6.1777e-02,  8.6751e-01,  2.7252e-01,  3.9325e-01,\n",
+      "         6.7993e-01,  1.6731e-01,  2.1492e-01,  2.3294e-01,  2.0489e-01,\n",
+      "         8.6691e-01,  2.3125e-01, -4.5220e-01,  8.5519e-01, -3.9263e-01,\n",
+      "         2.5222e-01,  1.8116e-01,  3.6488e-01, -2.6837e-01,  2.3011e-01,\n",
+      "         2.9086e-01,  8.6607e-02, -4.9979e-01,  1.8616e-01,  2.0952e-01,\n",
+      "         3.3055e-01,  4.9576e-01, -7.8964e-02, -3.0739e-01, -3.1335e-02,\n",
+      "         1.5202e-01,  2.3687e-01,  8.9851e-01,  2.5605e-01])), ('pretrained_model.bn1.running_mean', tensor([-2.5546e-02,  5.8581e-01, -6.0371e-02,  1.3323e-02, -2.6338e-02,\n",
+      "         9.7030e-03, -1.9184e-02,  7.5475e-03,  2.3388e-02,  4.0489e-02,\n",
+      "         1.9564e-02, -2.4726e-01,  1.8832e-02, -2.7658e-07,  1.6928e-03,\n",
+      "        -4.6326e-04,  2.1613e-01,  1.1211e-02, -5.6175e-03,  2.2784e-01,\n",
+      "         1.4775e-02,  2.2339e-02,  1.7148e-02, -2.9933e-01,  3.7733e-02,\n",
+      "         2.2521e-02,  8.4540e-03,  4.3610e-03, -3.9990e-02, -3.4172e-01,\n",
+      "         2.4671e-03,  6.5611e-02, -3.1685e-02,  3.1036e-03,  5.4567e-01,\n",
+      "        -9.4615e-01,  1.8119e-02, -3.5259e-02,  2.2081e-03,  1.3930e-02,\n",
+      "        -3.7715e-01,  3.1771e-02, -2.2474e-01, -4.0157e-03,  3.1934e-02,\n",
+      "         3.2994e-02,  2.9966e-02,  5.9863e-02,  7.0517e-03, -1.7325e-02,\n",
+      "         3.5292e-02,  5.9665e-03,  2.0719e-01,  9.6705e-04, -1.2109e-02,\n",
+      "        -4.5645e-02, -2.8873e-01,  5.9745e-02,  5.6409e-02, -5.0441e-02,\n",
+      "        -2.6630e-03,  1.2586e-02,  4.3761e-01, -1.2715e-03])), ('pretrained_model.bn1.running_var', tensor([7.1170e-01, 3.1979e+00, 4.2452e+00, 2.9954e+00, 3.2509e-01, 3.6109e+00,\n",
+      "        2.7583e-01, 2.4129e-01, 2.5499e-01, 2.7866e+00, 2.8668e-01, 1.5170e+00,\n",
+      "        1.7980e-01, 2.1902e-12, 1.2457e-01, 2.3558e-01, 1.4402e+00, 2.4595e-01,\n",
+      "        5.3797e-02, 8.4034e+00, 8.7034e-02, 3.2916e-01, 1.4424e-01, 1.6165e+00,\n",
+      "        5.1922e-01, 2.0571e+00, 2.7769e-01, 3.3181e-01, 8.1001e-02, 5.2805e+00,\n",
+      "        8.1529e-01, 6.0955e-02, 8.9722e+00, 2.2701e-02, 3.9830e+00, 7.3988e+00,\n",
+      "        3.1256e+00, 1.6311e+00, 4.5887e-01, 3.3733e-01, 4.8878e+00, 1.1244e-01,\n",
+      "        2.1367e+00, 4.6342e+00, 7.4094e+00, 1.6185e-01, 2.3468e-01, 1.3414e+00,\n",
+      "        1.2667e+00, 1.1694e-01, 2.4929e-01, 9.6197e-01, 2.7307e+00, 3.5284e-01,\n",
+      "        3.4951e-01, 1.0400e+00, 1.5739e+00, 1.9937e-01, 2.3118e+00, 2.1881e-01,\n",
+      "        6.6014e-01, 6.4847e-01, 5.7361e+00, 5.0174e-02])), ('pretrained_model.bn1.num_batches_tracked', tensor(0)), ('pretrained_model.layer1.0.conv1.weight', tensor([[[[ 0.0102]],\n",
+      "\n",
+      "         [[ 0.0643]],\n",
+      "\n",
+      "         [[-0.0163]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0962]],\n",
+      "\n",
+      "         [[-0.2891]],\n",
+      "\n",
+      "         [[-0.1752]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.1107]],\n",
+      "\n",
+      "         [[ 0.0043]],\n",
+      "\n",
+      "         [[ 0.0270]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0900]],\n",
+      "\n",
+      "         [[-0.0717]],\n",
+      "\n",
+      "         [[-0.1452]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0232]],\n",
+      "\n",
+      "         [[-0.0017]],\n",
+      "\n",
+      "         [[-0.0138]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0689]],\n",
+      "\n",
+      "         [[ 0.0758]],\n",
+      "\n",
+      "         [[-0.0445]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-0.0070]],\n",
+      "\n",
+      "         [[ 0.0078]],\n",
+      "\n",
+      "         [[ 0.0161]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0172]],\n",
+      "\n",
+      "         [[-0.0581]],\n",
+      "\n",
+      "         [[ 0.0130]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0517]],\n",
+      "\n",
+      "         [[ 0.0014]],\n",
+      "\n",
+      "         [[ 0.0380]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0167]],\n",
+      "\n",
+      "         [[-0.0012]],\n",
+      "\n",
+      "         [[ 0.0216]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0753]],\n",
+      "\n",
+      "         [[-0.1375]],\n",
+      "\n",
+      "         [[ 0.0587]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0345]],\n",
+      "\n",
+      "         [[ 0.2447]],\n",
+      "\n",
+      "         [[-0.0093]]]])), ('pretrained_model.layer1.0.bn1.weight', tensor([1.7309e-01, 1.4511e-01, 1.1653e-01, 1.2129e-01, 1.2349e-01, 1.4504e-01,\n",
+      "        1.4058e-01, 4.4064e-08, 1.1795e-01, 1.5925e-01, 2.1016e-01, 1.9700e-01,\n",
+      "        1.8677e-01, 1.2016e-01, 1.1689e-01, 9.1916e-02, 3.6248e-01, 1.2963e-01,\n",
+      "        3.3404e-01, 2.6398e-01, 2.3751e-01, 2.4855e-01, 1.7403e-01, 2.0592e-08,\n",
+      "        3.4231e-01, 1.7360e-01, 3.1124e-01, 1.1537e-08, 1.5243e-01, 1.5737e-01,\n",
+      "        1.2651e-01, 1.3398e-01, 1.0415e-01, 1.7614e-01, 1.3295e-01, 3.4015e-01,\n",
+      "        1.2006e-01, 2.3306e-01, 2.4134e-01, 9.5922e-02, 2.3230e-01, 1.3033e-01,\n",
+      "        1.0138e-01, 1.1533e-01, 2.1966e-01, 3.1857e-01, 1.4675e-01, 1.9888e-01,\n",
+      "        3.2747e-01, 2.7969e-01, 1.1453e-01, 2.9214e-01, 1.3140e-01, 1.3451e-01,\n",
+      "        1.6982e-01, 1.5482e-01, 2.5958e-08, 1.7302e-01, 2.8124e-08, 1.9772e-01,\n",
+      "        2.7141e-01, 1.5559e-01, 2.7327e-01, 2.2170e-01])), ('pretrained_model.layer1.0.bn1.bias', tensor([ 5.0239e-01,  1.3044e-01, -8.6639e-02,  1.0340e-01,  3.2377e-01,\n",
+      "         3.0232e-02,  7.5068e-02, -9.8557e-08, -1.4977e-01, -2.9239e-02,\n",
+      "         7.5089e-02,  2.1390e-01,  5.0372e-02,  1.7133e-01,  1.6645e-01,\n",
+      "         1.3785e-01, -4.4309e-02,  1.5180e-01, -6.7160e-02,  6.5741e-03,\n",
+      "         2.7404e-02,  6.3319e-02,  7.9811e-02, -6.4231e-08, -2.4591e-02,\n",
+      "         1.3855e-01, -8.1407e-02, -6.2906e-08, -1.6351e-02,  1.3820e-01,\n",
+      "         2.9771e-01, -1.0960e-01, -4.4286e-02, -1.6106e-01,  1.2995e-01,\n",
+      "        -3.2647e-02,  2.3930e-01,  1.0464e-01, -1.0300e-02,  1.1078e-01,\n",
+      "         5.1202e-02, -1.9294e-02,  2.0068e-01,  1.1275e-01,  9.3838e-02,\n",
+      "        -4.0195e-02, -5.2583e-02,  5.7972e-01, -1.0628e-01, -5.2902e-02,\n",
+      "         3.0737e-02, -2.8347e-02, -3.4597e-02,  1.4860e-01, -2.9522e-01,\n",
+      "         2.8186e-02, -7.5331e-08,  1.4350e-01, -8.2490e-08,  2.3123e-01,\n",
+      "         5.1666e-03, -1.6347e-01,  2.7909e-02,  5.8018e-01])), ('pretrained_model.layer1.0.bn1.running_mean', tensor([-7.2337e-01, -2.7556e-01,  2.4655e-01, -2.9498e-01, -8.7242e-02,\n",
+      "        -3.5455e-01, -5.4055e-02, -1.9886e-07,  1.7513e-01, -2.7364e-01,\n",
+      "        -2.8263e-01,  1.2294e+00, -1.7670e-01, -1.5530e-01, -2.7392e-01,\n",
+      "        -4.8343e-02, -4.7036e-01,  8.2735e-01, -2.6135e-01, -2.8621e-01,\n",
+      "        -1.9200e-01, -3.9109e-02, -1.9468e-01,  2.7510e-09, -3.7973e-01,\n",
+      "        -1.4723e-01, -3.3566e-01,  7.3215e-09, -1.9819e-01, -3.4195e-01,\n",
+      "        -3.4826e-02,  1.9623e-01,  5.0851e-02, -1.2322e-01, -2.9339e-01,\n",
+      "        -3.3274e-01, -1.7119e-01, -1.1709e-01, -2.7467e-01,  3.6514e-01,\n",
+      "        -1.3670e-01, -1.0710e-01, -2.6391e-01, -5.4707e-01, -1.7802e-01,\n",
+      "        -2.5033e-01, -3.7257e-01, -2.5227e-01, -1.1052e-01, -4.1278e-01,\n",
+      "        -9.9610e-02, -3.4219e-01,  1.5709e-01, -4.6610e-01, -1.2258e-01,\n",
+      "        -6.9708e-01,  5.1019e-09, -2.6543e-01, -5.6052e-45,  1.2069e+00,\n",
+      "        -1.2304e-03, -3.4843e-02, -4.0986e-01, -1.7531e-01])), ('pretrained_model.layer1.0.bn1.running_var', tensor([1.3063e-01, 1.8006e-02, 8.9850e-03, 1.5084e-02, 3.5966e-02, 9.7873e-03,\n",
+      "        1.3546e-02, 8.4522e-15, 7.5020e-03, 1.1650e-02, 3.4525e-02, 1.4162e-01,\n",
+      "        2.3024e-02, 8.2292e-03, 1.3972e-02, 4.7628e-03, 1.0172e-01, 6.0087e-02,\n",
+      "        5.2406e-02, 6.4460e-02, 3.1563e-02, 5.1925e-02, 2.1077e-02, 3.3755e-16,\n",
+      "        7.7014e-02, 2.2289e-02, 7.4554e-02, 4.9108e-16, 1.2350e-02, 2.5597e-02,\n",
+      "        4.7143e-02, 7.9744e-03, 7.8329e-03, 1.4885e-02, 1.2517e-02, 6.8085e-02,\n",
+      "        2.8635e-02, 4.6128e-02, 5.6574e-02, 1.0479e-02, 4.4122e-02, 1.0780e-02,\n",
+      "        1.3111e-02, 1.0656e-02, 4.4864e-02, 6.1254e-02, 1.3131e-02, 1.7170e-01,\n",
+      "        6.3035e-02, 5.7591e-02, 9.0738e-03, 7.1446e-02, 8.0425e-03, 1.2343e-02,\n",
+      "        1.6086e-02, 2.5736e-02, 5.6806e-16, 2.6024e-02, 3.8873e-15, 1.2232e-01,\n",
+      "        4.5292e-02, 1.7748e-02, 6.0698e-02, 1.6789e-01])), ('pretrained_model.layer1.0.bn1.num_batches_tracked', tensor(0)), ('pretrained_model.layer1.0.conv2.weight', tensor([[[[ 2.0448e-09, -1.3820e-09,  6.4313e-09],\n",
+      "          [ 4.6782e-09,  3.2057e-09,  9.2129e-10],\n",
+      "          [ 6.3298e-09, -2.9473e-09, -2.3388e-09]],\n",
+      "\n",
+      "         [[ 1.1203e-08,  1.2527e-08,  1.3260e-08],\n",
+      "          [ 1.0489e-08,  4.8572e-09,  3.7590e-09],\n",
+      "          [ 1.0324e-08,  1.1873e-08,  6.7572e-09]],\n",
+      "\n",
+      "         [[-6.6866e-09, -2.7800e-09, -1.5036e-09],\n",
+      "          [ 4.7663e-09, -3.0215e-09,  2.3349e-09],\n",
+      "          [ 5.1758e-09, -1.3804e-11, -7.3581e-09]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-6.3359e-09, -7.4640e-09, -9.3291e-09],\n",
+      "          [-6.8421e-09, -3.9267e-09, -4.4778e-09],\n",
+      "          [-4.8208e-09, -5.3304e-10, -1.2815e-08]],\n",
+      "\n",
+      "         [[-1.0223e-09, -6.8004e-09, -4.9948e-09],\n",
+      "          [-3.3531e-10, -4.1669e-09, -2.2183e-09],\n",
+      "          [-1.8135e-09, -4.7327e-09, -3.4730e-09]],\n",
+      "\n",
+      "         [[ 1.8308e-09,  8.4720e-10, -5.4441e-10],\n",
+      "          [ 2.5645e-10, -4.8921e-09,  5.7010e-09],\n",
+      "          [ 2.3734e-10,  1.5954e-10,  3.2514e-09]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.3774e-02,  4.2281e-03,  2.2526e-02],\n",
+      "          [ 1.0326e-02, -4.2274e-03,  1.8575e-02],\n",
+      "          [ 3.1015e-02,  2.5224e-02,  6.9271e-04]],\n",
+      "\n",
+      "         [[ 4.1483e-03,  5.8914e-03,  1.1478e-02],\n",
+      "          [ 2.0537e-02,  1.4317e-02,  1.8298e-02],\n",
+      "          [ 2.0029e-02,  2.2511e-02, -1.8974e-03]],\n",
+      "\n",
+      "         [[-7.2575e-03, -1.2136e-02,  1.2518e-02],\n",
+      "          [-5.8078e-03, -2.6849e-02, -3.8839e-03],\n",
+      "          [ 4.2880e-04, -1.8541e-02, -2.0316e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 9.5300e-03,  9.6570e-03,  1.3730e-02],\n",
+      "          [ 1.6057e-02,  9.7276e-03,  6.8245e-03],\n",
+      "          [ 2.4546e-02,  1.7701e-02,  9.9409e-03]],\n",
+      "\n",
+      "         [[-2.4305e-03, -4.3991e-04,  3.2125e-03],\n",
+      "          [ 5.5639e-03,  8.7765e-02, -5.8575e-04],\n",
+      "          [-1.3329e-02, -1.4401e-02, -5.3165e-03]],\n",
+      "\n",
+      "         [[-2.0947e-02, -6.3646e-03, -2.6587e-02],\n",
+      "          [-8.1463e-03,  2.0467e-02,  3.9241e-03],\n",
+      "          [-2.9132e-02,  6.3058e-03,  7.9173e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 4.3669e-02,  4.5245e-02,  2.8273e-02],\n",
+      "          [ 4.9039e-02,  6.5767e-02,  5.5034e-02],\n",
+      "          [ 5.2817e-02,  6.1067e-02,  4.0469e-02]],\n",
+      "\n",
+      "         [[ 6.3572e-03, -1.9974e-03,  1.9943e-03],\n",
+      "          [ 1.5089e-03,  5.5619e-04,  1.5291e-02],\n",
+      "          [ 1.0093e-02,  9.1536e-03,  1.4137e-02]],\n",
+      "\n",
+      "         [[ 1.0737e-03, -2.2116e-02,  4.8094e-03],\n",
+      "          [-2.0906e-02, -7.9131e-03,  2.7564e-02],\n",
+      "          [-3.0298e-03, -6.6920e-03,  1.4791e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 2.8993e-02,  2.5559e-02,  3.9259e-02],\n",
+      "          [ 3.7478e-02,  1.9071e-03,  4.1909e-02],\n",
+      "          [ 3.3643e-02,  4.0786e-02,  4.5362e-02]],\n",
+      "\n",
+      "         [[ 2.7812e-03, -2.1931e-02,  1.3639e-02],\n",
+      "          [-1.5751e-02, -2.1330e-03,  3.2345e-03],\n",
+      "          [-9.1859e-04, -7.0415e-03, -1.3241e-03]],\n",
+      "\n",
+      "         [[ 7.3734e-03, -2.5593e-02, -1.2359e-02],\n",
+      "          [-2.8512e-02, -4.8055e-02, -4.6652e-02],\n",
+      "          [-3.4377e-02, -4.3306e-02, -2.6977e-02]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 1.7791e-09,  2.8450e-09, -5.5008e-09],\n",
+      "          [ 4.2172e-09, -1.8197e-09, -3.2287e-09],\n",
+      "          [ 2.2088e-09, -1.2017e-09,  1.6149e-10]],\n",
+      "\n",
+      "         [[ 1.9392e-09, -2.6465e-09, -1.4840e-08],\n",
+      "          [ 8.8203e-09,  2.6154e-09, -2.3220e-09],\n",
+      "          [ 5.3503e-09,  4.6158e-09, -5.0513e-09]],\n",
+      "\n",
+      "         [[ 4.1283e-10, -6.0775e-09, -6.9700e-09],\n",
+      "          [-4.4703e-09, -8.7164e-09, -4.0133e-09],\n",
+      "          [-1.6783e-09, -1.3974e-10, -4.6458e-09]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.6407e-09,  3.7079e-09,  5.3530e-10],\n",
+      "          [-4.8012e-09, -9.2655e-09, -6.2268e-09],\n",
+      "          [ 8.0850e-09,  3.8523e-09,  3.8043e-09]],\n",
+      "\n",
+      "         [[ 3.9066e-09, -1.3275e-09, -2.6784e-12],\n",
+      "          [-1.2471e-09,  2.4739e-09, -4.5830e-09],\n",
+      "          [ 4.8704e-10,  3.2298e-09, -8.3914e-09]],\n",
+      "\n",
+      "         [[ 2.7195e-09,  6.9588e-10,  3.1497e-09],\n",
+      "          [ 3.4010e-09,  5.4871e-09, -3.7825e-09],\n",
+      "          [ 2.2927e-09,  5.8928e-09,  4.7535e-10]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 8.0624e-02,  5.4835e-02,  2.8958e-02],\n",
+      "          [ 3.3719e-02, -1.4872e-02, -3.7019e-02],\n",
+      "          [ 1.1805e-02, -3.9508e-02, -5.8695e-02]],\n",
+      "\n",
+      "         [[-9.3217e-03, -3.9020e-03, -6.0976e-03],\n",
+      "          [ 1.1189e-02,  1.2248e-02, -4.5912e-03],\n",
+      "          [-1.0421e-02, -2.9611e-02, -3.4701e-02]],\n",
+      "\n",
+      "         [[ 5.5599e-03, -2.1152e-02, -1.5033e-02],\n",
+      "          [-5.3305e-04, -1.4442e-02,  4.5207e-03],\n",
+      "          [-6.0078e-03, -1.6650e-02,  9.0985e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 4.9060e-05, -2.3972e-03, -9.7974e-03],\n",
+      "          [-4.1145e-03, -1.3090e-02, -1.4446e-02],\n",
+      "          [-1.0082e-02, -1.9861e-02, -1.1930e-02]],\n",
+      "\n",
+      "         [[-7.7498e-04,  1.4662e-02, -2.8254e-03],\n",
+      "          [ 9.3673e-03,  2.6609e-02,  3.1569e-03],\n",
+      "          [-1.6987e-02,  1.4359e-02,  1.1788e-02]],\n",
+      "\n",
+      "         [[-5.7721e-02, -2.1131e-02,  1.2588e-02],\n",
+      "          [-3.3162e-02,  3.1781e-02,  4.7995e-02],\n",
+      "          [ 7.1825e-03,  7.4229e-02,  7.0836e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-5.0041e-02, -3.8274e-02,  1.0281e-01],\n",
+      "          [-1.7773e-01,  1.7875e-03,  2.7921e-01],\n",
+      "          [-1.1947e-01, -6.1112e-02,  1.3084e-01]],\n",
+      "\n",
+      "         [[ 7.4190e-03,  2.7574e-03,  3.8802e-02],\n",
+      "          [-3.2673e-02, -1.1620e-02,  2.8283e-02],\n",
+      "          [-3.0509e-02,  5.4155e-05,  5.5027e-02]],\n",
+      "\n",
+      "         [[-3.8659e-02, -4.3701e-02, -2.4232e-02],\n",
+      "          [-3.5413e-02, -9.6134e-02, -8.0017e-02],\n",
+      "          [-4.3522e-02, -5.0347e-02, -3.0172e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-2.6579e-02, -2.2142e-02,  4.6001e-03],\n",
+      "          [-5.6422e-02, -3.1488e-03,  5.8454e-02],\n",
+      "          [-1.4199e-02, -7.5080e-04,  2.2189e-02]],\n",
+      "\n",
+      "         [[ 5.7260e-03,  1.6450e-02,  2.0724e-02],\n",
+      "          [-1.4872e-02, -5.1757e-03,  4.6544e-02],\n",
+      "          [-1.6173e-02,  1.5789e-05,  6.1988e-02]],\n",
+      "\n",
+      "         [[ 2.0646e-01, -3.8111e-02, -1.3801e-01],\n",
+      "          [ 3.8188e-01, -9.4446e-03, -3.0140e-01],\n",
+      "          [ 2.4269e-01, -6.0392e-02, -1.9704e-01]]]])), ('pretrained_model.layer1.0.bn2.weight', tensor([2.2687e-08, 1.1669e-01, 2.3875e-01, 1.3190e-01, 9.3148e-02, 1.4351e-01,\n",
+      "        1.3215e-01, 1.4758e-01, 1.8747e-01, 1.3099e-01, 1.2439e-01, 1.7780e-01,\n",
+      "        1.3316e-01, 1.3404e-01, 1.5764e-01, 1.1024e-01, 1.1683e-01, 1.3578e-01,\n",
+      "        2.3930e-01, 4.5836e-07, 2.7162e-01, 1.9285e-01, 1.8037e-01, 1.9382e-01,\n",
+      "        1.5408e-01, 1.4835e-01, 1.6919e-01, 2.0159e-01, 1.8182e-01, 1.7444e-01,\n",
+      "        1.4045e-01, 1.2346e-01, 1.4672e-01, 1.9412e-01, 1.5244e-01, 1.4625e-01,\n",
+      "        1.7521e-01, 1.6281e-01, 1.7335e-01, 2.1335e-01, 1.5329e-01, 2.1105e-01,\n",
+      "        1.7881e-01, 9.1854e-02, 1.6850e-01, 1.8816e-01, 7.1969e-02, 2.8055e-01,\n",
+      "        1.6165e-01, 1.3728e-01, 1.5782e-01, 1.6827e-01, 1.7884e-01, 9.8523e-02,\n",
+      "        1.6619e-01, 1.5723e-01, 2.2428e-01, 1.2873e-01, 1.6559e-01, 1.3078e-03,\n",
+      "        1.7556e-01, 9.3359e-09, 1.6554e-01, 2.1951e-01])), ('pretrained_model.layer1.0.bn2.bias', tensor([-1.1377e-07,  6.1761e-02,  3.6651e-01,  1.0841e-01,  2.7561e-01,\n",
+      "         3.9277e-01,  2.6555e-01,  1.5447e-01, -1.3840e-01, -8.7303e-02,\n",
+      "        -3.3936e-02,  3.0187e-01,  2.7547e-01, -8.8216e-03, -1.0579e-01,\n",
+      "         2.8429e-01,  3.7115e-01, -1.0445e-01,  2.4526e-01, -1.3853e-06,\n",
+      "         7.4446e-02,  1.5188e-01, -1.9169e-02,  4.5275e-01,  1.3669e-01,\n",
+      "         2.1131e-01,  1.7247e-01,  8.1973e-04, -8.6617e-03,  1.2677e-02,\n",
+      "         7.8042e-02,  3.3153e-01,  3.3622e-01,  5.5251e-01,  3.2282e-02,\n",
+      "        -8.9827e-02,  3.8731e-01,  2.0405e-01,  9.4860e-02,  9.8063e-02,\n",
+      "         4.0767e-01,  7.6193e-02,  7.8691e-02,  2.5929e-01, -5.6213e-02,\n",
+      "        -3.0388e-02,  2.6677e-01, -2.2475e-01,  3.9722e-01,  1.8589e-02,\n",
+      "         3.7539e-01,  1.8647e-01,  1.4146e-01,  1.6965e-01, -7.0615e-02,\n",
+      "         3.5473e-02, -2.5507e-01, -4.4115e-02, -1.0801e-01, -6.5400e-03,\n",
+      "        -3.7334e-02, -4.6014e-08, -2.2438e-02,  1.0855e-01])), ('pretrained_model.layer1.0.bn2.running_mean', tensor([ 5.9196e-08, -5.2465e-02,  1.4699e-01, -3.1614e-02, -6.0168e-02,\n",
+      "        -5.1306e-02, -3.3463e-02,  1.4554e-01,  1.4413e-01,  6.4882e-02,\n",
+      "        -1.5586e-02,  1.5526e-01, -5.0489e-03,  3.0843e-01,  2.2059e-02,\n",
+      "         1.9718e-01,  7.9271e-02,  6.3999e-02, -2.1256e-01,  1.1460e-06,\n",
+      "         2.5864e-01, -1.4270e-03,  1.1295e-01,  3.5559e-01,  2.3548e-01,\n",
+      "         1.4483e-01,  5.4932e-01,  2.0946e-01, -9.2399e-02,  4.0356e-01,\n",
+      "         1.0691e-02,  1.7305e-01,  1.2949e-01, -2.0400e-01,  1.2537e-01,\n",
+      "        -9.8267e-02,  1.7956e-01,  3.4461e-02,  1.0254e-01,  3.7679e-01,\n",
+      "         9.9143e-02,  2.2568e-01,  2.2594e-01, -9.8679e-02,  2.9562e-01,\n",
+      "         1.9581e-01,  5.1285e-02, -5.4558e-01,  1.1274e-01, -2.4235e-02,\n",
+      "        -1.0663e-01,  2.6850e-02,  3.6366e-01, -1.2001e-01, -3.0698e-01,\n",
+      "        -8.6922e-02, -1.0364e+00,  8.6664e-02, -4.6413e-02, -9.1575e-03,\n",
+      "        -2.7415e-01, -5.6052e-45,  3.3850e-01,  2.6132e-01])), ('pretrained_model.layer1.0.bn2.running_var', tensor([5.0917e-16, 1.2387e-02, 1.1626e-01, 1.9299e-02, 1.0732e-02, 6.6005e-02,\n",
+      "        2.2575e-02, 1.2237e-02, 1.8831e-02, 5.7035e-03, 5.5503e-03, 5.8276e-02,\n",
+      "        3.0521e-02, 1.5135e-02, 7.3987e-03, 2.7771e-02, 2.4657e-02, 7.6064e-03,\n",
+      "        7.7171e-02, 6.5048e-13, 9.0769e-02, 2.3293e-02, 1.8057e-02, 8.2512e-02,\n",
+      "        2.1136e-02, 2.3514e-02, 1.4593e-02, 2.4612e-02, 2.8707e-02, 2.5752e-02,\n",
+      "        1.4476e-02, 4.6154e-02, 5.3842e-02, 1.0765e-01, 8.5347e-03, 4.6334e-03,\n",
+      "        7.3529e-02, 2.0117e-02, 2.4494e-02, 6.5935e-02, 8.1266e-02, 7.5902e-02,\n",
+      "        3.2922e-02, 2.8108e-02, 2.8991e-02, 1.1637e-02, 1.0602e-02, 1.1889e-02,\n",
+      "        3.9844e-02, 1.9356e-02, 4.1066e-02, 3.3205e-02, 2.2582e-02, 5.6219e-03,\n",
+      "        2.8614e-02, 2.2752e-02, 1.6025e-02, 4.8145e-03, 8.5002e-03, 9.2180e-05,\n",
+      "        1.7894e-02, 1.6076e-15, 1.9847e-02, 6.1079e-02])), ('pretrained_model.layer1.0.bn2.num_batches_tracked', tensor(0)), ('pretrained_model.layer1.0.conv3.weight', tensor([[[[-3.9178e-09]],\n",
+      "\n",
+      "         [[ 1.8544e-02]],\n",
+      "\n",
+      "         [[ 5.0534e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.0565e-08]],\n",
+      "\n",
+      "         [[-1.9181e-02]],\n",
+      "\n",
+      "         [[-4.7429e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 5.6075e-09]],\n",
+      "\n",
+      "         [[ 5.4763e-03]],\n",
+      "\n",
+      "         [[ 2.1080e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 2.2761e-09]],\n",
+      "\n",
+      "         [[ 4.1613e-03]],\n",
+      "\n",
+      "         [[ 1.6246e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-2.1825e-09]],\n",
+      "\n",
+      "         [[-8.2521e-03]],\n",
+      "\n",
+      "         [[-1.7734e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-3.2053e-09]],\n",
+      "\n",
+      "         [[ 9.9417e-04]],\n",
+      "\n",
+      "         [[-1.6301e-02]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 5.9877e-09]],\n",
+      "\n",
+      "         [[-9.6989e-04]],\n",
+      "\n",
+      "         [[ 3.3653e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.2301e-08]],\n",
+      "\n",
+      "         [[ 4.2544e-03]],\n",
+      "\n",
+      "         [[ 9.1181e-04]]],\n",
+      "\n",
+      "\n",
+      "        [[[-7.3236e-09]],\n",
+      "\n",
+      "         [[ 7.3874e-05]],\n",
+      "\n",
+      "         [[ 9.3062e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 3.5531e-09]],\n",
+      "\n",
+      "         [[-4.9048e-02]],\n",
+      "\n",
+      "         [[-6.4931e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.3986e-09]],\n",
+      "\n",
+      "         [[-2.5054e-03]],\n",
+      "\n",
+      "         [[-2.0294e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 6.0397e-09]],\n",
+      "\n",
+      "         [[ 2.3668e-02]],\n",
+      "\n",
+      "         [[-1.1042e-01]]]])), ('pretrained_model.layer1.0.bn3.weight', tensor([ 2.3207e-02, -1.4635e-03,  5.9882e-02,  3.1097e-01,  5.3820e-02,\n",
+      "         4.6495e-02,  9.6789e-02,  3.7914e-01,  7.4869e-02,  1.7740e-01,\n",
+      "         2.7051e-01,  1.9886e-01,  2.2852e-01,  2.3815e-01,  2.1938e-01,\n",
+      "         1.7134e-01,  2.4552e-01,  3.2523e-01,  4.9889e-02,  1.1708e-01,\n",
+      "         1.3778e-01,  2.0858e-01,  1.0811e-06,  9.2886e-09,  1.7371e-01,\n",
+      "         4.8230e-04,  2.3344e-02,  2.6984e-01,  2.0768e-01,  2.2201e-01,\n",
+      "         1.8870e-01,  3.0912e-01,  2.4805e-01,  1.8690e-01,  1.1949e-01,\n",
+      "         1.9965e-01,  1.4320e-01,  2.2915e-01, -1.4467e-02, -1.0996e-03,\n",
+      "        -1.4302e-02,  1.9826e-01,  1.5625e-01,  2.4984e-01,  1.0215e-01,\n",
+      "         1.5569e-05,  9.0396e-02,  1.6184e-01,  9.2704e-02, -1.0401e-02,\n",
+      "         2.1371e-01,  2.7043e-02,  1.6057e-07,  1.3068e-01,  6.9327e-02,\n",
+      "         1.7997e-01,  9.3169e-03,  2.3205e-01,  1.9444e-01,  2.0915e-01,\n",
+      "         1.3931e-01,  1.5377e-01,  1.7452e-01,  9.6760e-02,  7.6360e-08,\n",
+      "        -2.1297e-04,  1.0317e-01,  2.5050e-01,  1.8685e-01,  5.0575e-03,\n",
+      "         1.2375e-02, -2.5604e-07,  2.7048e-01,  4.5474e-02,  3.2762e-01,\n",
+      "         5.7782e-02,  8.4006e-04,  4.5183e-02,  2.7411e-01,  1.7563e-01,\n",
+      "         2.1642e-01,  2.3717e-01,  1.4151e-01, -4.4904e-06,  2.5030e-01,\n",
+      "         1.7661e-01,  1.4778e-01,  7.3804e-07,  1.6197e-01,  9.5119e-07,\n",
+      "        -4.8780e-03,  8.4410e-02, -1.1080e-03,  3.1507e-04,  7.6016e-03,\n",
+      "         9.1005e-02,  2.2476e-01,  2.6848e-01,  1.0499e-01,  1.1684e-01,\n",
+      "         2.6593e-01,  3.6882e-07,  2.4629e-01,  9.0960e-02,  2.4770e-01,\n",
+      "         9.0942e-02,  2.9997e-01,  6.9410e-07,  1.4889e-02,  2.5666e-01,\n",
+      "         8.6644e-02,  2.0061e-01, -8.8008e-03, -9.0715e-02,  2.7728e-01,\n",
+      "         2.5243e-01,  2.8623e-01,  1.6431e-08,  2.2058e-01,  2.6744e-01,\n",
+      "         2.0935e-01,  3.0434e-01,  2.8785e-01,  1.6745e-05,  8.5251e-02,\n",
+      "         2.1261e-01,  1.9373e-01,  1.6346e-05,  6.0316e-02,  1.9630e-01,\n",
+      "         1.7444e-01,  1.4300e-01,  1.5762e-01,  1.0602e-06,  1.0294e-06,\n",
+      "         2.0641e-02,  1.1930e-01,  7.5190e-02,  2.3358e-01,  9.5159e-02,\n",
+      "         7.5146e-02,  3.0920e-01,  8.3629e-02,  1.3217e-01,  6.8588e-02,\n",
+      "         2.3170e-01,  2.5341e-01,  1.1741e-01,  7.1559e-02,  1.3768e-01,\n",
+      "         9.1425e-02,  7.4353e-02,  9.2097e-02, -8.5301e-02,  1.2426e-01,\n",
+      "         1.6476e-01,  1.4271e-01,  1.3651e-01,  1.7933e-01, -8.1450e-02,\n",
+      "         2.6776e-01,  2.2132e-01,  1.9081e-01, -7.7118e-03,  2.4190e-02,\n",
+      "         2.1919e-03,  2.9875e-02,  2.6808e-01,  1.6787e-01,  1.1046e-01,\n",
+      "        -2.0005e-02,  2.3968e-01,  1.2319e-01,  1.4940e-01,  1.1656e-05,\n",
+      "         8.3234e-02,  2.5765e-01,  1.8693e-01,  1.7243e-01,  1.7073e-01,\n",
+      "         1.4890e-01,  2.8781e-02,  1.6498e-01,  2.4636e-01, -1.9682e-03,\n",
+      "        -1.6797e-06,  1.5964e-01,  2.7695e-01,  2.5032e-01, -9.9016e-04,\n",
+      "         1.2319e-01, -3.9883e-03,  8.5547e-02,  1.5940e-01,  9.1111e-03,\n",
+      "         7.4232e-02,  1.4777e-01,  2.1384e-01,  2.1428e-01,  1.5542e-05,\n",
+      "         2.6570e-01,  3.2051e-01,  8.8401e-07,  2.7380e-01, -4.2305e-08,\n",
+      "         5.1098e-03,  1.5434e-01, -8.5196e-02,  1.4073e-01,  1.9943e-01,\n",
+      "         1.5480e-01, -1.0868e-01,  1.0094e-01,  1.5839e-01,  7.8967e-07,\n",
+      "         2.7089e-01,  1.5960e-01,  1.8041e-01,  1.8122e-01,  2.5060e-01,\n",
+      "        -4.1827e-03,  1.3735e-01,  8.9525e-02,  4.8021e-02,  6.7242e-02,\n",
+      "         1.6667e-01, -6.0610e-03,  1.6108e-01,  4.2147e-02,  1.7381e-02,\n",
+      "         1.5928e-01,  2.5597e-01,  4.3832e-02,  2.6277e-01,  1.9122e-01,\n",
+      "         5.8510e-02,  1.4148e-01, -1.6025e-03,  5.8983e-02,  5.2743e-02,\n",
+      "         1.2028e-01, -2.8170e-02,  7.0440e-04,  2.8182e-01,  1.7759e-01,\n",
+      "         6.3479e-02, -1.5602e-05,  7.5022e-02,  1.0566e-01,  1.6421e-01,\n",
+      "         2.1776e-01,  6.2750e-02,  2.4493e-01,  8.5456e-05,  2.7426e-01,\n",
+      "         1.4350e-01])), ('pretrained_model.layer1.0.bn3.bias', tensor([-2.1438e-02,  9.9289e-02, -9.2199e-03,  8.9338e-02, -4.2064e-02,\n",
+      "         6.1096e-02,  8.7675e-02,  1.2983e-01,  1.3924e-01,  1.0476e-01,\n",
+      "         8.3112e-02,  2.7501e-02, -1.9209e-02,  9.5515e-03,  9.2394e-02,\n",
+      "         4.3834e-02,  1.3832e-01,  1.0541e-01, -6.8638e-02,  6.6138e-02,\n",
+      "         9.2162e-02,  4.5749e-02, -2.0165e-06, -1.0911e-07,  9.8751e-02,\n",
+      "        -1.1870e-03, -1.1940e-01, -2.0495e-02,  5.2297e-02,  5.6612e-02,\n",
+      "         2.3477e-02,  5.4243e-02,  6.8020e-02, -2.3484e-02,  9.1183e-02,\n",
+      "         1.9347e-02,  6.8897e-02,  9.8581e-03,  9.0708e-02,  1.1139e-01,\n",
+      "        -1.2437e-02,  8.8164e-02,  4.9179e-02,  7.8246e-02,  7.5082e-02,\n",
+      "        -4.3493e-05,  8.0479e-02, -5.6142e-05, -1.1960e-01,  6.0560e-02,\n",
+      "         1.2764e-01,  1.1615e-01, -3.5235e-07,  5.3625e-02, -1.6849e-02,\n",
+      "         1.4601e-01,  1.4569e-01,  1.8423e-02,  5.6332e-02,  2.8778e-02,\n",
+      "         1.3504e-02,  3.0969e-02,  7.4069e-02,  5.2063e-02, -1.4457e-07,\n",
+      "         6.7507e-02,  1.4148e-02, -8.5167e-03,  1.4935e-02,  1.3766e-01,\n",
+      "        -9.8344e-03, -5.8907e-07,  2.2019e-01,  1.0808e-01,  3.5516e-02,\n",
+      "         3.3091e-02, -2.9254e-03, -2.0232e-01,  6.1240e-02,  4.7136e-02,\n",
+      "         8.4093e-02,  6.0593e-02,  1.3611e-01, -2.0210e-05,  1.5756e-01,\n",
+      "         2.0041e-01,  5.5198e-02, -1.2313e-06,  1.5789e-02, -1.9601e-06,\n",
+      "         1.7108e-01, -9.2020e-02, -4.0665e-02, -8.0869e-03, -3.0733e-02,\n",
+      "         1.1882e-01,  1.9217e-01,  3.8119e-02,  8.0862e-02,  5.6588e-03,\n",
+      "         6.3820e-02, -7.5764e-07,  3.6335e-02,  4.3357e-02,  1.0338e-01,\n",
+      "         4.5125e-02, -1.4345e-01, -1.3194e-06, -6.5640e-02,  1.7631e-01,\n",
+      "         1.0952e-01,  1.1141e-01, -9.7117e-03,  7.6246e-02,  2.0219e-02,\n",
+      "         6.6759e-02,  4.9047e-02, -2.3844e-07,  1.7107e-01,  6.2827e-02,\n",
+      "         3.3943e-02, -1.6433e-01,  1.0968e-01, -7.4535e-05,  9.6587e-02,\n",
+      "         1.1160e-02,  6.5017e-02, -5.8506e-04,  5.9249e-04,  7.8966e-02,\n",
+      "         1.6955e-01, -1.4857e-02,  6.0041e-02, -2.6410e-06, -3.2922e-06,\n",
+      "         1.3890e-01,  4.6079e-02, -1.2662e-02,  5.8624e-02, -4.4830e-02,\n",
+      "        -7.7615e-03,  6.4926e-02,  6.5313e-02,  8.8839e-02, -2.1876e-01,\n",
+      "         5.3687e-02,  1.9970e-01,  4.4584e-02, -2.9703e-01,  4.1679e-02,\n",
+      "        -2.1352e-01, -1.1043e-02,  1.6995e-03, -3.2084e-02, -8.1811e-02,\n",
+      "         6.3550e-03,  4.5971e-02,  1.6416e-02,  2.9153e-02, -4.8127e-02,\n",
+      "         1.4305e-01,  1.2908e-01, -1.7048e-02,  1.6116e-01, -2.5020e-02,\n",
+      "         1.4388e-02,  3.8494e-02,  6.1406e-02,  1.9562e-02,  5.0978e-02,\n",
+      "         8.3687e-02, -1.6940e-02, -2.5340e-02,  1.7969e-02, -1.8403e-05,\n",
+      "         1.5452e-02,  3.0809e-02,  1.2912e-01,  9.7951e-02,  3.6365e-02,\n",
+      "         4.3964e-02, -8.4899e-02,  8.2683e-03, -5.1502e-02,  3.5911e-02,\n",
+      "        -2.0328e-06,  2.7412e-02,  1.1391e-01,  5.0865e-02,  2.3602e-01,\n",
+      "         5.9797e-02, -5.1864e-02,  2.5375e-02,  6.1117e-02,  2.9252e-02,\n",
+      "         8.3614e-02,  5.4235e-02,  1.1732e-01,  3.2853e-02, -4.6216e-05,\n",
+      "         1.0379e-01,  5.6181e-02, -2.0058e-06,  1.4246e-01, -2.3777e-07,\n",
+      "         1.2765e-01,  3.1041e-04, -4.1584e-02,  1.0775e-01, -9.3600e-03,\n",
+      "         5.8976e-03, -1.6929e-02, -3.1189e-02,  1.0195e-01, -2.9029e-06,\n",
+      "         9.4256e-02,  6.3664e-03,  4.2472e-02, -1.2026e-02,  1.1523e-01,\n",
+      "         1.4364e-01, -1.2482e-02, -5.6147e-02,  1.4672e-01, -6.1451e-02,\n",
+      "         2.4394e-02,  9.3012e-02,  1.0211e-01,  8.4090e-02,  1.2169e-01,\n",
+      "        -5.0310e-02,  4.9580e-02,  1.8321e-02,  8.5733e-02,  2.0072e-01,\n",
+      "         5.1854e-02,  7.2469e-02,  1.3967e-01,  1.6221e-02, -2.2806e-02,\n",
+      "         5.1745e-02,  8.6182e-02, -7.4366e-03,  4.2782e-02,  1.9760e-01,\n",
+      "         2.9486e-02, -3.9941e-04,  3.3299e-02, -8.4026e-03,  4.6164e-02,\n",
+      "         1.0558e-01,  1.2802e-01,  1.4633e-01,  2.8094e-02,  1.8411e-01,\n",
+      "         5.6048e-02])), ('pretrained_model.layer1.0.bn3.running_mean', tensor([ 1.2899e-02,  4.1789e-03,  5.7747e-04, -7.4343e-02, -2.5264e-04,\n",
+      "         2.2389e-02, -7.0159e-02,  4.0337e-02,  6.8399e-03, -5.6445e-02,\n",
+      "        -5.2143e-02,  1.6832e-02,  2.9512e-02,  7.1482e-02,  3.4081e-02,\n",
+      "         2.1250e-02, -1.1409e-01,  3.2188e-02, -1.8987e-03, -1.5671e-03,\n",
+      "        -8.2635e-02,  1.3548e-01,  1.3301e-06, -9.7218e-08, -2.6162e-03,\n",
+      "        -6.2373e-05, -1.5428e-02,  5.4129e-02, -2.1549e-01,  5.6413e-02,\n",
+      "        -1.2069e-01,  5.1057e-02, -4.3697e-02, -5.2431e-02,  1.6947e-03,\n",
+      "        -1.5625e-02, -7.0336e-03,  7.9549e-03, -1.3988e-02,  5.8098e-03,\n",
+      "         5.8441e-03, -1.7478e-02, -1.0660e-01,  2.6615e-02, -3.1471e-02,\n",
+      "         1.6902e-05, -3.7931e-03, -3.4457e-02, -2.2042e-02,  3.0293e-03,\n",
+      "        -9.9551e-03, -1.1255e-02, -2.0959e-07,  3.8053e-02,  5.3520e-02,\n",
+      "         5.6517e-02, -3.4468e-03, -1.0690e-01,  5.3387e-02,  6.0253e-02,\n",
+      "         2.7377e-02, -6.3375e-02, -7.4712e-02, -1.9420e-02, -1.0729e-08,\n",
+      "        -2.0484e-03,  3.6803e-02, -6.2734e-02,  1.2483e-01, -1.1155e-02,\n",
+      "        -3.0085e-02, -1.9885e-07, -6.7953e-02,  7.7164e-02,  7.3483e-02,\n",
+      "         3.4810e-02,  2.1630e-03,  6.1957e-03,  1.1054e-01,  6.9505e-02,\n",
+      "         4.1328e-02,  1.8494e-01, -1.0765e-01, -1.2181e-05,  3.3761e-02,\n",
+      "        -4.5261e-02, -3.3125e-02,  7.7030e-07, -3.3940e-02,  9.0575e-07,\n",
+      "         9.0734e-03,  3.9378e-02, -7.2753e-03, -2.2937e-04,  9.1147e-04,\n",
+      "        -3.0771e-02, -1.1582e-01,  7.6879e-02,  3.0375e-03, -5.2751e-03,\n",
+      "         5.1827e-02, -7.1526e-07, -1.0289e-02,  3.4586e-03, -5.9989e-02,\n",
+      "         2.9952e-02,  5.6298e-03,  3.0837e-07,  5.8305e-03,  1.8706e-02,\n",
+      "         4.6054e-02,  1.8965e-02, -1.0941e-02,  1.7260e-02,  7.9214e-02,\n",
+      "        -2.9369e-02,  3.5361e-02,  3.0578e-08, -2.7100e-03,  8.7927e-03,\n",
+      "        -7.6082e-02,  2.1094e-02, -4.2126e-02,  4.7757e-05,  8.0518e-03,\n",
+      "         2.5762e-02,  6.1931e-02, -7.6670e-05, -1.0391e-01, -2.2783e-02,\n",
+      "        -7.0385e-02,  8.5231e-02, -2.8241e-02,  5.6669e-09,  5.3270e-07,\n",
+      "        -1.0910e-02, -1.0610e-02, -3.8880e-02,  6.0694e-02,  2.0302e-02,\n",
+      "        -2.8740e-02,  3.2180e-02, -4.3386e-02, -5.9216e-02, -8.0097e-02,\n",
+      "        -3.2480e-02, -5.5251e-02, -3.0717e-02, -1.3344e-02, -5.0788e-03,\n",
+      "         7.6157e-02,  2.3273e-02,  3.8015e-02,  1.9334e-02,  4.0958e-02,\n",
+      "         3.1966e-02,  8.5647e-02, -4.7798e-02, -9.8859e-02, -4.0942e-02,\n",
+      "         1.6788e-01, -1.0627e-02, -3.2920e-02, -6.8688e-03,  7.6462e-03,\n",
+      "        -2.9227e-02, -1.3245e-02,  1.7951e-01, -3.2519e-02,  1.5561e-02,\n",
+      "        -1.1855e-02, -6.8880e-02,  2.5820e-02,  5.3118e-02, -2.1502e-06,\n",
+      "        -3.7246e-02, -5.1724e-02,  7.3143e-02,  5.9414e-02,  1.4907e-03,\n",
+      "         1.9351e-02, -3.7049e-02,  2.5505e-02,  1.3023e-02, -1.0786e-02,\n",
+      "         8.1462e-07,  2.8767e-02,  1.3451e-02, -2.4506e-02,  9.0151e-03,\n",
+      "        -3.7699e-03, -5.7838e-03, -4.0394e-02, -7.6452e-02, -2.8281e-03,\n",
+      "        -3.3914e-02,  1.6565e-02, -2.1168e-01, -1.1678e-01,  1.9364e-05,\n",
+      "         2.0947e-03,  3.4992e-02,  2.4703e-07,  1.9654e-01,  5.6052e-45,\n",
+      "        -5.2870e-03,  4.6163e-02,  1.0665e-02, -2.3336e-01,  4.5354e-02,\n",
+      "         6.1760e-02,  3.5410e-02,  1.8766e-02, -7.2702e-02, -2.5676e-06,\n",
+      "         1.1429e-01, -6.2270e-02,  7.3757e-02,  1.9061e-02, -6.8813e-03,\n",
+      "        -4.7633e-03, -3.7741e-02, -4.6503e-03,  4.2564e-02,  1.0625e-01,\n",
+      "         1.8595e-02, -5.7453e-03, -1.3917e-02,  1.2948e-02, -1.3069e-02,\n",
+      "        -3.8051e-02,  2.5491e-01,  5.8468e-02,  1.8071e-02,  2.5402e-01,\n",
+      "        -2.0183e-02, -6.5050e-03,  1.3908e-02,  1.0540e-02,  3.0525e-02,\n",
+      "        -5.8520e-02,  2.6496e-02, -2.5354e-03,  3.0126e-02, -8.9299e-03,\n",
+      "        -2.3480e-02, -3.8786e-05, -2.1828e-02,  4.4989e-02,  2.3203e-03,\n",
+      "        -6.9198e-02,  2.7819e-02, -1.3236e-01,  1.1639e-02, -2.4203e-02,\n",
+      "        -3.1353e-02])), ('pretrained_model.layer1.0.bn3.running_var', tensor([5.1142e-03, 3.9258e-04, 5.7130e-04, 2.0455e-02, 3.6014e-04, 3.0137e-03,\n",
+      "        4.0607e-03, 2.8695e-02, 9.5829e-03, 5.5789e-03, 1.4629e-02, 5.9485e-03,\n",
+      "        7.7766e-03, 1.6622e-02, 1.3502e-02, 5.8348e-03, 9.8503e-03, 1.9832e-02,\n",
+      "        8.2195e-04, 1.6269e-02, 3.2088e-03, 2.9179e-03, 3.3804e-13, 2.0656e-14,\n",
+      "        1.0797e-02, 2.4791e-07, 4.5451e-04, 5.2811e-03, 9.1052e-03, 7.0708e-03,\n",
+      "        5.8070e-03, 1.0597e-02, 1.7278e-02, 2.3447e-03, 5.1489e-03, 8.4845e-03,\n",
+      "        6.9761e-03, 6.5449e-03, 8.2619e-04, 1.9221e-03, 1.1698e-04, 1.3584e-02,\n",
+      "        8.7151e-03, 1.6393e-02, 6.4621e-03, 4.2417e-11, 3.3369e-03, 2.3411e-03,\n",
+      "        5.6690e-04, 2.4478e-04, 8.5263e-03, 9.9499e-04, 4.1311e-14, 3.2346e-03,\n",
+      "        3.1667e-03, 1.2769e-02, 3.4428e-04, 8.0082e-03, 7.9604e-03, 5.5836e-03,\n",
+      "        4.9171e-03, 3.6674e-03, 6.0448e-03, 2.5876e-03, 2.4489e-14, 4.0534e-04,\n",
+      "        1.8849e-03, 6.6850e-03, 4.0213e-03, 2.7173e-04, 3.3421e-04, 7.9058e-14,\n",
+      "        1.0924e-02, 1.0875e-02, 1.9547e-02, 7.4668e-04, 1.9367e-06, 7.9059e-04,\n",
+      "        7.6998e-03, 6.0183e-03, 1.4186e-02, 1.4682e-02, 1.1722e-02, 2.8011e-11,\n",
+      "        1.0235e-02, 1.1927e-02, 5.8172e-03, 1.5809e-13, 1.4291e-02, 1.0678e-13,\n",
+      "        8.4296e-04, 8.7780e-04, 2.4220e-04, 2.7347e-06, 1.3652e-04, 2.2544e-03,\n",
+      "        1.1971e-02, 7.1022e-03, 3.3626e-03, 2.8015e-03, 1.3565e-02, 7.8981e-14,\n",
+      "        1.6636e-02, 4.9577e-03, 1.3997e-02, 5.5989e-03, 3.7531e-03, 4.7561e-13,\n",
+      "        3.3706e-04, 1.9116e-02, 1.2448e-02, 5.8692e-03, 2.0863e-04, 5.1716e-03,\n",
+      "        7.6416e-03, 8.6249e-03, 1.4531e-02, 8.6259e-15, 1.5177e-02, 1.7230e-02,\n",
+      "        4.8044e-03, 3.7314e-03, 1.5641e-02, 8.0768e-09, 4.7445e-03, 8.6044e-03,\n",
+      "        4.8198e-03, 5.6223e-08, 9.7095e-04, 9.1410e-03, 1.6298e-02, 2.5874e-03,\n",
+      "        6.0876e-03, 1.2672e-12, 4.8562e-12, 6.6237e-04, 3.1060e-03, 1.0369e-03,\n",
+      "        1.3433e-02, 6.8958e-04, 1.0752e-03, 1.1708e-02, 3.1280e-03, 3.2313e-03,\n",
+      "        1.1453e-03, 1.4055e-02, 1.6723e-02, 4.2742e-03, 1.0799e-03, 3.1900e-03,\n",
+      "        2.9004e-03, 6.6448e-04, 1.2113e-03, 9.7324e-04, 2.7113e-03, 3.3835e-03,\n",
+      "        3.5428e-03, 2.9051e-03, 8.7080e-03, 2.3672e-03, 1.3158e-02, 1.8394e-02,\n",
+      "        6.1716e-03, 1.2725e-03, 1.8864e-04, 1.8193e-04, 8.5096e-04, 1.3529e-02,\n",
+      "        5.6738e-03, 3.9681e-03, 3.0498e-04, 5.5041e-03, 1.3450e-03, 2.6267e-03,\n",
+      "        1.0853e-10, 1.3356e-03, 9.5827e-03, 2.0472e-02, 4.5772e-03, 7.0415e-03,\n",
+      "        3.2074e-03, 1.7350e-03, 6.2457e-03, 5.3028e-03, 2.2975e-04, 7.7355e-13,\n",
+      "        7.7188e-03, 2.1323e-02, 1.3415e-02, 5.6796e-04, 9.1592e-03, 1.9350e-04,\n",
+      "        1.3962e-02, 6.6951e-03, 2.4457e-04, 5.9763e-03, 7.7004e-03, 7.3746e-03,\n",
+      "        5.0903e-03, 5.8667e-10, 1.8997e-02, 1.3541e-02, 2.9938e-13, 1.8005e-02,\n",
+      "        9.9359e-15, 2.4578e-04, 2.8893e-03, 1.1889e-03, 3.5139e-03, 1.0724e-02,\n",
+      "        6.7468e-03, 2.0147e-03, 1.3352e-03, 4.9300e-03, 2.3415e-12, 1.6899e-02,\n",
+      "        3.3354e-03, 6.5411e-03, 8.4297e-03, 1.4397e-02, 1.3336e-03, 1.6897e-03,\n",
+      "        6.2895e-04, 9.6255e-03, 4.7149e-04, 6.3277e-03, 4.6021e-04, 5.0025e-03,\n",
+      "        1.6169e-03, 7.0501e-04, 1.0812e-03, 1.5808e-02, 9.6714e-04, 1.9433e-02,\n",
+      "        6.3313e-03, 1.7426e-03, 7.5738e-03, 1.4586e-03, 1.1786e-03, 8.9365e-04,\n",
+      "        1.5766e-03, 4.7298e-04, 5.8688e-04, 1.6937e-02, 1.6222e-02, 2.1196e-03,\n",
+      "        1.0781e-08, 9.8858e-04, 1.9648e-03, 3.2067e-03, 1.3137e-02, 9.7026e-03,\n",
+      "        1.8996e-02, 2.6608e-04, 2.6800e-02, 3.8890e-03])), ('pretrained_model.layer1.0.bn3.num_batches_tracked', tensor(0)), ('pretrained_model.layer1.0.downsample.0.weight', tensor([[[[-0.0038]],\n",
+      "\n",
+      "         [[-0.1534]],\n",
+      "\n",
+      "         [[-0.0131]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0146]],\n",
+      "\n",
+      "         [[ 0.0345]],\n",
+      "\n",
+      "         [[-0.0055]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0240]],\n",
+      "\n",
+      "         [[ 0.0365]],\n",
+      "\n",
+      "         [[-0.0314]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0036]],\n",
+      "\n",
+      "         [[ 0.0122]],\n",
+      "\n",
+      "         [[-0.0063]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0340]],\n",
+      "\n",
+      "         [[ 0.0242]],\n",
+      "\n",
+      "         [[-0.0271]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0502]],\n",
+      "\n",
+      "         [[-0.0031]],\n",
+      "\n",
+      "         [[-0.0058]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-0.0439]],\n",
+      "\n",
+      "         [[-0.4028]],\n",
+      "\n",
+      "         [[ 0.0674]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0068]],\n",
+      "\n",
+      "         [[ 0.1113]],\n",
+      "\n",
+      "         [[ 0.0254]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0011]],\n",
+      "\n",
+      "         [[ 0.0166]],\n",
+      "\n",
+      "         [[ 0.0798]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0722]],\n",
+      "\n",
+      "         [[ 0.1644]],\n",
+      "\n",
+      "         [[ 0.0409]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0150]],\n",
+      "\n",
+      "         [[ 0.0395]],\n",
+      "\n",
+      "         [[-0.0375]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.1326]],\n",
+      "\n",
+      "         [[ 0.0329]],\n",
+      "\n",
+      "         [[-0.0528]]]])), ('pretrained_model.layer1.0.downsample.1.weight', tensor([ 2.3893e-01,  2.5902e-01,  1.0988e-01,  3.5575e-01,  2.8847e-02,\n",
+      "         1.0755e-01,  2.1953e-01,  4.2424e-01,  1.5429e-01,  1.5473e-01,\n",
+      "         3.2025e-01,  2.0924e-01,  2.1184e-01,  1.6174e-02,  4.0920e-01,\n",
+      "         1.8220e-01,  9.9336e-02,  3.9838e-01,  1.8892e-01,  2.9871e-01,\n",
+      "         2.3828e-01,  2.3893e-01, -9.9537e-09,  1.3507e-08,  3.2303e-01,\n",
+      "         4.7784e-04,  2.3799e-01,  5.6322e-02,  1.8953e-01,  1.8454e-01,\n",
+      "         1.5287e-01,  3.0261e-01,  3.3649e-01,  2.5513e-02,  3.0475e-01,\n",
+      "         4.3317e-01,  2.9088e-01,  1.7016e-01,  2.7588e-01,  1.1728e-01,\n",
+      "         8.0544e-02,  3.2666e-01,  3.5645e-01,  2.8598e-01,  2.6081e-01,\n",
+      "         7.9572e-07,  3.7743e-01,  1.7113e-01,  2.1712e-01,  1.8232e-01,\n",
+      "         2.8387e-01,  1.3568e-01,  1.9909e-07,  1.5622e-01,  2.6040e-01,\n",
+      "         2.7303e-01, -1.0683e-02,  3.8061e-01,  2.5176e-01,  3.3619e-01,\n",
+      "         3.7535e-01,  2.0926e-01,  2.2491e-01,  1.6252e-01,  2.0453e-08,\n",
+      "         1.5605e-01,  1.8787e-01,  2.4336e-01,  1.5174e-01,  1.8699e-01,\n",
+      "         2.1547e-01,  1.7722e-07,  1.9696e-01,  1.9501e-01,  3.0464e-01,\n",
+      "         9.6744e-02,  2.5548e-03,  2.5814e-01,  2.8248e-01,  2.0606e-01,\n",
+      "         3.0041e-01,  2.8105e-01,  2.8926e-01,  2.9653e-06,  2.3498e-01,\n",
+      "         2.7946e-01,  2.2390e-01, -2.1931e-07,  7.2803e-02,  9.2744e-08,\n",
+      "         2.2417e-01,  2.9023e-01,  2.3086e-01,  1.6658e-03,  1.6804e-02,\n",
+      "         1.3351e-01,  3.2882e-01,  1.2073e-01,  1.8384e-01,  2.3182e-01,\n",
+      "         2.2624e-01,  3.8201e-07,  4.4709e-01,  1.9986e-01,  3.3908e-01,\n",
+      "         3.7977e-01,  1.4722e-01,  2.7766e-07,  2.3035e-01,  2.9401e-01,\n",
+      "         1.6932e-01,  1.8983e-01,  2.1097e-01,  2.4089e-01,  5.0357e-02,\n",
+      "         3.1323e-01,  2.9286e-01,  1.0657e-07,  3.0195e-01,  3.3595e-01,\n",
+      "         1.5510e-01,  1.9285e-01,  2.1865e-01,  3.7912e-05,  2.0462e-01,\n",
+      "         3.0528e-01,  2.1531e-01,  2.0704e-04,  2.0676e-01,  3.1246e-01,\n",
+      "         3.5590e-01,  1.9057e-01,  2.3107e-01,  5.8211e-07,  2.1412e-06,\n",
+      "         1.8794e-01,  2.1041e-01,  1.4375e-01,  3.1375e-01,  2.6579e-02,\n",
+      "         1.3795e-01,  3.5137e-01,  2.1438e-01,  1.9269e-01,  2.7212e-01,\n",
+      "         3.2821e-01,  2.8850e-01,  3.2421e-01,  2.6811e-01,  2.7157e-01,\n",
+      "         3.2684e-01,  1.5777e-01,  1.4383e-01,  1.6944e-01,  1.1984e-01,\n",
+      "         2.1400e-01,  9.7211e-02,  1.0457e-01,  3.5146e-01,  2.9787e-01,\n",
+      "         3.1188e-01,  3.1647e-01,  2.9304e-01,  2.7090e-01,  6.3448e-02,\n",
+      "         2.2768e-01,  1.3021e-01,  3.6131e-01,  3.4946e-01,  2.1408e-01,\n",
+      "         8.1857e-02,  3.1538e-01,  3.0305e-02,  1.0105e-01, -3.6950e-06,\n",
+      "         2.7488e-01,  2.4319e-01,  3.4012e-01,  1.7271e-01,  3.3067e-01,\n",
+      "         2.3198e-01,  1.7838e-01,  3.3674e-01,  2.4172e-02,  1.8130e-01,\n",
+      "         1.0384e-06,  3.9574e-01,  3.2030e-01,  1.8159e-01,  1.8501e-01,\n",
+      "         3.9184e-01,  2.2343e-01,  2.5287e-01,  2.5049e-01,  4.0415e-02,\n",
+      "         2.7580e-01,  3.4383e-01, -4.7094e-02,  1.6188e-01, -7.7352e-06,\n",
+      "         2.8948e-01,  3.6036e-01,  1.4008e-07,  2.8846e-01,  7.3886e-08,\n",
+      "         1.6628e-01,  1.4652e-01,  1.7220e-01,  2.6152e-01,  2.5736e-01,\n",
+      "         3.0072e-01,  2.2085e-01,  7.1028e-02,  2.4793e-01,  6.2067e-07,\n",
+      "         3.2812e-01,  2.4013e-01,  2.2590e-01,  3.2572e-01,  3.0397e-01,\n",
+      "         2.6815e-01,  1.4060e-01,  7.9108e-02,  1.4196e-01,  1.8344e-01,\n",
+      "         2.8133e-01,  2.3708e-01,  1.6568e-01,  2.2045e-01,  1.6677e-01,\n",
+      "         3.5890e-02,  2.7365e-01,  1.6226e-01,  2.9469e-01,  1.8966e-01,\n",
+      "         2.7934e-01,  2.6211e-01,  3.2208e-01,  1.2401e-01,  1.9904e-01,\n",
+      "         1.3021e-01,  1.8080e-01,  3.2386e-01,  3.0877e-01,  2.8058e-01,\n",
+      "         2.7429e-01,  6.8840e-05,  1.7277e-01,  2.5317e-01,  1.4693e-01,\n",
+      "         2.9635e-01,  2.6280e-01,  3.6588e-01,  2.1549e-01,  3.4351e-01,\n",
+      "         1.8465e-01])), ('pretrained_model.layer1.0.downsample.1.bias', tensor([-2.1438e-02,  9.9289e-02, -9.2199e-03,  8.9338e-02, -4.2064e-02,\n",
+      "         6.1096e-02,  8.7675e-02,  1.2983e-01,  1.3924e-01,  1.0476e-01,\n",
+      "         8.3112e-02,  2.7501e-02, -1.9209e-02,  9.5515e-03,  9.2394e-02,\n",
+      "         4.3834e-02,  1.3832e-01,  1.0541e-01, -6.8638e-02,  6.6138e-02,\n",
+      "         9.2162e-02,  4.5749e-02, -2.0165e-06, -1.0911e-07,  9.8751e-02,\n",
+      "        -1.1870e-03, -1.1940e-01, -2.0495e-02,  5.2297e-02,  5.6612e-02,\n",
+      "         2.3477e-02,  5.4243e-02,  6.8020e-02, -2.3484e-02,  9.1183e-02,\n",
+      "         1.9347e-02,  6.8897e-02,  9.8581e-03,  9.0708e-02,  1.1139e-01,\n",
+      "        -1.2437e-02,  8.8164e-02,  4.9179e-02,  7.8246e-02,  7.5082e-02,\n",
+      "        -4.3493e-05,  8.0479e-02, -5.6142e-05, -1.1960e-01,  6.0560e-02,\n",
+      "         1.2764e-01,  1.1615e-01, -3.5235e-07,  5.3625e-02, -1.6849e-02,\n",
+      "         1.4601e-01,  1.4569e-01,  1.8423e-02,  5.6332e-02,  2.8778e-02,\n",
+      "         1.3504e-02,  3.0969e-02,  7.4069e-02,  5.2063e-02, -1.4457e-07,\n",
+      "         6.7507e-02,  1.4148e-02, -8.5167e-03,  1.4935e-02,  1.3766e-01,\n",
+      "        -9.8344e-03, -5.8907e-07,  2.2019e-01,  1.0808e-01,  3.5516e-02,\n",
+      "         3.3091e-02, -2.9254e-03, -2.0232e-01,  6.1240e-02,  4.7136e-02,\n",
+      "         8.4093e-02,  6.0593e-02,  1.3611e-01, -2.0210e-05,  1.5756e-01,\n",
+      "         2.0041e-01,  5.5198e-02, -1.2313e-06,  1.5789e-02, -1.9601e-06,\n",
+      "         1.7108e-01, -9.2020e-02, -4.0665e-02, -8.0869e-03, -3.0733e-02,\n",
+      "         1.1882e-01,  1.9217e-01,  3.8119e-02,  8.0862e-02,  5.6588e-03,\n",
+      "         6.3820e-02, -7.5764e-07,  3.6335e-02,  4.3357e-02,  1.0338e-01,\n",
+      "         4.5125e-02, -1.4345e-01, -1.3194e-06, -6.5640e-02,  1.7631e-01,\n",
+      "         1.0952e-01,  1.1141e-01, -9.7117e-03,  7.6246e-02,  2.0219e-02,\n",
+      "         6.6759e-02,  4.9047e-02, -2.3844e-07,  1.7107e-01,  6.2827e-02,\n",
+      "         3.3943e-02, -1.6433e-01,  1.0968e-01, -7.4535e-05,  9.6587e-02,\n",
+      "         1.1160e-02,  6.5017e-02, -5.8506e-04,  5.9249e-04,  7.8966e-02,\n",
+      "         1.6955e-01, -1.4857e-02,  6.0041e-02, -2.6410e-06, -3.2922e-06,\n",
+      "         1.3890e-01,  4.6079e-02, -1.2662e-02,  5.8624e-02, -4.4830e-02,\n",
+      "        -7.7615e-03,  6.4926e-02,  6.5313e-02,  8.8839e-02, -2.1876e-01,\n",
+      "         5.3687e-02,  1.9970e-01,  4.4584e-02, -2.9703e-01,  4.1679e-02,\n",
+      "        -2.1352e-01, -1.1043e-02,  1.6995e-03, -3.2084e-02, -8.1811e-02,\n",
+      "         6.3550e-03,  4.5971e-02,  1.6416e-02,  2.9153e-02, -4.8127e-02,\n",
+      "         1.4305e-01,  1.2908e-01, -1.7048e-02,  1.6116e-01, -2.5020e-02,\n",
+      "         1.4388e-02,  3.8494e-02,  6.1406e-02,  1.9562e-02,  5.0978e-02,\n",
+      "         8.3687e-02, -1.6940e-02, -2.5340e-02,  1.7969e-02, -1.8403e-05,\n",
+      "         1.5452e-02,  3.0809e-02,  1.2912e-01,  9.7951e-02,  3.6365e-02,\n",
+      "         4.3964e-02, -8.4899e-02,  8.2683e-03, -5.1502e-02,  3.5911e-02,\n",
+      "        -2.0328e-06,  2.7412e-02,  1.1391e-01,  5.0865e-02,  2.3602e-01,\n",
+      "         5.9797e-02, -5.1864e-02,  2.5375e-02,  6.1117e-02,  2.9252e-02,\n",
+      "         8.3614e-02,  5.4235e-02,  1.1732e-01,  3.2853e-02, -4.6216e-05,\n",
+      "         1.0379e-01,  5.6181e-02, -2.0058e-06,  1.4246e-01, -2.3777e-07,\n",
+      "         1.2765e-01,  3.1041e-04, -4.1584e-02,  1.0775e-01, -9.3600e-03,\n",
+      "         5.8976e-03, -1.6929e-02, -3.1189e-02,  1.0195e-01, -2.9029e-06,\n",
+      "         9.4256e-02,  6.3664e-03,  4.2472e-02, -1.2026e-02,  1.1523e-01,\n",
+      "         1.4364e-01, -1.2482e-02, -5.6147e-02,  1.4672e-01, -6.1451e-02,\n",
+      "         2.4394e-02,  9.3012e-02,  1.0211e-01,  8.4090e-02,  1.2169e-01,\n",
+      "        -5.0310e-02,  4.9580e-02,  1.8321e-02,  8.5733e-02,  2.0072e-01,\n",
+      "         5.1854e-02,  7.2469e-02,  1.3967e-01,  1.6221e-02, -2.2806e-02,\n",
+      "         5.1745e-02,  8.6182e-02, -7.4366e-03,  4.2782e-02,  1.9760e-01,\n",
+      "         2.9486e-02, -3.9941e-04,  3.3299e-02, -8.4026e-03,  4.6164e-02,\n",
+      "         1.0558e-01,  1.2802e-01,  1.4633e-01,  2.8094e-02,  1.8411e-01,\n",
+      "         5.6048e-02])), ('pretrained_model.layer1.0.downsample.1.running_mean', tensor([-4.1312e-01, -1.2356e-01,  4.7491e-02, -2.5627e-01,  2.3973e-02,\n",
+      "        -2.7442e-01, -2.8537e-01,  1.8647e-01, -7.4689e-01, -4.0238e-01,\n",
+      "        -5.8342e-01, -2.4810e-03,  6.7419e-02,  2.0366e-01, -2.3837e-01,\n",
+      "        -1.1525e-01, -2.4603e-01,  2.7866e-01,  2.7878e-01, -8.8175e-01,\n",
+      "        -2.8868e-01,  1.0788e-01,  1.2227e-06,  7.0893e-07, -1.7807e-02,\n",
+      "        -6.9485e-04,  2.0546e-01, -1.8163e-01,  1.2852e-01,  2.3326e-01,\n",
+      "        -1.4105e-02, -7.6945e-02, -6.4880e-02, -5.9869e-02, -4.1335e-01,\n",
+      "        -5.1503e-01, -5.8435e-01,  8.1680e-02, -6.7084e-01, -2.2551e-01,\n",
+      "         8.6770e-02, -2.4412e-01, -1.4645e-01, -6.2984e-02, -2.0261e-01,\n",
+      "         2.9836e-05, -3.2444e-01, -2.4442e-01, -1.4104e-02, -5.7863e-01,\n",
+      "        -4.2980e-01,  1.0028e-01, -1.2426e-06,  6.9737e-03, -4.0992e-01,\n",
+      "        -9.1563e-01, -1.2290e-01,  6.8981e-03,  1.4841e-01, -1.7185e-01,\n",
+      "        -7.8681e-01, -1.6461e-01, -1.7688e-01, -2.8959e-01, -7.0935e-07,\n",
+      "        -1.4649e-01, -2.1777e-01,  2.3320e-02,  1.4729e-02, -2.7502e-01,\n",
+      "        -2.3284e-01,  2.3442e-07, -7.4643e-01, -2.0776e-01, -1.4772e-01,\n",
+      "         3.6957e-01, -7.1261e-03,  2.7446e-01, -4.5417e-01,  2.0632e-01,\n",
+      "        -4.4107e-01,  1.9652e-01, -3.6887e-01,  5.8363e-05,  7.2883e-01,\n",
+      "         2.0671e-01, -2.6986e-01, -4.2991e-07,  2.4821e-01, -5.8283e-07,\n",
+      "        -4.1951e-01, -2.4143e-01, -7.8592e-02,  1.3564e-02, -3.9336e-03,\n",
+      "        -4.9279e-01,  2.8448e-01,  3.5478e-01, -1.0751e-01, -3.4225e-01,\n",
+      "        -2.2329e-01, -1.0038e-06, -2.8543e-01, -6.0222e-01, -1.9715e-01,\n",
+      "        -3.6651e-01,  1.1151e-01, -1.7191e-06, -1.3360e-02,  1.7438e-02,\n",
+      "        -4.5452e-01,  3.5930e-01,  3.6460e-03, -2.0511e-01, -1.5782e-01,\n",
+      "        -4.9308e-02, -3.8012e-01, -2.2032e-07,  4.9365e-02, -1.4485e-01,\n",
+      "        -3.6530e-01,  5.1017e-02, -3.2164e-01, -1.9060e-04, -4.1378e-01,\n",
+      "        -2.1488e-01, -2.3301e-01,  1.6825e-03,  1.2017e-01,  4.5402e-02,\n",
+      "        -8.7640e-03, -1.0671e-01,  1.6332e-01, -1.6998e-06, -1.4473e-05,\n",
+      "        -2.8658e-01,  1.7359e-01, -5.9264e-02, -3.3582e-01, -2.2545e-02,\n",
+      "        -1.7486e-01, -4.7047e-02, -5.8785e-02, -4.6581e-01,  6.0345e-02,\n",
+      "        -4.3168e-01,  6.3261e-02, -1.3118e-01,  1.1993e-01, -3.7511e-01,\n",
+      "        -2.3587e-01,  5.8672e-02,  1.0793e-01,  7.0695e-02,  2.7813e-01,\n",
+      "        -1.3296e-01, -4.5233e-02, -3.4160e-02, -3.0322e-01, -4.9805e-01,\n",
+      "        -2.5513e-01,  2.1267e-01, -1.2788e-01,  1.5466e+00,  8.9640e-02,\n",
+      "        -2.7559e-01,  1.5375e-01, -7.4267e-01, -2.7321e-01, -1.8361e-01,\n",
+      "         4.8454e-02, -4.7167e-01,  6.8548e-02, -5.3196e-02, -3.2686e-05,\n",
+      "         4.6996e-02,  2.8064e-01,  1.1399e+00,  4.0852e-01, -3.2302e-01,\n",
+      "         1.1502e-01,  3.2570e-01, -2.8061e-01, -1.1868e-01,  1.2294e-01,\n",
+      "        -1.5166e-06, -7.4051e-01, -3.1505e-01, -7.9390e-02,  2.3975e-01,\n",
+      "        -3.1194e-01,  2.7842e-01, -1.8594e-01, -2.1939e-01, -8.3132e-02,\n",
+      "        -1.2259e+00, -2.4612e-01,  2.8310e-01, -7.2753e-02,  5.5780e-05,\n",
+      "        -3.3545e-01,  2.5045e-01,  6.3857e-07,  4.3281e-03,  3.8137e-08,\n",
+      "        -4.2492e-01, -3.8670e-02,  1.2313e-01, -2.6852e-01, -7.7884e-02,\n",
+      "        -1.7533e-01,  1.1029e-01, -4.0823e-02, -3.4061e-01,  2.6104e-06,\n",
+      "        -9.9614e-02,  1.0255e-01,  1.0065e-01, -2.2005e-01,  4.6502e-01,\n",
+      "        -7.8349e-02,  2.0225e-01, -9.0930e-02, -5.6609e-01,  1.1239e-01,\n",
+      "        -4.5974e-01,  1.5611e-01, -3.4720e-01,  1.0699e-01,  1.8586e-01,\n",
+      "         6.4402e-02, -5.7753e-02, -1.5364e-01,  1.8773e-01,  3.7934e-01,\n",
+      "        -7.9160e-01,  4.2480e-01,  2.4755e-01, -3.0411e-01, -1.6966e-01,\n",
+      "        -2.2301e-01, -6.3466e-01, -4.7521e-01, -1.4069e-01, -9.5526e-02,\n",
+      "        -4.3318e-01, -1.7574e-04,  2.9534e-01, -2.7413e-01,  2.0837e-01,\n",
+      "        -1.1941e-01, -3.0965e-01, -1.0159e+00,  1.7300e-01,  2.6258e-01,\n",
+      "         1.7106e-01])), ('pretrained_model.layer1.0.downsample.1.running_var', tensor([4.4750e-02, 1.0030e-01, 4.1313e-03, 9.3314e-02, 7.8106e-04, 4.5322e-02,\n",
+      "        3.4415e-02, 4.4489e-02, 2.8726e-02, 2.5597e-02, 3.0530e-02, 1.9852e-02,\n",
+      "        2.6795e-02, 9.7136e-03, 5.6342e-02, 2.6841e-02, 2.3189e-02, 2.8603e-02,\n",
+      "        1.8031e-02, 5.6217e-02, 2.7036e-02, 1.5056e-02, 4.2027e-13, 3.4319e-14,\n",
+      "        5.0312e-02, 8.0754e-07, 2.9360e-02, 4.8664e-03, 2.7304e-02, 2.0135e-02,\n",
+      "        1.8777e-02, 6.3132e-02, 5.9322e-02, 1.2919e-03, 3.1375e-02, 5.6055e-02,\n",
+      "        4.5479e-02, 2.3338e-02, 1.1099e-01, 3.6302e-02, 2.4939e-03, 5.2553e-02,\n",
+      "        4.1820e-02, 5.8927e-02, 2.4372e-02, 1.3285e-10, 5.3107e-02, 8.3840e-03,\n",
+      "        3.0071e-03, 1.7526e-02, 4.2030e-02, 2.0243e-02, 2.1046e-13, 1.6922e-02,\n",
+      "        4.0651e-02, 2.0298e-02, 1.7164e-03, 2.4692e-02, 3.4938e-02, 3.5173e-02,\n",
+      "        2.0731e-02, 2.0551e-02, 1.8240e-02, 1.6911e-02, 1.2973e-13, 7.8380e-02,\n",
+      "        2.0360e-02, 2.4905e-02, 8.9095e-03, 4.1282e-02, 4.1681e-03, 9.4134e-13,\n",
+      "        6.2263e-02, 6.6448e-02, 7.5293e-02, 5.6915e-03, 1.7371e-05, 2.5058e-02,\n",
+      "        2.5955e-02, 2.2945e-02, 5.8819e-02, 4.2998e-02, 5.4602e-02, 5.1248e-10,\n",
+      "        7.9391e-02, 3.5739e-02, 2.3079e-02, 6.0537e-14, 1.8408e-02, 1.2222e-13,\n",
+      "        1.0639e-01, 6.2516e-03, 6.5148e-02, 9.4576e-05, 8.8507e-04, 7.6720e-03,\n",
+      "        2.7782e-02, 1.3854e-02, 1.8164e-02, 3.0785e-02, 4.4839e-02, 4.2714e-13,\n",
+      "        6.3267e-02, 1.4268e-02, 5.6458e-02, 6.4211e-02, 3.4748e-03, 5.5887e-13,\n",
+      "        3.4552e-02, 4.0789e-02, 9.4109e-02, 3.5150e-02, 5.7987e-02, 3.5885e-02,\n",
+      "        4.3750e-03, 3.3364e-02, 5.3250e-02, 4.0671e-14, 5.1441e-02, 6.8701e-02,\n",
+      "        3.2511e-02, 5.2655e-03, 4.8145e-02, 1.5197e-08, 4.3522e-02, 3.7861e-02,\n",
+      "        1.6047e-02, 6.8079e-07, 1.1456e-02, 3.5905e-02, 6.8481e-02, 9.6569e-03,\n",
+      "        2.2234e-02, 8.9748e-13, 1.6876e-11, 2.8142e-02, 1.7863e-02, 5.5061e-03,\n",
+      "        6.9067e-02, 1.0035e-03, 6.4297e-03, 4.3933e-02, 1.6320e-02, 2.3747e-02,\n",
+      "        1.8021e-02, 5.4977e-02, 5.8574e-02, 2.8888e-02, 1.4360e-02, 1.6570e-02,\n",
+      "        3.3309e-02, 4.5688e-03, 1.2301e-02, 4.8447e-03, 8.3205e-03, 1.4361e-02,\n",
+      "        5.9292e-03, 5.8841e-03, 3.7638e-02, 1.4666e-02, 3.2995e-02, 5.0154e-02,\n",
+      "        9.6735e-03, 2.6889e-01, 2.8551e-03, 2.0796e-02, 9.5890e-03, 2.3504e-02,\n",
+      "        7.1128e-02, 1.6743e-02, 8.7520e-03, 3.2486e-02, 1.7095e-03, 3.9442e-03,\n",
+      "        1.6011e-10, 8.9910e-03, 3.6436e-02, 3.8909e-02, 2.8278e-02, 5.5153e-02,\n",
+      "        1.8912e-02, 2.3512e-02, 4.0964e-02, 2.0763e-03, 6.2541e-02, 1.0699e-11,\n",
+      "        5.2838e-02, 5.0994e-02, 3.4970e-02, 1.4678e-01, 9.5591e-02, 4.2720e-02,\n",
+      "        1.3621e-01, 3.1253e-02, 3.7023e-03, 1.3572e-02, 5.4120e-02, 9.0741e-03,\n",
+      "        1.2258e-02, 8.1547e-10, 6.0779e-02, 3.0919e-02, 8.8611e-14, 4.9723e-02,\n",
+      "        5.6401e-14, 1.9679e-02, 1.1494e-02, 8.1578e-03, 2.4732e-02, 4.4327e-02,\n",
+      "        2.9864e-02, 1.5361e-02, 2.6846e-03, 2.8427e-02, 2.9860e-12, 3.8043e-02,\n",
+      "        2.1788e-02, 2.5047e-02, 2.4551e-02, 2.9154e-02, 2.6925e-01, 3.9098e-03,\n",
+      "        7.8937e-04, 8.4023e-02, 5.7770e-03, 5.0829e-02, 9.0272e-02, 1.5480e-02,\n",
+      "        3.4850e-02, 2.9446e-02, 6.7118e-04, 3.1222e-02, 1.2473e-02, 4.6168e-02,\n",
+      "        3.3309e-02, 5.2481e-02, 3.2107e-02, 2.6225e-01, 8.1271e-03, 4.9356e-03,\n",
+      "        1.1119e-02, 1.9160e-02, 1.4817e-01, 6.2983e-02, 6.3082e-02, 4.8060e-02,\n",
+      "        6.2232e-08, 9.8112e-03, 2.4117e-02, 1.4026e-02, 3.5748e-02, 9.7042e-02,\n",
+      "        4.1581e-02, 5.5728e-02, 6.2730e-02, 1.6253e-02])), ('pretrained_model.layer1.0.downsample.1.num_batches_tracked', tensor(0)), ('pretrained_model.layer1.1.conv1.weight', tensor([[[[ 0.0298]],\n",
+      "\n",
+      "         [[ 0.0052]],\n",
+      "\n",
+      "         [[ 0.0120]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0037]],\n",
+      "\n",
+      "         [[ 0.0185]],\n",
+      "\n",
+      "         [[-0.0303]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0050]],\n",
+      "\n",
+      "         [[-0.0115]],\n",
+      "\n",
+      "         [[-0.0060]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0254]],\n",
+      "\n",
+      "         [[ 0.0263]],\n",
+      "\n",
+      "         [[-0.0839]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0008]],\n",
+      "\n",
+      "         [[ 0.0064]],\n",
+      "\n",
+      "         [[ 0.0028]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0074]],\n",
+      "\n",
+      "         [[-0.0332]],\n",
+      "\n",
+      "         [[ 0.0263]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0069]],\n",
+      "\n",
+      "         [[ 0.0205]],\n",
+      "\n",
+      "         [[ 0.0030]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0139]],\n",
+      "\n",
+      "         [[-0.0220]],\n",
+      "\n",
+      "         [[-0.0455]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0482]],\n",
+      "\n",
+      "         [[-0.0035]],\n",
+      "\n",
+      "         [[-0.0125]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0211]],\n",
+      "\n",
+      "         [[ 0.0285]],\n",
+      "\n",
+      "         [[-0.0173]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0036]],\n",
+      "\n",
+      "         [[ 0.0113]],\n",
+      "\n",
+      "         [[ 0.0138]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0031]],\n",
+      "\n",
+      "         [[-0.0248]],\n",
+      "\n",
+      "         [[ 0.0781]]]])), ('pretrained_model.layer1.1.bn1.weight', tensor([1.0952e-01, 3.3741e-01, 2.4108e-01, 2.2183e-01, 1.8916e-01, 1.8729e-01,\n",
+      "        1.7839e-01, 2.7661e-01, 1.6399e-01, 3.3791e-01, 1.6161e-01, 2.1588e-01,\n",
+      "        1.3056e-01, 1.2682e-09, 1.4006e-01, 2.0147e-01, 1.6884e-01, 2.0509e-01,\n",
+      "        2.6168e-01, 1.5064e-01, 1.6223e-01, 1.8110e-01, 1.6470e-01, 1.4680e-01,\n",
+      "        1.4517e-01, 1.1271e-01, 1.7165e-01, 1.5396e-01, 1.4580e-01, 2.5366e-01,\n",
+      "        3.2072e-01, 2.0989e-01, 2.1835e-01, 1.8821e-01, 1.6426e-01, 1.5516e-01,\n",
+      "        1.7195e-01, 2.4571e-01, 3.5113e-01, 1.3668e-01, 3.1145e-01, 2.3990e-01,\n",
+      "        1.8553e-01, 3.0827e-01, 1.1063e-01, 4.5501e-07, 1.6504e-01, 1.4043e-08,\n",
+      "        1.1238e-01, 1.6571e-01, 1.8665e-01, 1.9334e-01, 1.4909e-01, 2.3625e-01,\n",
+      "        1.4773e-01, 3.1534e-01, 8.3804e-09, 1.8078e-01, 1.4898e-01, 1.4022e-01,\n",
+      "        2.2044e-01, 1.1827e-01, 1.5871e-01, 1.7670e-01])), ('pretrained_model.layer1.1.bn1.bias', tensor([ 5.9903e-02, -1.7967e-01, -3.5838e-02,  1.8252e-02, -2.8157e-03,\n",
+      "         3.4813e-02,  2.3355e-02, -1.5813e-01,  9.0502e-03, -3.8071e-01,\n",
+      "        -2.3109e-03, -4.8449e-02,  1.1814e-01, -8.9526e-08,  2.7270e-03,\n",
+      "         1.1597e-03,  9.2394e-02,  5.1904e-02, -1.0197e-01, -2.4600e-01,\n",
+      "        -1.6972e-03,  1.2049e-01,  1.8378e-02,  2.2935e-02,  1.7582e-01,\n",
+      "         8.8895e-02,  1.5024e-02,  2.4077e-01, -5.4177e-02, -3.3943e-02,\n",
+      "        -1.2710e-01,  1.9374e-02, -1.1281e-01, -7.3190e-02,  4.3994e-02,\n",
+      "        -9.1467e-02,  2.9301e-01, -1.1949e-01, -1.8872e-01, -2.5133e-03,\n",
+      "        -1.6686e-01, -1.9837e-01, -8.9399e-02, -1.4827e-01,  3.0202e-01,\n",
+      "        -2.1822e-06, -1.3187e-01, -9.9830e-08,  1.3116e-01, -2.5338e-01,\n",
+      "        -5.6010e-02,  1.9002e-02,  1.4470e-01, -1.8385e-02,  2.8419e-01,\n",
+      "        -1.2994e-01, -5.8915e-08,  4.7626e-01,  1.1260e-01,  1.2490e-01,\n",
+      "         3.7472e-02,  2.5710e-01, -1.5605e-01,  3.4945e-02])), ('pretrained_model.layer1.1.bn1.running_mean', tensor([-2.9782e-02,  1.6455e-01,  6.1599e-02,  2.1078e-01,  2.5867e-01,\n",
+      "         1.6252e-02,  6.8240e-02, -1.9736e-02, -1.4970e-01,  2.2904e-01,\n",
+      "        -3.4671e-01,  1.5091e-01,  2.9258e-01,  1.5004e-08, -9.8556e-02,\n",
+      "         5.6213e-02,  1.6096e-01, -1.6854e-03,  4.9173e-02,  4.3553e-02,\n",
+      "        -6.4639e-02, -9.1169e-02, -1.7242e-01,  1.3601e-01,  1.0612e-01,\n",
+      "         1.1184e-01, -4.1250e-02, -1.1287e-01,  3.4500e-02,  1.6818e-01,\n",
+      "         1.8438e-01,  8.3881e-02,  3.1639e-01,  7.3953e-02,  6.0382e-02,\n",
+      "        -1.8482e-02, -4.9584e-02,  4.0094e-02,  1.1603e-01, -1.2734e-02,\n",
+      "         1.9832e-01,  2.0677e-02,  5.3367e-02,  1.0868e-01,  1.9242e-02,\n",
+      "        -4.2991e-07, -1.9641e-01,  2.7338e-08, -1.1962e-01, -7.1315e-02,\n",
+      "         1.5350e-01,  1.4901e-01, -1.9169e-01,  1.1209e-01,  6.7739e-02,\n",
+      "        -5.9766e-02,  1.2787e-08,  6.2201e-01, -2.7049e-01,  8.7721e-02,\n",
+      "         1.7225e-01, -6.1700e-02, -9.3026e-02,  3.5898e-04])), ('pretrained_model.layer1.1.bn1.running_var', tensor([1.1504e-02, 6.3811e-02, 4.0385e-02, 3.8973e-02, 3.4553e-02, 2.2973e-02,\n",
+      "        1.4961e-02, 2.6938e-02, 2.2063e-02, 2.7302e-02, 1.0711e-02, 2.4500e-02,\n",
+      "        3.3632e-02, 1.2167e-15, 1.6781e-02, 2.1765e-02, 3.4761e-02, 4.3885e-02,\n",
+      "        3.1801e-02, 9.1612e-03, 1.4467e-02, 2.2548e-02, 2.2051e-02, 2.3707e-02,\n",
+      "        1.9713e-02, 2.2773e-02, 2.4258e-02, 4.2561e-02, 1.4427e-02, 2.7873e-02,\n",
+      "        6.9523e-02, 3.4987e-02, 2.2786e-02, 1.4793e-02, 2.5719e-02, 1.4178e-02,\n",
+      "        4.4051e-02, 3.0092e-02, 5.3120e-02, 1.6310e-02, 7.1774e-02, 2.0319e-02,\n",
+      "        1.6075e-02, 6.6239e-02, 1.1891e-02, 1.0553e-13, 9.4567e-03, 5.9065e-16,\n",
+      "        1.4272e-02, 1.1326e-02, 1.1406e-02, 2.6037e-02, 1.0787e-02, 3.8772e-02,\n",
+      "        1.6456e-02, 4.4015e-02, 4.5919e-16, 4.9999e-02, 1.7198e-02, 1.2146e-02,\n",
+      "        3.4393e-02, 1.6789e-02, 1.4317e-02, 2.5185e-02])), ('pretrained_model.layer1.1.bn1.num_batches_tracked', tensor(0)), ('pretrained_model.layer1.1.conv2.weight', tensor([[[[ 0.0159, -0.0011,  0.0129],\n",
+      "          [ 0.0092, -0.0151, -0.0160],\n",
+      "          [-0.0009, -0.0176, -0.0080]],\n",
+      "\n",
+      "         [[-0.0146, -0.0070, -0.0118],\n",
+      "          [ 0.0126,  0.0316,  0.0412],\n",
+      "          [-0.0074, -0.0130, -0.0172]],\n",
+      "\n",
+      "         [[ 0.0059,  0.0157,  0.0080],\n",
+      "          [ 0.0004, -0.0018,  0.0003],\n",
+      "          [-0.0041, -0.0131,  0.0015]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0145, -0.0293, -0.0155],\n",
+      "          [ 0.0484,  0.0381,  0.0299],\n",
+      "          [-0.0389, -0.0660, -0.0355]],\n",
+      "\n",
+      "         [[ 0.0043,  0.0203, -0.0006],\n",
+      "          [ 0.0042,  0.0086,  0.0149],\n",
+      "          [-0.0075,  0.0056, -0.0041]],\n",
+      "\n",
+      "         [[-0.0002, -0.0090,  0.0040],\n",
+      "          [ 0.0142, -0.0220, -0.0259],\n",
+      "          [-0.0012, -0.0272, -0.0045]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0193, -0.0127,  0.0009],\n",
+      "          [ 0.0091, -0.0137, -0.0045],\n",
+      "          [ 0.0033, -0.0082, -0.0084]],\n",
+      "\n",
+      "         [[ 0.0022, -0.0030,  0.0168],\n",
+      "          [ 0.0639,  0.0415,  0.0454],\n",
+      "          [ 0.0295,  0.0077,  0.0217]],\n",
+      "\n",
+      "         [[ 0.0039, -0.0179, -0.0110],\n",
+      "          [ 0.0123,  0.0014, -0.0050],\n",
+      "          [ 0.0004,  0.0037,  0.0033]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0041, -0.0071, -0.0183],\n",
+      "          [ 0.0042,  0.0081, -0.0291],\n",
+      "          [ 0.0148,  0.0236,  0.0036]],\n",
+      "\n",
+      "         [[-0.0003, -0.0271, -0.0441],\n",
+      "          [ 0.0152, -0.0222, -0.0486],\n",
+      "          [ 0.0281,  0.0157, -0.0283]],\n",
+      "\n",
+      "         [[-0.0004,  0.0056,  0.0042],\n",
+      "          [-0.0026,  0.0017, -0.0005],\n",
+      "          [ 0.0124, -0.0050, -0.0006]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0370,  0.0033,  0.0070],\n",
+      "          [-0.0394,  0.0238, -0.0105],\n",
+      "          [-0.0278,  0.0003,  0.0030]],\n",
+      "\n",
+      "         [[-0.0303, -0.0364, -0.0459],\n",
+      "          [-0.0457, -0.0616, -0.0393],\n",
+      "          [-0.0230, -0.0359, -0.0283]],\n",
+      "\n",
+      "         [[-0.0042,  0.0147, -0.0012],\n",
+      "          [-0.0013, -0.0113,  0.0218],\n",
+      "          [-0.0050, -0.0175,  0.0028]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0131,  0.0157, -0.0286],\n",
+      "          [-0.0219,  0.0244, -0.0119],\n",
+      "          [-0.0020,  0.0085, -0.0132]],\n",
+      "\n",
+      "         [[ 0.0146, -0.0027,  0.0004],\n",
+      "          [ 0.0185, -0.0092, -0.0139],\n",
+      "          [ 0.0131, -0.0026, -0.0052]],\n",
+      "\n",
+      "         [[-0.0069, -0.0001, -0.0366],\n",
+      "          [ 0.0283,  0.0315, -0.0195],\n",
+      "          [-0.0229, -0.0031, -0.0380]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0150,  0.0004,  0.0154],\n",
+      "          [ 0.0284,  0.0033,  0.0162],\n",
+      "          [ 0.0228,  0.0185,  0.0059]],\n",
+      "\n",
+      "         [[ 0.0129,  0.0123,  0.0262],\n",
+      "          [ 0.0173, -0.0009,  0.0125],\n",
+      "          [ 0.0153,  0.0106,  0.0311]],\n",
+      "\n",
+      "         [[ 0.0064,  0.0234,  0.0210],\n",
+      "          [ 0.0146,  0.0181,  0.0103],\n",
+      "          [ 0.0343,  0.0044, -0.0051]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0132, -0.0074, -0.0290],\n",
+      "          [ 0.0135,  0.0204, -0.0278],\n",
+      "          [-0.0436, -0.0327, -0.0481]],\n",
+      "\n",
+      "         [[ 0.0106, -0.0055, -0.0200],\n",
+      "          [-0.0283, -0.0345,  0.0038],\n",
+      "          [-0.0140, -0.0008, -0.0026]],\n",
+      "\n",
+      "         [[ 0.0196, -0.0098,  0.0011],\n",
+      "          [ 0.0190, -0.0273, -0.0037],\n",
+      "          [ 0.0087,  0.0118,  0.0402]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0355,  0.0310,  0.0115],\n",
+      "          [ 0.0121,  0.0002, -0.0226],\n",
+      "          [ 0.0021, -0.0300, -0.0158]],\n",
+      "\n",
+      "         [[-0.0006,  0.0121,  0.0010],\n",
+      "          [-0.0009,  0.0011,  0.0049],\n",
+      "          [ 0.0051,  0.0172,  0.0061]],\n",
+      "\n",
+      "         [[ 0.0006,  0.0045,  0.0386],\n",
+      "          [ 0.0006,  0.0164,  0.0641],\n",
+      "          [ 0.0327,  0.0399,  0.0375]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0177,  0.0052, -0.0448],\n",
+      "          [-0.0055,  0.0119, -0.0293],\n",
+      "          [-0.0226,  0.0436, -0.0261]],\n",
+      "\n",
+      "         [[-0.0070,  0.0057,  0.0108],\n",
+      "          [-0.0145, -0.0064,  0.0249],\n",
+      "          [-0.0180,  0.0143,  0.0217]],\n",
+      "\n",
+      "         [[ 0.0193, -0.0030, -0.0248],\n",
+      "          [ 0.0357, -0.0179, -0.0359],\n",
+      "          [-0.0167, -0.0244, -0.0177]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0307,  0.0020, -0.0410],\n",
+      "          [ 0.0073, -0.0792, -0.0055],\n",
+      "          [-0.0212,  0.0114, -0.0063]],\n",
+      "\n",
+      "         [[-0.0285,  0.0209, -0.0009],\n",
+      "          [-0.0021,  0.0602,  0.0009],\n",
+      "          [-0.0165, -0.0054, -0.0204]],\n",
+      "\n",
+      "         [[ 0.0121,  0.0153,  0.0150],\n",
+      "          [ 0.0168,  0.0148,  0.0136],\n",
+      "          [ 0.0213,  0.0081,  0.0068]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0258,  0.0166,  0.0127],\n",
+      "          [ 0.0259, -0.0772,  0.0345],\n",
+      "          [-0.0048,  0.0227,  0.0191]],\n",
+      "\n",
+      "         [[ 0.0298,  0.0103,  0.0149],\n",
+      "          [ 0.0024, -0.0799,  0.0230],\n",
+      "          [ 0.0117, -0.0107,  0.0060]],\n",
+      "\n",
+      "         [[ 0.0244,  0.0069, -0.0003],\n",
+      "          [ 0.0205, -0.0281, -0.0170],\n",
+      "          [ 0.0331,  0.0030,  0.0154]]]])), ('pretrained_model.layer1.1.bn2.weight', tensor([0.3451, 0.1929, 0.1928, 0.1562, 0.1987, 0.1327, 0.1730, 0.1887, 0.1284,\n",
+      "        0.1868, 0.1839, 0.2306, 0.2272, 0.1640, 0.1287, 0.1467, 0.2350, 0.2610,\n",
+      "        0.1597, 0.2376, 0.1950, 0.1575, 0.1609, 0.1990, 0.1525, 0.2501, 0.1406,\n",
+      "        0.1994, 0.1061, 0.1342, 0.2478, 0.1732, 0.2178, 0.1730, 0.2036, 0.2190,\n",
+      "        0.1405, 0.1912, 0.2080, 0.1884, 0.1467, 0.1827, 0.1937, 0.1629, 0.2004,\n",
+      "        0.1669, 0.2094, 0.2052, 0.1772, 0.1879, 0.1829, 0.2131, 0.1524, 0.1422,\n",
+      "        0.1690, 0.2067, 0.1321, 0.2126, 0.2667, 0.1838, 0.1881, 0.1082, 0.1493,\n",
+      "        0.1634])), ('pretrained_model.layer1.1.bn2.bias', tensor([-0.3297, -0.1254, -0.0071,  0.0091, -0.1101,  0.3139,  0.0209, -0.0090,\n",
+      "         0.2883,  0.1519, -0.1369,  0.0375, -0.1258, -0.0774,  0.2260,  0.1107,\n",
+      "        -0.0309, -0.0939, -0.0103, -0.0882,  0.0901, -0.1207,  0.0247,  0.0828,\n",
+      "         0.0986, -0.1905,  0.2625, -0.1363,  0.2490,  0.2714, -0.0653,  0.0495,\n",
+      "        -0.0149, -0.0646,  0.0054,  0.0129,  0.2019, -0.0451, -0.0547, -0.0828,\n",
+      "        -0.2110, -0.0763, -0.0728, -0.0448, -0.0767, -0.0833, -0.0980,  0.0260,\n",
+      "        -0.1134, -0.1236,  0.0689, -0.0089, -0.0308, -0.0267,  0.2656,  0.0441,\n",
+      "         0.1883, -0.0298, -0.1392,  0.1176,  0.0689,  0.1321, -0.0723, -0.0602])), ('pretrained_model.layer1.1.bn2.running_mean', tensor([-0.2255, -0.0559, -0.0499, -0.1512,  0.1323, -0.0079,  0.1360, -0.1553,\n",
+      "        -0.1500, -0.0016, -0.1485,  0.0993,  0.0241,  0.0494,  0.0987,  0.0134,\n",
+      "         0.0570,  0.1299, -0.3634,  0.0062, -0.0200, -0.0435, -0.0810,  0.1203,\n",
+      "        -0.0633,  0.0838, -0.1311, -0.0062, -0.1043,  0.0775,  0.0290, -0.0480,\n",
+      "        -0.1059, -0.2387, -0.0706, -0.0871, -0.1668,  0.1158, -0.0287,  0.0215,\n",
+      "        -0.0497, -0.0781,  0.1716, -0.2097, -0.0483, -0.0081, -0.0800, -0.0311,\n",
+      "        -0.0947, -0.0085, -0.1800, -0.1054, -0.3984,  0.1734, -0.1994,  0.0215,\n",
+      "        -0.0819, -0.0840,  0.1559, -0.0239, -0.0292, -0.0627, -0.1608, -0.0229])), ('pretrained_model.layer1.1.bn2.running_var', tensor([0.0070, 0.0117, 0.0128, 0.0168, 0.0122, 0.0123, 0.0199, 0.0184, 0.0130,\n",
+      "        0.0225, 0.0110, 0.0194, 0.0086, 0.0092, 0.0192, 0.0089, 0.0216, 0.0093,\n",
+      "        0.0091, 0.0168, 0.0166, 0.0114, 0.0128, 0.0206, 0.0140, 0.0080, 0.0174,\n",
+      "        0.0051, 0.0088, 0.0154, 0.0115, 0.0161, 0.0156, 0.0091, 0.0254, 0.0177,\n",
+      "        0.0254, 0.0120, 0.0160, 0.0071, 0.0053, 0.0127, 0.0131, 0.0077, 0.0129,\n",
+      "        0.0108, 0.0087, 0.0183, 0.0066, 0.0113, 0.0119, 0.0262, 0.0113, 0.0110,\n",
+      "        0.0177, 0.0179, 0.0169, 0.0106, 0.0111, 0.0164, 0.0255, 0.0099, 0.0055,\n",
+      "        0.0108])), ('pretrained_model.layer1.1.bn2.num_batches_tracked', tensor(0)), ('pretrained_model.layer1.1.conv3.weight', tensor([[[[ 6.3315e-02]],\n",
+      "\n",
+      "         [[-1.0808e-03]],\n",
+      "\n",
+      "         [[-7.8892e-04]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-2.6242e-03]],\n",
+      "\n",
+      "         [[ 3.4985e-03]],\n",
+      "\n",
+      "         [[-5.1448e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 9.7348e-02]],\n",
+      "\n",
+      "         [[ 8.5004e-03]],\n",
+      "\n",
+      "         [[ 3.0740e-04]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 2.4033e-04]],\n",
+      "\n",
+      "         [[ 1.2857e-03]],\n",
+      "\n",
+      "         [[-1.5242e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 6.3270e-02]],\n",
+      "\n",
+      "         [[-1.4268e-02]],\n",
+      "\n",
+      "         [[-1.5540e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 5.6846e-03]],\n",
+      "\n",
+      "         [[ 6.4520e-03]],\n",
+      "\n",
+      "         [[ 1.1313e-02]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 6.7621e-02]],\n",
+      "\n",
+      "         [[-3.1457e-04]],\n",
+      "\n",
+      "         [[ 9.4801e-04]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 6.6520e-05]],\n",
+      "\n",
+      "         [[ 6.5758e-03]],\n",
+      "\n",
+      "         [[-2.3747e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-2.9425e-02]],\n",
+      "\n",
+      "         [[ 3.6915e-03]],\n",
+      "\n",
+      "         [[ 1.8364e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-6.2267e-04]],\n",
+      "\n",
+      "         [[-1.1534e-02]],\n",
+      "\n",
+      "         [[-1.8672e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 5.6912e-02]],\n",
+      "\n",
+      "         [[-5.9412e-02]],\n",
+      "\n",
+      "         [[-8.2701e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-2.1114e-02]],\n",
+      "\n",
+      "         [[-2.8338e-02]],\n",
+      "\n",
+      "         [[-3.9193e-02]]]])), ('pretrained_model.layer1.1.bn3.weight', tensor([-2.0737e-03,  5.6387e-04,  8.0562e-02, -1.3142e-02,  1.5655e-01,\n",
+      "         1.6822e-03,  1.9978e-01,  5.6862e-03, -4.4623e-03,  1.2105e-01,\n",
+      "         7.5936e-03,  1.4994e-01, -3.6086e-03, -5.2177e-03,  9.5022e-02,\n",
+      "         1.4006e-01,  1.4110e-01, -8.6986e-04,  8.5005e-02, -4.1808e-03,\n",
+      "         5.0310e-02,  1.5284e-02,  1.6176e-01,  2.9710e-01,  6.9835e-02,\n",
+      "         1.3115e-01,  7.5344e-03,  1.3832e-01, -5.1754e-03,  5.2287e-02,\n",
+      "        -7.1863e-04, -3.9293e-03,  4.0737e-02,  1.1970e-01,  1.0388e-01,\n",
+      "         8.1914e-02,  1.2945e-01,  1.0111e-01,  2.4275e-03, -1.4673e-03,\n",
+      "         1.3201e-01,  2.3439e-02,  1.4099e-01,  7.5727e-02,  8.6741e-02,\n",
+      "         6.0757e-02,  9.8739e-02,  1.6372e-01,  8.0633e-02,  9.5449e-03,\n",
+      "        -2.6042e-03,  1.4393e-01,  8.5000e-02,  1.6596e-01, -1.3751e-03,\n",
+      "         2.5395e-02,  1.6528e-01,  6.6005e-02,  1.0953e-01,  8.6630e-02,\n",
+      "        -1.4701e-03,  9.4002e-02, -3.1101e-03,  1.5370e-01,  7.7845e-08,\n",
+      "        -1.9869e-03,  9.4523e-02,  2.3698e-02,  1.5119e-01,  3.4664e-02,\n",
+      "         1.4049e-01,  6.8336e-06,  3.0271e-02, -1.6548e-03,  2.6519e-02,\n",
+      "         1.4725e-01,  2.2448e-01,  7.5179e-02,  3.6990e-03,  1.3304e-01,\n",
+      "         6.5812e-02,  5.0430e-02,  3.2759e-02,  6.2342e-02,  1.2666e-01,\n",
+      "         7.7895e-02,  8.4736e-02,  7.7195e-02, -2.5168e-03,  3.2042e-04,\n",
+      "         3.9388e-04,  1.1605e-01, -1.8739e-03,  1.1694e-01,  2.2718e-01,\n",
+      "         1.8178e-01,  3.4141e-03,  1.3497e-01,  1.3862e-01,  1.1798e-01,\n",
+      "         8.1728e-02,  1.9082e-06,  8.2192e-02,  4.9028e-03,  8.1610e-03,\n",
+      "         1.1287e-01,  1.5554e-01,  1.0546e-01, -1.7117e-03,  5.4948e-02,\n",
+      "         1.5917e-03,  4.0503e-02, -7.5442e-03,  6.5753e-02,  1.7398e-01,\n",
+      "        -1.1954e-02, -2.6308e-03,  1.4690e-01,  6.4209e-02,  5.7387e-05,\n",
+      "         1.3398e-01,  2.3258e-01,  1.3953e-01, -2.3201e-05,  1.5516e-01,\n",
+      "         2.8850e-02,  1.4230e-01, -4.6299e-05,  8.8055e-02,  2.5477e-02,\n",
+      "         9.7189e-02,  1.6257e-01,  1.1033e-01,  1.7197e-01,  6.9901e-02,\n",
+      "         1.3123e-01,  7.5602e-02,  1.4502e-01,  9.5098e-02,  1.5870e-01,\n",
+      "         1.3672e-01, -1.4713e-02,  6.6195e-02,  1.2983e-01,  4.1087e-02,\n",
+      "         4.9405e-02, -1.4219e-02,  1.1980e-01, -1.0316e-01,  6.4232e-02,\n",
+      "         1.8435e-02,  6.2708e-02,  2.2422e-01,  7.2729e-02,  8.4121e-02,\n",
+      "         1.9954e-01,  1.1419e-01,  2.3200e-01, -4.9800e-03, -3.3578e-03,\n",
+      "         2.2280e-03,  5.7839e-02, -2.2766e-03,  1.1417e-02,  1.8241e-01,\n",
+      "         2.0401e-01,  1.9065e-01,  1.1752e-02,  1.1371e-01,  1.0962e-01,\n",
+      "         1.8861e-01,  9.0070e-03,  1.6540e-01,  1.4539e-01,  1.4981e-01,\n",
+      "         7.2901e-02,  9.2705e-02,  4.6794e-03,  8.0891e-02,  1.3260e-01,\n",
+      "        -9.1971e-02, -3.2717e-02,  1.3542e-01,  2.2805e-01,  1.1607e-03,\n",
+      "         2.1239e-06, -5.5940e-03,  1.8804e-02,  7.6309e-02,  3.8862e-03,\n",
+      "         1.6223e-01,  1.4275e-03,  9.4641e-04,  1.2242e-02,  1.7850e-01,\n",
+      "         9.3750e-03,  1.0633e-01,  1.0056e-01,  4.6177e-02,  1.6486e-01,\n",
+      "         1.2311e-02,  5.4692e-02,  1.8529e-06,  1.3501e-02,  1.8425e-01,\n",
+      "         3.0861e-04,  1.5419e-01,  7.2646e-02,  7.2503e-02,  1.0688e-01,\n",
+      "         7.7379e-02, -5.1586e-02,  1.7848e-01,  1.1354e-01,  1.4409e-01,\n",
+      "         2.5443e-02,  1.2177e-01,  9.5528e-02,  6.8439e-02,  5.6100e-02,\n",
+      "        -4.2525e-03,  8.1406e-02,  1.0568e-01,  4.5164e-04,  7.6184e-02,\n",
+      "         1.0626e-01, -1.0680e-02,  2.9198e-02, -6.9026e-03,  1.5139e-01,\n",
+      "         1.1528e-01, -1.0485e-02,  1.9433e-01,  3.3913e-03,  5.7893e-02,\n",
+      "         1.6140e-02,  2.1529e-01,  2.6808e-03,  1.9161e-01,  3.2083e-02,\n",
+      "         1.2310e-01,  2.1399e-01, -3.9921e-03,  5.9366e-02,  9.3633e-02,\n",
+      "         1.5285e-01,  1.1819e-01,  1.6523e-01,  8.2077e-02,  1.3853e-01,\n",
+      "         4.6622e-02, -1.7930e-03,  7.2325e-03, -2.3651e-03, -5.7992e-03,\n",
+      "         1.9938e-01])), ('pretrained_model.layer1.1.bn3.bias', tensor([ 4.8306e-03,  6.7388e-03, -8.0560e-02,  9.9502e-03, -3.8464e-02,\n",
+      "         3.0818e-03,  8.4112e-02, -1.3896e-02,  2.4831e-03,  4.2007e-02,\n",
+      "         9.4108e-03,  9.7077e-02,  6.0364e-02,  9.3087e-03,  8.9481e-04,\n",
+      "         2.7731e-02, -8.7328e-03,  9.2999e-03, -9.6955e-02,  3.4735e-03,\n",
+      "         3.1823e-02,  7.6867e-03,  8.1218e-02,  2.4875e-02, -2.1408e-02,\n",
+      "        -4.5077e-02,  3.7654e-03, -3.7893e-03,  3.0217e-03, -2.0680e-02,\n",
+      "        -6.2104e-03,  6.2103e-03,  1.8753e-02,  1.1998e-01,  1.0271e-01,\n",
+      "         1.1531e-01, -6.0943e-02, -1.0694e-02,  6.8423e-03,  5.0370e-03,\n",
+      "        -1.3549e-02, -1.1057e-04,  4.1836e-03, -6.3977e-02,  4.5274e-02,\n",
+      "         5.2228e-02,  3.7783e-02, -6.7399e-02, -1.1388e-01,  7.8496e-02,\n",
+      "         1.1224e-02,  9.5328e-02, -4.2699e-02,  2.3129e-02,  3.3849e-03,\n",
+      "        -3.4506e-03,  1.4629e-01, -4.2375e-02, -4.5294e-02,  2.9578e-02,\n",
+      "         1.2495e-02, -5.9506e-02,  4.0282e-03,  7.6147e-02, -2.8206e-07,\n",
+      "         4.7322e-03, -5.4425e-02,  4.0170e-02, -3.4970e-02,  2.3472e-02,\n",
+      "        -2.8613e-02, -5.7636e-05,  4.3998e-02,  3.1715e-03,  7.6276e-03,\n",
+      "         6.4907e-02,  5.4562e-02, -4.7826e-02,  3.3803e-03, -6.6149e-03,\n",
+      "         2.4011e-02,  4.7786e-02,  1.1190e-02,  1.2198e-01,  1.2507e-01,\n",
+      "         9.1527e-02,  5.8833e-02, -3.1837e-02,  6.6335e-03, -2.6651e-03,\n",
+      "         3.8517e-03,  1.6856e-02,  3.8243e-03,  2.0662e-02,  9.4280e-02,\n",
+      "         6.8194e-02,  8.4587e-03, -4.5979e-02,  1.2587e-01,  1.4363e-01,\n",
+      "         1.2966e-03, -3.7031e-05,  1.3809e-02,  2.5616e-03,  1.0638e-02,\n",
+      "        -1.2859e-02, -1.6861e-01, -2.5703e-02,  1.2913e-03,  1.6175e-02,\n",
+      "         4.8781e-03,  1.1934e-01,  3.2883e-03,  2.0740e-02,  4.5759e-02,\n",
+      "         1.0044e-02,  1.3623e-03, -4.0002e-03,  1.8444e-02,  1.8373e-02,\n",
+      "        -8.1994e-02, -1.4383e-01, -4.9390e-02, -5.1697e-04, -3.6429e-03,\n",
+      "         5.0108e-02,  6.0173e-03, -7.5905e-04, -7.6641e-02,  2.0544e-02,\n",
+      "        -2.9733e-02,  2.0636e-02,  4.2642e-02,  1.9519e-03, -7.8533e-02,\n",
+      "        -1.9643e-02, -1.6265e-02, -6.7763e-02,  5.9754e-02, -1.1974e-01,\n",
+      "        -4.6298e-02,  2.7182e-03, -5.3862e-04,  2.3845e-02, -9.2022e-02,\n",
+      "        -5.4018e-02,  1.1864e-02,  1.6468e-02, -5.0633e-02,  2.9824e-02,\n",
+      "        -8.3507e-02, -5.7621e-02, -3.7105e-02, -7.3516e-03,  4.6029e-02,\n",
+      "         4.5538e-02,  1.5784e-03,  2.2544e-02,  5.6043e-03,  3.9880e-03,\n",
+      "         4.3444e-03,  7.9815e-03,  6.8884e-03,  3.4665e-04,  3.7221e-02,\n",
+      "         2.6888e-02, -9.1805e-02,  7.9014e-03, -1.5023e-02,  2.6001e-02,\n",
+      "         1.5721e-01,  4.4384e-03, -1.5962e-02,  1.4280e-03, -1.9937e-02,\n",
+      "        -1.1796e-01, -2.7018e-02,  5.2322e-03,  3.7893e-02,  1.1011e-01,\n",
+      "         3.7373e-02, -3.5021e-02,  4.2536e-02,  5.1764e-02,  3.0254e-03,\n",
+      "        -3.2643e-06,  3.4367e-03,  5.7616e-02, -2.0069e-02,  3.8265e-03,\n",
+      "        -3.4861e-02,  2.3014e-03,  2.6568e-03,  1.1284e-02,  1.2933e-02,\n",
+      "         3.7874e-03,  9.4871e-03,  9.6268e-03, -2.7819e-02, -4.3291e-02,\n",
+      "         1.3768e-02, -3.2705e-03, -2.1545e-05,  1.2625e-02, -1.6642e-02,\n",
+      "         2.2694e-03, -1.1451e-02,  5.6972e-02,  2.5036e-02,  1.4902e-01,\n",
+      "         1.1193e-02, -8.5928e-02,  2.6676e-02, -1.1200e-02, -1.5226e-01,\n",
+      "         1.0860e-02, -4.8352e-03,  3.0767e-02,  3.6550e-02, -1.2568e-02,\n",
+      "         5.3564e-03, -4.6732e-02,  5.1786e-02,  5.7993e-03,  1.1211e-01,\n",
+      "        -1.4434e-02,  6.4668e-03,  4.2126e-03,  7.3781e-03,  5.8761e-02,\n",
+      "        -4.7063e-02,  6.9753e-03,  9.2133e-02,  2.4880e-03,  4.6915e-02,\n",
+      "         8.5350e-03, -1.0490e-01,  6.9733e-03,  4.5144e-02, -8.0371e-03,\n",
+      "         7.3835e-04,  1.1823e-01,  3.4098e-03, -1.8939e-02,  2.5403e-03,\n",
+      "        -5.2154e-03, -7.2299e-02, -7.9944e-02, -3.8619e-02,  1.6139e-02,\n",
+      "         2.4540e-02,  3.5064e-03,  1.0030e-02,  5.5843e-03,  2.1018e-02,\n",
+      "        -7.0570e-02])), ('pretrained_model.layer1.1.bn3.running_mean', tensor([ 2.7287e-03,  5.9941e-03,  9.0314e-03,  5.7300e-04, -1.8293e-03,\n",
+      "        -3.9514e-03, -3.4596e-02,  1.6229e-02, -3.4784e-03,  5.6441e-03,\n",
+      "        -1.4359e-02,  7.8307e-02,  7.6556e-04, -2.7412e-03,  4.4629e-03,\n",
+      "         8.4219e-02, -6.3431e-02,  1.4383e-02,  2.9370e-02, -3.3444e-03,\n",
+      "         8.8108e-03,  4.8928e-03, -8.4623e-03,  2.2005e-02, -1.8629e-02,\n",
+      "         3.8011e-02, -9.3283e-03,  2.9984e-03,  3.5291e-04,  1.8441e-02,\n",
+      "         2.2288e-03,  2.5883e-03,  4.4714e-03,  1.0501e-02,  1.1542e-01,\n",
+      "        -3.3932e-02,  3.2548e-02, -1.9721e-02,  7.0797e-03,  6.0887e-03,\n",
+      "        -1.8347e-02,  3.2781e-02, -2.7053e-02, -2.7079e-02,  1.9420e-02,\n",
+      "        -1.0209e-02, -1.0828e-02, -1.1165e-02,  8.2950e-04, -5.9664e-03,\n",
+      "        -1.0398e-02,  8.8014e-02,  1.1155e-02, -4.3879e-03, -5.0606e-03,\n",
+      "        -2.2434e-02, -5.8618e-02,  1.9370e-03,  1.2485e-02, -8.8391e-02,\n",
+      "        -1.1670e-03,  2.0968e-02,  1.9944e-03,  4.0881e-02,  7.8687e-08,\n",
+      "         2.3555e-03, -4.9835e-03,  7.5382e-03, -7.9218e-04, -2.8439e-03,\n",
+      "        -1.3851e-02, -2.4015e-05, -2.6399e-02, -2.8076e-03, -1.4947e-02,\n",
+      "        -6.4368e-02, -9.6325e-03, -1.4157e-02,  1.5501e-03, -8.9808e-03,\n",
+      "        -1.8324e-02, -1.5131e-03, -1.5037e-02,  3.3176e-02,  1.6797e-02,\n",
+      "        -4.6127e-02, -4.2706e-02, -3.9603e-02, -4.5575e-04,  1.7116e-03,\n",
+      "         1.4136e-03, -1.8596e-02, -3.8382e-04, -7.1196e-02,  5.7846e-02,\n",
+      "         8.4431e-02, -4.5818e-03,  5.7791e-02,  8.1172e-02,  1.7332e-02,\n",
+      "         2.4098e-02,  6.6722e-06, -5.1403e-02, -6.9817e-03,  2.5381e-03,\n",
+      "         3.6005e-02,  7.3719e-02,  1.6892e-02, -2.3606e-04, -1.2922e-02,\n",
+      "        -3.5913e-03,  2.7370e-03,  4.3635e-03, -1.3847e-02,  7.4743e-02,\n",
+      "        -1.0774e-03,  4.0446e-03,  2.3117e-02, -1.8786e-02, -1.0994e-02,\n",
+      "         2.4386e-02,  1.0979e-01,  6.3636e-02,  2.8953e-05,  1.2010e-02,\n",
+      "         2.4983e-02,  1.4274e-02, -5.8896e-05,  3.7111e-02, -7.3419e-02,\n",
+      "         1.5906e-02, -2.1969e-02, -2.9944e-02, -9.8587e-02, -1.0077e-02,\n",
+      "         2.0901e-02, -1.1263e-02,  4.0833e-02,  1.2804e-02, -4.6864e-02,\n",
+      "        -3.0286e-02, -3.6750e-03, -2.3044e-02,  4.9147e-02, -4.1789e-03,\n",
+      "         9.1088e-03, -2.9110e-02, -1.3760e-02, -8.8199e-02, -3.6561e-02,\n",
+      "         3.7351e-03, -3.3322e-03, -1.5418e-02, -2.3956e-02,  3.8569e-02,\n",
+      "        -6.0505e-03,  4.6923e-02, -3.3703e-02,  9.2817e-04,  1.1666e-03,\n",
+      "        -1.5953e-03, -3.8404e-02, -1.9819e-03,  9.2413e-03, -4.4656e-02,\n",
+      "        -9.4762e-03,  5.1625e-02, -7.4250e-03,  4.2530e-02,  4.6862e-03,\n",
+      "         3.4505e-03, -1.0516e-02,  9.6599e-02,  3.2980e-02, -3.9656e-02,\n",
+      "        -2.9067e-03, -1.3795e-02, -1.2923e-03, -3.9771e-02, -3.1028e-02,\n",
+      "         9.2506e-03, -2.7889e-03,  1.0894e-02, -4.9771e-02,  3.0183e-03,\n",
+      "        -1.0377e-06, -1.0182e-03, -2.1427e-02, -3.2612e-02,  6.9580e-03,\n",
+      "         4.9657e-02, -5.2436e-04,  1.2106e-03, -3.1331e-03, -1.1055e-01,\n",
+      "         2.4636e-04,  6.4101e-03,  8.0443e-03,  7.2982e-02,  5.4547e-02,\n",
+      "        -2.6621e-03, -1.4571e-02,  4.4584e-06,  1.1125e-02,  4.2948e-02,\n",
+      "         1.2734e-03, -3.2069e-02, -5.0181e-02,  2.0553e-02, -2.8667e-02,\n",
+      "         4.8023e-02,  6.7831e-03, -5.8735e-03, -9.5078e-02, -1.3185e-03,\n",
+      "         2.3686e-02,  6.1938e-02, -3.7256e-02,  7.7141e-03,  1.5474e-02,\n",
+      "         7.0518e-03, -4.9770e-02,  1.3292e-02, -4.2410e-03, -1.6918e-02,\n",
+      "         1.0723e-02,  2.5082e-03,  2.9451e-02, -3.4012e-03,  4.3096e-02,\n",
+      "         2.6345e-02,  5.7951e-03,  2.4180e-02, -9.9984e-04, -5.8628e-02,\n",
+      "        -1.0611e-02, -7.1045e-03,  1.7925e-03,  2.2147e-02, -6.8124e-03,\n",
+      "         1.3557e-02,  9.3326e-02, -1.3196e-03,  2.6134e-02,  9.4252e-03,\n",
+      "         3.7603e-02,  1.2872e-02, -1.0134e-02, -4.5358e-02,  3.7061e-02,\n",
+      "         8.8985e-03,  1.0667e-02,  3.4597e-03,  3.5759e-03,  1.7435e-02,\n",
+      "        -4.3043e-04])), ('pretrained_model.layer1.1.bn3.running_var', tensor([2.2311e-04, 5.1319e-04, 6.1145e-04, 4.2249e-04, 1.7611e-03, 1.8522e-04,\n",
+      "        3.5416e-03, 4.3173e-04, 2.1587e-04, 2.9044e-03, 3.3964e-04, 2.9890e-03,\n",
+      "        2.6697e-04, 3.4877e-04, 3.1997e-03, 3.4162e-03, 4.0336e-03, 4.9310e-04,\n",
+      "        1.0553e-03, 2.7794e-04, 1.0719e-03, 1.6382e-04, 2.4878e-03, 3.7133e-03,\n",
+      "        2.9662e-03, 1.2640e-03, 1.7587e-04, 2.6742e-03, 2.0325e-04, 1.1032e-03,\n",
+      "        2.4460e-04, 2.2690e-04, 6.2095e-04, 1.2923e-03, 1.6588e-03, 2.1657e-03,\n",
+      "        4.4017e-03, 1.1855e-03, 5.8662e-04, 1.9950e-04, 1.8030e-03, 1.1818e-03,\n",
+      "        2.4954e-03, 1.7896e-03, 2.2285e-03, 6.1160e-04, 3.0394e-03, 1.5307e-03,\n",
+      "        4.1519e-04, 3.1183e-04, 2.5633e-04, 3.2187e-03, 5.3614e-04, 2.5745e-03,\n",
+      "        1.7760e-04, 6.0588e-04, 4.0484e-03, 1.2043e-03, 2.1845e-03, 1.7239e-03,\n",
+      "        2.0522e-04, 2.4163e-03, 1.1858e-04, 1.9470e-03, 6.0945e-15, 4.1207e-04,\n",
+      "        1.3084e-03, 1.2848e-03, 1.5836e-03, 7.6376e-04, 1.1890e-03, 5.3637e-10,\n",
+      "        2.4120e-03, 4.6522e-04, 8.7669e-04, 1.9246e-03, 2.9964e-03, 6.4396e-04,\n",
+      "        1.5412e-04, 2.0618e-03, 1.9408e-03, 1.4215e-03, 6.4405e-04, 8.6360e-04,\n",
+      "        3.1197e-03, 2.6226e-03, 1.6951e-03, 5.8218e-04, 3.2588e-04, 1.7883e-06,\n",
+      "        7.0273e-04, 1.2902e-03, 2.0001e-04, 1.6243e-03, 3.5011e-03, 2.9330e-03,\n",
+      "        1.6661e-04, 1.4090e-03, 2.2266e-03, 2.6648e-03, 1.8768e-03, 1.8891e-10,\n",
+      "        1.4759e-03, 1.6911e-04, 4.3784e-04, 2.4429e-03, 1.4605e-03, 1.2914e-03,\n",
+      "        1.0762e-04, 1.7013e-03, 4.4252e-04, 2.1531e-03, 2.4240e-04, 1.9325e-03,\n",
+      "        3.3762e-03, 1.3688e-04, 2.4173e-04, 1.6033e-03, 2.1168e-03, 2.6976e-04,\n",
+      "        2.2730e-03, 2.2768e-03, 3.3186e-03, 2.5480e-08, 5.2914e-03, 9.5420e-04,\n",
+      "        1.7845e-03, 7.5987e-09, 1.1377e-03, 1.1466e-03, 4.7940e-03, 2.6365e-03,\n",
+      "        1.6446e-03, 2.5942e-03, 4.8803e-04, 3.5107e-03, 1.0278e-03, 1.9685e-03,\n",
+      "        3.4077e-03, 1.2855e-03, 1.4638e-03, 2.8709e-04, 5.5727e-04, 2.8432e-03,\n",
+      "        4.0063e-04, 1.7363e-03, 2.7241e-04, 2.1525e-03, 1.5180e-03, 8.6535e-04,\n",
+      "        2.9969e-04, 8.6096e-04, 3.0110e-03, 1.0830e-03, 1.1770e-03, 3.0035e-03,\n",
+      "        2.9427e-03, 4.2256e-03, 1.7411e-04, 1.1384e-04, 2.6842e-04, 1.4510e-03,\n",
+      "        1.4605e-04, 7.6626e-04, 1.9598e-03, 5.2822e-03, 2.7947e-03, 2.3348e-04,\n",
+      "        2.5119e-03, 2.2297e-03, 2.8840e-03, 1.8234e-04, 1.6600e-03, 1.9955e-03,\n",
+      "        1.6810e-03, 7.5962e-04, 1.5231e-03, 2.3789e-04, 1.7095e-03, 3.8373e-03,\n",
+      "        1.0492e-03, 9.9582e-05, 2.0830e-03, 4.9522e-03, 2.4975e-04, 2.1285e-13,\n",
+      "        2.5389e-04, 2.3576e-04, 1.3383e-03, 6.8627e-04, 5.5511e-03, 1.6430e-04,\n",
+      "        5.2170e-04, 3.2620e-04, 2.1753e-03, 1.5316e-04, 2.2831e-03, 2.6976e-03,\n",
+      "        1.1134e-03, 1.2090e-03, 7.0606e-04, 1.2290e-03, 6.8526e-11, 5.8190e-04,\n",
+      "        2.5564e-03, 1.5315e-04, 1.8870e-03, 1.7256e-03, 1.5997e-03, 2.2757e-03,\n",
+      "        1.4052e-03, 5.1356e-04, 1.3498e-03, 2.0213e-03, 6.0483e-04, 4.6505e-04,\n",
+      "        1.6374e-03, 1.7752e-03, 1.0687e-03, 1.0275e-03, 1.3283e-03, 1.0677e-03,\n",
+      "        1.5150e-03, 5.1880e-04, 1.9501e-03, 2.3016e-03, 4.8048e-04, 1.0139e-03,\n",
+      "        4.3953e-04, 3.1523e-03, 1.1198e-03, 2.7424e-04, 3.9272e-03, 2.8527e-04,\n",
+      "        1.4758e-03, 2.4388e-04, 3.3067e-03, 1.7019e-03, 2.8667e-03, 6.0600e-04,\n",
+      "        2.0143e-03, 4.7591e-03, 5.5676e-04, 2.6939e-03, 5.2765e-03, 4.7150e-03,\n",
+      "        8.4865e-04, 3.0251e-03, 5.4869e-04, 2.0114e-03, 7.7774e-04, 5.5291e-04,\n",
+      "        2.4560e-04, 2.4786e-04, 6.0571e-04, 3.5318e-03])), ('pretrained_model.layer1.1.bn3.num_batches_tracked', tensor(0)), ('pretrained_model.layer1.2.conv1.weight', tensor([[[[ 2.4972e-03]],\n",
+      "\n",
+      "         [[-4.7014e-03]],\n",
+      "\n",
+      "         [[-3.1804e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-6.6568e-03]],\n",
+      "\n",
+      "         [[-3.4029e-02]],\n",
+      "\n",
+      "         [[-3.3436e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 3.8592e-03]],\n",
+      "\n",
+      "         [[-8.2642e-03]],\n",
+      "\n",
+      "         [[ 2.5026e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 7.0035e-03]],\n",
+      "\n",
+      "         [[-1.0727e-01]],\n",
+      "\n",
+      "         [[ 6.2069e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.4939e-02]],\n",
+      "\n",
+      "         [[-7.7900e-05]],\n",
+      "\n",
+      "         [[ 2.4412e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-2.2758e-02]],\n",
+      "\n",
+      "         [[-1.2558e-02]],\n",
+      "\n",
+      "         [[ 7.3023e-03]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 8.7680e-03]],\n",
+      "\n",
+      "         [[-3.1650e-03]],\n",
+      "\n",
+      "         [[-5.5496e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.3138e-02]],\n",
+      "\n",
+      "         [[-1.1754e-02]],\n",
+      "\n",
+      "         [[ 1.5117e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-5.3206e-03]],\n",
+      "\n",
+      "         [[ 2.9871e-03]],\n",
+      "\n",
+      "         [[-2.0723e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.7889e-03]],\n",
+      "\n",
+      "         [[ 5.1174e-02]],\n",
+      "\n",
+      "         [[-3.1216e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.7183e-03]],\n",
+      "\n",
+      "         [[ 1.6755e-03]],\n",
+      "\n",
+      "         [[-3.2804e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-5.3001e-03]],\n",
+      "\n",
+      "         [[ 2.2908e-02]],\n",
+      "\n",
+      "         [[-8.4548e-03]]]])), ('pretrained_model.layer1.2.bn1.weight', tensor([0.1785, 0.1480, 0.1272, 0.1321, 0.1963, 0.2125, 0.1526, 0.1848, 0.1555,\n",
+      "        0.1724, 0.1922, 0.2102, 0.1876, 0.1992, 0.2056, 0.1817, 0.1939, 0.1506,\n",
+      "        0.1831, 0.2016, 0.1891, 0.1461, 0.1860, 0.2040, 0.1972, 0.1700, 0.1616,\n",
+      "        0.2005, 0.1896, 0.1965, 0.1460, 0.1612, 0.1346, 0.2055, 0.1437, 0.2112,\n",
+      "        0.1452, 0.1813, 0.1565, 0.2195, 0.1434, 0.1965, 0.1971, 0.1740, 0.1528,\n",
+      "        0.1425, 0.2135, 0.1916, 0.1623, 0.2104, 0.1786, 0.1645, 0.2066, 0.1681,\n",
+      "        0.2174, 0.1786, 0.1741, 0.1998, 0.1504, 0.2119, 0.1661, 0.1535, 0.1906,\n",
+      "        0.1974])), ('pretrained_model.layer1.2.bn1.bias', tensor([-0.0281, -0.0531,  0.1074, -0.1417, -0.0983, -0.0036, -0.0869,  0.0285,\n",
+      "         0.0902,  0.1727, -0.1284, -0.2105,  0.0969, -0.0555, -0.1742,  0.1086,\n",
+      "        -0.1746,  0.1818,  0.0927, -0.0418, -0.0313,  0.1538,  0.0965, -0.0950,\n",
+      "         0.0608,  0.1045,  0.0909,  0.0559, -0.0617, -0.1316,  0.0910, -0.0660,\n",
+      "         0.2074, -0.0479,  0.1905, -0.0718,  0.1487, -0.1026,  0.0055, -0.0655,\n",
+      "        -0.0792,  0.0823, -0.0468, -0.0173,  0.0475, -0.0976, -0.1419, -0.0342,\n",
+      "         0.0864, -0.1778, -0.0240,  0.1928, -0.1341, -0.0741, -0.1922,  0.0892,\n",
+      "        -0.1074, -0.0347,  0.0959, -0.0828, -0.0013,  0.1150, -0.0927, -0.0485])), ('pretrained_model.layer1.2.bn1.running_mean', tensor([-0.1267, -0.1069,  0.2429, -0.0351,  0.1575,  0.0236, -0.0012,  0.0556,\n",
+      "        -0.3006,  0.1184, -0.0175,  0.0962, -0.0828, -0.0830, -0.0807,  0.0829,\n",
+      "        -0.6229,  0.1507,  0.0125,  0.1271,  0.1977,  0.0339,  0.0994, -0.1340,\n",
+      "         0.0334,  0.3187,  0.0837,  0.0949, -0.1501, -0.1270,  0.1929,  0.0918,\n",
+      "         0.1230, -0.0417,  0.2616,  0.0440, -0.0401,  0.0036,  0.0781,  0.2989,\n",
+      "        -0.0312,  0.1017, -0.1347,  0.0576, -0.0489,  0.0584, -0.2261, -0.0187,\n",
+      "        -0.2810, -0.2077, -0.0583,  0.0615, -0.0575, -0.2068, -0.1423,  0.1429,\n",
+      "        -0.0667, -0.1085, -0.3348,  0.1347, -0.0729, -0.0188, -0.0866,  0.0471])), ('pretrained_model.layer1.2.bn1.running_var', tensor([0.0210, 0.0120, 0.0423, 0.0054, 0.0160, 0.0347, 0.0086, 0.0230, 0.0185,\n",
+      "        0.0244, 0.0163, 0.0078, 0.0273, 0.0245, 0.0191, 0.0279, 0.0088, 0.0343,\n",
+      "        0.0192, 0.0239, 0.0216, 0.0126, 0.0205, 0.0149, 0.0286, 0.0255, 0.0252,\n",
+      "        0.0269, 0.0229, 0.0104, 0.0124, 0.0173, 0.0201, 0.0184, 0.0221, 0.0287,\n",
+      "        0.0142, 0.0133, 0.0158, 0.0205, 0.0082, 0.0319, 0.0232, 0.0221, 0.0202,\n",
+      "        0.0064, 0.0203, 0.0204, 0.0150, 0.0118, 0.0200, 0.0347, 0.0116, 0.0177,\n",
+      "        0.0200, 0.0307, 0.0104, 0.0208, 0.0153, 0.0176, 0.0173, 0.0226, 0.0118,\n",
+      "        0.0193])), ('pretrained_model.layer1.2.bn1.num_batches_tracked', tensor(0)), ('pretrained_model.layer1.2.conv2.weight', tensor([[[[ 0.0314,  0.0024, -0.0249],\n",
+      "          [ 0.0012, -0.0102, -0.0099],\n",
+      "          [-0.0439,  0.0327, -0.0094]],\n",
+      "\n",
+      "         [[ 0.0189, -0.0589,  0.0208],\n",
+      "          [ 0.0231, -0.0554,  0.0253],\n",
+      "          [-0.0194,  0.0048, -0.0087]],\n",
+      "\n",
+      "         [[ 0.0167,  0.0106,  0.0270],\n",
+      "          [ 0.0024, -0.0124,  0.0238],\n",
+      "          [-0.0005, -0.0049,  0.0115]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0087, -0.0126,  0.0054],\n",
+      "          [-0.0041, -0.0019, -0.0177],\n",
+      "          [-0.0195,  0.0262, -0.0080]],\n",
+      "\n",
+      "         [[-0.0416,  0.0057,  0.0070],\n",
+      "          [-0.0472,  0.0366,  0.0254],\n",
+      "          [-0.0096,  0.0126, -0.0032]],\n",
+      "\n",
+      "         [[ 0.0011, -0.0115, -0.0267],\n",
+      "          [ 0.0042, -0.0101, -0.0130],\n",
+      "          [ 0.0053, -0.0189, -0.0061]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0247, -0.0173, -0.0239],\n",
+      "          [-0.0013,  0.0129, -0.0264],\n",
+      "          [ 0.0490,  0.0703, -0.0544]],\n",
+      "\n",
+      "         [[-0.0384,  0.0649, -0.0354],\n",
+      "          [-0.0533,  0.0552, -0.0377],\n",
+      "          [-0.0063, -0.0131, -0.0073]],\n",
+      "\n",
+      "         [[ 0.0326, -0.0025,  0.0118],\n",
+      "          [ 0.0008,  0.0058, -0.0007],\n",
+      "          [-0.0002, -0.0027,  0.0100]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0255,  0.0179,  0.0060],\n",
+      "          [-0.0041,  0.0251, -0.0041],\n",
+      "          [-0.0199,  0.0097,  0.0197]],\n",
+      "\n",
+      "         [[ 0.0083, -0.0182, -0.0151],\n",
+      "          [ 0.0130, -0.0129,  0.0067],\n",
+      "          [-0.0061, -0.0111,  0.0314]],\n",
+      "\n",
+      "         [[-0.0169,  0.0136, -0.0352],\n",
+      "          [-0.0003,  0.0278,  0.0237],\n",
+      "          [ 0.0153,  0.0070, -0.0184]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0192,  0.0082, -0.0170],\n",
+      "          [-0.0025, -0.0268, -0.0270],\n",
+      "          [ 0.0271,  0.0229, -0.0133]],\n",
+      "\n",
+      "         [[ 0.0118,  0.0078,  0.0269],\n",
+      "          [ 0.0052, -0.0684,  0.0244],\n",
+      "          [ 0.0457, -0.0236, -0.0325]],\n",
+      "\n",
+      "         [[ 0.0165,  0.0103,  0.0015],\n",
+      "          [ 0.0213, -0.0051,  0.0044],\n",
+      "          [ 0.0067,  0.0035, -0.0018]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0081,  0.0249,  0.0532],\n",
+      "          [-0.0757, -0.0190,  0.0275],\n",
+      "          [-0.0447, -0.0655,  0.0350]],\n",
+      "\n",
+      "         [[-0.0007, -0.0264, -0.0105],\n",
+      "          [-0.0324,  0.0307, -0.0786],\n",
+      "          [-0.0190,  0.0139,  0.0137]],\n",
+      "\n",
+      "         [[-0.0007,  0.0222, -0.0067],\n",
+      "          [ 0.0102,  0.0019,  0.0224],\n",
+      "          [-0.0085,  0.0270,  0.0015]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-0.0473,  0.0069,  0.0012],\n",
+      "          [-0.0233,  0.0028,  0.0086],\n",
+      "          [-0.0304,  0.0018, -0.0046]],\n",
+      "\n",
+      "         [[-0.0037, -0.0104,  0.0126],\n",
+      "          [-0.0108, -0.0354,  0.0420],\n",
+      "          [-0.0065, -0.0158,  0.0067]],\n",
+      "\n",
+      "         [[ 0.0267,  0.0064,  0.0112],\n",
+      "          [ 0.0201,  0.0002, -0.0031],\n",
+      "          [ 0.0259, -0.0028, -0.0079]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0426, -0.0270,  0.0277],\n",
+      "          [-0.0578, -0.0340,  0.0632],\n",
+      "          [-0.0575,  0.0358,  0.0473]],\n",
+      "\n",
+      "         [[ 0.0491, -0.0019,  0.0013],\n",
+      "          [-0.0242, -0.0381, -0.0324],\n",
+      "          [-0.0197, -0.0148, -0.0174]],\n",
+      "\n",
+      "         [[-0.0311, -0.0275, -0.0083],\n",
+      "          [-0.0397, -0.0368,  0.0642],\n",
+      "          [-0.0365, -0.0077,  0.0392]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0042, -0.0188,  0.0208],\n",
+      "          [ 0.0231, -0.0202, -0.0120],\n",
+      "          [-0.0032, -0.0153, -0.0069]],\n",
+      "\n",
+      "         [[-0.0067,  0.0116, -0.0426],\n",
+      "          [-0.0183,  0.0156, -0.0285],\n",
+      "          [ 0.0297,  0.0144, -0.0193]],\n",
+      "\n",
+      "         [[ 0.0412,  0.0167,  0.0228],\n",
+      "          [ 0.0055,  0.0073,  0.0051],\n",
+      "          [ 0.0088,  0.0060,  0.0176]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0313,  0.0150,  0.0495],\n",
+      "          [-0.0412,  0.0360,  0.0131],\n",
+      "          [-0.0388,  0.0403, -0.0207]],\n",
+      "\n",
+      "         [[-0.0238, -0.0255, -0.0217],\n",
+      "          [-0.0204, -0.0029,  0.0444],\n",
+      "          [-0.0017,  0.0201,  0.0027]],\n",
+      "\n",
+      "         [[-0.0075, -0.0054,  0.0251],\n",
+      "          [ 0.0171,  0.0010, -0.0144],\n",
+      "          [ 0.0362, -0.0060, -0.0248]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0027,  0.0119,  0.0006],\n",
+      "          [ 0.0232, -0.0345,  0.0100],\n",
+      "          [-0.0463,  0.0207, -0.0111]],\n",
+      "\n",
+      "         [[ 0.0027, -0.0010, -0.0112],\n",
+      "          [ 0.0169,  0.0249,  0.0172],\n",
+      "          [-0.0228, -0.0128,  0.0294]],\n",
+      "\n",
+      "         [[ 0.0084, -0.0009,  0.0073],\n",
+      "          [ 0.0056,  0.0316,  0.0141],\n",
+      "          [ 0.0022,  0.0083,  0.0215]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0338, -0.0105,  0.0070],\n",
+      "          [ 0.0157, -0.0252, -0.0431],\n",
+      "          [ 0.0088,  0.0417, -0.0208]],\n",
+      "\n",
+      "         [[-0.0162, -0.0189,  0.0079],\n",
+      "          [ 0.0123, -0.0346, -0.0093],\n",
+      "          [-0.0147,  0.0214, -0.0191]],\n",
+      "\n",
+      "         [[-0.0182,  0.0113, -0.0115],\n",
+      "          [-0.0157,  0.0192, -0.0014],\n",
+      "          [ 0.0220, -0.0182, -0.0101]]]])), ('pretrained_model.layer1.2.bn2.weight', tensor([0.2270, 0.2377, 0.2260, 0.2492, 0.2106, 0.2231, 0.2216, 0.1293, 0.2074,\n",
+      "        0.2506, 0.2174, 0.3194, 0.2449, 0.2385, 0.2547, 0.2321, 0.2184, 0.2019,\n",
+      "        0.2194, 0.2209, 0.2392, 0.2449, 0.1927, 0.2276, 0.2401, 0.2455, 0.2365,\n",
+      "        0.2279, 0.2218, 0.2117, 0.2498, 0.2456, 0.1529, 0.2395, 0.2118, 0.1995,\n",
+      "        0.2586, 0.1732, 0.1112, 0.2591, 0.2543, 0.1780, 0.1946, 0.1768, 0.2369,\n",
+      "        0.2244, 0.2407, 0.2097, 0.1856, 0.2510, 0.2467, 0.2237, 0.2199, 0.2352,\n",
+      "        0.2396, 0.2113, 0.2573, 0.1720, 0.2145, 0.1671, 0.2136, 0.2357, 0.2096,\n",
+      "        0.2369])), ('pretrained_model.layer1.2.bn2.bias', tensor([-0.0361, -0.0820, -0.0408, -0.0613, -0.0948, -0.0883, -0.0026, -0.0444,\n",
+      "        -0.0979, -0.0419, -0.0375, -0.3410, -0.0506, -0.0596, -0.0639, -0.0670,\n",
+      "        -0.0787,  0.0538, -0.0595, -0.0887, -0.0545, -0.1078, -0.0352, -0.0283,\n",
+      "        -0.1254, -0.0348, -0.0716, -0.0525, -0.0164, -0.0252, -0.0975, -0.0717,\n",
+      "         0.1095, -0.0828, -0.0083, -0.0143, -0.1472,  0.1142,  0.2597, -0.1281,\n",
+      "        -0.0834,  0.1176, -0.0520,  0.0529, -0.0392, -0.0867, -0.0830, -0.0488,\n",
+      "         0.0007, -0.0654, -0.0335, -0.0669, -0.0200, -0.0705, -0.0765, -0.1032,\n",
+      "        -0.0624, -0.1328,  0.0227,  0.0392, -0.1089, -0.0605, -0.0686, -0.0850])), ('pretrained_model.layer1.2.bn2.running_mean', tensor([ 0.0059, -0.0557, -0.0419, -0.0745, -0.1535, -0.0180, -0.0590, -0.1438,\n",
+      "        -0.0865,  0.0583,  0.0015, -0.1349, -0.0550, -0.0302, -0.0280, -0.0673,\n",
+      "         0.0157, -0.0263, -0.0347,  0.0017, -0.0610, -0.0727,  0.0197, -0.0107,\n",
+      "        -0.0207, -0.0065, -0.0452, -0.0297, -0.0036, -0.0093, -0.0486, -0.0874,\n",
+      "        -0.0005, -0.0111, -0.0342, -0.0435, -0.1324,  0.0285,  0.0022, -0.0260,\n",
+      "        -0.0159, -0.1209,  0.0971,  0.0053, -0.0529,  0.0606, -0.0783, -0.0245,\n",
+      "        -0.0043, -0.0796, -0.0564, -0.0826, -0.0803, -0.0848, -0.0317, -0.0566,\n",
+      "         0.0223, -0.0326,  0.0414, -0.0141,  0.2630, -0.0500, -0.0525, -0.1153])), ('pretrained_model.layer1.2.bn2.running_var', tensor([0.0212, 0.0235, 0.0182, 0.0213, 0.0105, 0.0145, 0.0178, 0.0099, 0.0149,\n",
+      "        0.0274, 0.0201, 0.0077, 0.0212, 0.0254, 0.0287, 0.0196, 0.0196, 0.0241,\n",
+      "        0.0147, 0.0241, 0.0259, 0.0107, 0.0190, 0.0245, 0.0132, 0.0262, 0.0236,\n",
+      "        0.0228, 0.0300, 0.0198, 0.0201, 0.0198, 0.0106, 0.0263, 0.0211, 0.0149,\n",
+      "        0.0157, 0.0138, 0.0114, 0.0135, 0.0240, 0.0159, 0.0139, 0.0144, 0.0239,\n",
+      "        0.0203, 0.0184, 0.0173, 0.0171, 0.0150, 0.0273, 0.0153, 0.0226, 0.0211,\n",
+      "        0.0195, 0.0154, 0.0270, 0.0114, 0.0216, 0.0126, 0.0096, 0.0183, 0.0174,\n",
+      "        0.0156])), ('pretrained_model.layer1.2.bn2.num_batches_tracked', tensor(0)), ('pretrained_model.layer1.2.conv3.weight', tensor([[[[ 0.0019]],\n",
+      "\n",
+      "         [[ 0.0014]],\n",
+      "\n",
+      "         [[-0.0013]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0038]],\n",
+      "\n",
+      "         [[ 0.0052]],\n",
+      "\n",
+      "         [[ 0.0038]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0002]],\n",
+      "\n",
+      "         [[ 0.0055]],\n",
+      "\n",
+      "         [[ 0.0067]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0053]],\n",
+      "\n",
+      "         [[ 0.0091]],\n",
+      "\n",
+      "         [[-0.0061]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0231]],\n",
+      "\n",
+      "         [[-0.0108]],\n",
+      "\n",
+      "         [[-0.0647]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0260]],\n",
+      "\n",
+      "         [[-0.0087]],\n",
+      "\n",
+      "         [[-0.1208]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-0.0017]],\n",
+      "\n",
+      "         [[-0.0032]],\n",
+      "\n",
+      "         [[ 0.0043]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0021]],\n",
+      "\n",
+      "         [[ 0.0061]],\n",
+      "\n",
+      "         [[ 0.0043]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0028]],\n",
+      "\n",
+      "         [[ 0.0031]],\n",
+      "\n",
+      "         [[-0.0055]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0036]],\n",
+      "\n",
+      "         [[-0.0044]],\n",
+      "\n",
+      "         [[-0.0002]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0558]],\n",
+      "\n",
+      "         [[-0.0427]],\n",
+      "\n",
+      "         [[ 0.0027]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0075]],\n",
+      "\n",
+      "         [[-0.0365]],\n",
+      "\n",
+      "         [[-0.0410]]]])), ('pretrained_model.layer1.2.bn3.weight', tensor([-2.9369e-03,  9.6766e-04,  2.3978e-01,  3.0706e-02,  2.0307e-01,\n",
+      "        -2.6152e-04,  9.7601e-02,  6.3258e-02,  1.2917e-03, -3.9647e-02,\n",
+      "        -5.7710e-03,  1.6548e-01,  2.2596e-01,  1.2559e-03,  9.5761e-02,\n",
+      "         1.2084e-01,  8.8600e-03,  7.7378e-02, -7.6248e-03, -2.3360e-03,\n",
+      "         1.2438e-01,  8.0555e-02,  1.6811e-01,  1.0451e-01,  9.1453e-02,\n",
+      "         2.2329e-01,  2.5151e-03,  7.2526e-02, -4.7924e-03, -8.9239e-03,\n",
+      "        -2.1477e-02, -4.4434e-03, -7.6531e-03,  3.9452e-02,  1.3390e-01,\n",
+      "        -3.6354e-03,  1.6821e-03, -2.1017e-02,  4.4472e-03, -1.4525e-03,\n",
+      "         3.4089e-01,  1.3152e-02,  1.4724e-01,  2.2814e-02, -6.7692e-03,\n",
+      "         2.1411e-01, -6.4294e-03,  1.8961e-01,  2.5302e-01,  1.7214e-01,\n",
+      "        -3.0154e-02,  4.8578e-02,  2.3374e-01,  1.7367e-01, -2.9924e-03,\n",
+      "         3.8692e-03,  7.4947e-03,  1.0811e-01,  4.2493e-05,  2.1008e-03,\n",
+      "        -4.8644e-04,  6.9199e-03,  3.6948e-03,  1.3847e-03,  3.8400e-01,\n",
+      "         5.6899e-04,  2.0694e-01,  4.1266e-04,  8.1553e-02, -3.3461e-04,\n",
+      "         1.6832e-01,  2.7379e-01,  7.2274e-02,  8.2217e-04,  6.8608e-03,\n",
+      "         1.0663e-01,  1.3958e-01, -1.8085e-02, -9.5882e-03,  4.8510e-02,\n",
+      "        -4.4656e-03, -1.4631e-03, -1.6666e-03,  2.1798e-01,  1.2693e-01,\n",
+      "         1.2891e-01,  1.8902e-01,  2.9115e-01, -2.9666e-03,  2.4167e-01,\n",
+      "        -4.2147e-03,  9.0539e-02,  8.6983e-05,  2.8616e-01,  1.2521e-01,\n",
+      "         6.6477e-02, -2.8493e-03,  1.5159e-01,  5.1783e-03,  5.4852e-02,\n",
+      "         4.9471e-02,  2.9849e-01,  1.5424e-01, -5.3830e-03,  7.3755e-02,\n",
+      "         9.1213e-02,  1.0813e-01,  2.4084e-01, -1.9040e-03, -7.5215e-03,\n",
+      "        -1.0584e-03, -8.4128e-03,  2.4058e-03,  4.4273e-03,  5.8926e-02,\n",
+      "         6.6258e-02,  2.0874e-02,  2.1463e-01,  1.2982e-01, -6.8588e-02,\n",
+      "         3.1025e-02, -9.4721e-02,  3.2330e-03,  3.5559e-01, -1.6312e-03,\n",
+      "        -2.5048e-03,  1.1459e-01,  3.6666e-01,  1.3094e-01,  1.1049e-01,\n",
+      "         1.2159e-01,  5.9486e-02,  1.2043e-01,  2.4323e-01,  1.9179e-01,\n",
+      "        -6.1328e-03,  1.1079e-01,  1.9257e-01,  2.4306e-03,  2.0118e-01,\n",
+      "         2.0366e-01, -2.1308e-02,  4.7188e-02,  1.3707e-01, -5.9539e-03,\n",
+      "        -1.1954e-03, -4.6629e-03,  5.3387e-02,  3.4330e-02,  1.0029e-01,\n",
+      "         3.7707e-03,  1.5553e-01,  1.6971e-01,  1.3437e-01, -9.9574e-03,\n",
+      "         8.3605e-02, -7.0222e-03,  9.8732e-02,  1.3877e-03, -1.7099e-03,\n",
+      "         8.2822e-04,  6.3291e-02, -1.4641e-03, -2.4367e-03,  1.7800e-01,\n",
+      "         1.1244e-03,  1.2431e-01, -8.2458e-03,  4.9131e-02,  2.0189e-01,\n",
+      "         7.2415e-02, -8.1012e-06,  1.6869e-01,  2.0519e-01,  2.0028e-01,\n",
+      "         1.8462e-01,  6.0661e-02, -8.1784e-03,  1.0312e-01,  1.3675e-01,\n",
+      "         2.1661e-01, -5.1318e-04,  6.2453e-02,  5.3777e-02,  1.6141e-03,\n",
+      "         1.7465e-01,  7.0923e-03,  9.1887e-02,  3.1877e-03,  2.7974e-04,\n",
+      "         4.1999e-03, -3.5099e-03, -2.7628e-03, -4.7719e-02,  1.5683e-01,\n",
+      "         2.4273e-03,  5.5619e-02,  3.2791e-02, -1.2413e-03,  1.8855e-01,\n",
+      "         4.1157e-02,  2.8237e-02,  2.1300e-01, -5.2621e-03,  2.1227e-01,\n",
+      "        -5.0860e-03,  1.4936e-01,  1.4379e-01,  5.4400e-02,  2.9323e-02,\n",
+      "         1.0971e-01,  2.0852e-01,  1.2863e-01,  4.2931e-02,  6.0219e-02,\n",
+      "        -2.6060e-02,  1.5684e-01,  1.4987e-01,  7.9109e-02,  1.0096e-01,\n",
+      "         5.8626e-03,  1.6184e-01,  1.8797e-01, -1.6990e-03, -4.5361e-03,\n",
+      "         6.8364e-02, -6.3384e-03, -3.6645e-03,  3.1939e-03,  8.8607e-02,\n",
+      "         2.4354e-01, -9.2793e-03,  6.0436e-02, -5.7230e-03, -3.6678e-04,\n",
+      "        -3.3825e-03,  1.2349e-01,  1.9099e-03,  9.3277e-03,  4.3942e-03,\n",
+      "         7.9959e-02,  3.0253e-02,  3.2166e-03, -1.0871e-02,  5.4951e-03,\n",
+      "        -1.1292e-02,  2.5510e-01,  1.0053e-01,  1.6119e-01,  1.4264e-01,\n",
+      "         5.0375e-03,  1.3564e-03, -1.9704e-03, -2.2683e-03,  5.1954e-03,\n",
+      "         2.0070e-01])), ('pretrained_model.layer1.2.bn3.bias', tensor([ 2.3522e-03,  5.0528e-03,  1.1900e-02,  1.4611e-02, -9.4772e-02,\n",
+      "         1.3045e-03, -1.2117e-02, -4.8406e-02,  2.9077e-03, -2.4038e-02,\n",
+      "         7.7870e-03, -1.0742e-01,  6.2335e-02,  6.9652e-03, -6.1485e-02,\n",
+      "         5.0138e-02,  4.9764e-03, -2.6396e-02, -6.3984e-02,  3.0102e-03,\n",
+      "        -4.9134e-02, -2.3821e-02, -5.7395e-02, -5.6066e-02, -4.7514e-02,\n",
+      "        -4.9974e-02, -3.5123e-03,  7.4532e-02,  4.4393e-03,  7.4392e-03,\n",
+      "        -1.3686e-02,  4.8657e-03,  2.3597e-03,  3.5265e-03, -1.2379e-03,\n",
+      "         4.6910e-03,  1.0350e-02,  1.2830e-02,  4.9949e-03,  3.8333e-03,\n",
+      "         1.4014e-02,  1.5762e-02, -1.0313e-01,  1.6615e-02,  4.3368e-03,\n",
+      "         2.6446e-02,  5.0717e-03, -7.2690e-02,  1.5454e-02,  9.6152e-02,\n",
+      "        -1.7553e-03,  5.2102e-02,  1.7036e-01, -9.6188e-02,  1.5465e-03,\n",
+      "         6.4145e-03,  2.5545e-03,  1.9261e-02,  4.0964e-03,  7.5393e-03,\n",
+      "         5.7826e-03,  2.8584e-03,  9.2032e-05,  5.0668e-03,  1.6040e-02,\n",
+      "         3.2812e-03,  1.4444e-02,  1.8784e-03, -7.2446e-02,  5.6183e-03,\n",
+      "        -4.2382e-02,  6.9228e-02, -6.5040e-03,  2.1536e-03,  7.8811e-03,\n",
+      "        -1.8180e-02,  1.6474e-01, -5.5859e-02,  6.5086e-04, -4.7976e-02,\n",
+      "         3.8440e-03,  7.0276e-04,  7.7634e-03,  7.7765e-02,  5.8214e-02,\n",
+      "         9.9269e-02, -5.4595e-02,  5.5515e-02,  5.8378e-03,  1.3792e-01,\n",
+      "         4.8471e-03, -7.8134e-02,  4.9648e-03,  3.8039e-03, -1.1791e-01,\n",
+      "        -3.9935e-02,  6.2410e-03, -1.5164e-01,  2.3244e-03,  4.3314e-02,\n",
+      "        -7.7147e-03,  7.8116e-02, -1.0055e-01,  3.4094e-03, -4.4484e-02,\n",
+      "        -4.7441e-02, -2.7510e-02,  1.7335e-01,  1.4300e-03,  6.2724e-03,\n",
+      "         1.5992e-03,  2.5877e-03,  1.4949e-03,  8.7939e-03, -1.4239e-01,\n",
+      "        -2.4021e-02,  6.2265e-03,  7.3668e-02, -4.4292e-02,  2.0082e-02,\n",
+      "        -4.2542e-02, -1.6235e-01,  2.6112e-03,  6.4128e-02,  3.0752e-03,\n",
+      "         7.7671e-03, -1.4744e-01,  3.3588e-02,  2.1184e-01, -1.9419e-03,\n",
+      "        -1.1526e-01, -2.3194e-02, -3.3634e-02, -7.4226e-02,  1.5390e-01,\n",
+      "        -1.4636e-02, -1.5283e-02,  9.6305e-02,  8.1733e-03,  1.2849e-01,\n",
+      "         1.8024e-02, -6.4802e-04, -4.1076e-02, -6.2905e-02, -2.6283e-02,\n",
+      "         8.2640e-03,  7.6765e-03, -1.7068e-02, -8.4834e-02,  4.1484e-02,\n",
+      "         7.2926e-03, -6.8845e-02, -6.9415e-02,  7.9348e-02,  2.8837e-03,\n",
+      "        -1.4823e-01,  3.4692e-03, -1.0753e-01,  5.1480e-03,  4.3669e-03,\n",
+      "         3.7263e-05, -3.1452e-02, -1.1841e-03, -5.1830e-04, -4.0687e-02,\n",
+      "         1.4701e-03, -1.6596e-01,  6.6264e-03, -5.2681e-02, -8.8217e-02,\n",
+      "         4.5544e-02,  6.2073e-03, -1.2243e-01, -3.6760e-03, -9.0661e-03,\n",
+      "         4.5424e-02, -6.5784e-02,  5.2673e-03, -6.5306e-02, -5.8733e-02,\n",
+      "        -6.0590e-02, -2.7942e-02, -7.1393e-02, -9.2179e-02,  4.6794e-04,\n",
+      "         2.0616e-01,  3.3514e-03,  5.8333e-02,  1.1110e-02,  4.0764e-03,\n",
+      "         5.3387e-03,  1.5742e-03,  3.8871e-03, -1.9377e-02,  8.1275e-02,\n",
+      "         1.6650e-03, -5.7874e-02,  1.4360e-03,  5.6325e-03,  1.0743e-02,\n",
+      "         7.1772e-03, -9.3334e-03,  1.2231e-01,  4.4071e-03, -6.5645e-02,\n",
+      "         6.8983e-03, -3.9275e-02,  1.5781e-01, -2.6490e-02,  2.3825e-02,\n",
+      "        -5.5666e-02,  9.7070e-02, -4.8059e-02,  6.7162e-03, -1.0519e-01,\n",
+      "         3.0140e-03, -8.0262e-02, -1.0471e-01, -5.5547e-02, -1.9561e-02,\n",
+      "         5.6821e-03, -1.2353e-01,  3.8772e-02,  3.3043e-03,  1.9124e-03,\n",
+      "        -6.0254e-02,  3.7962e-03,  3.7432e-03,  4.3325e-03,  1.6138e-02,\n",
+      "        -1.2150e-01,  1.7735e-03, -1.0494e-02,  1.1969e-03,  3.4717e-03,\n",
+      "         7.9710e-03, -1.5738e-01,  5.4532e-03, -1.9755e-02, -9.3360e-03,\n",
+      "         7.4472e-03,  1.0296e-02,  2.4578e-03,  1.2429e-02, -5.1320e-02,\n",
+      "         9.0491e-03,  1.3787e-02, -1.5373e-01,  3.0293e-02, -4.6511e-02,\n",
+      "         5.5224e-03,  4.0899e-03,  5.9703e-03,  4.0194e-03, -9.0724e-05,\n",
+      "        -1.5990e-01])), ('pretrained_model.layer1.2.bn3.running_mean', tensor([-1.0976e-03, -6.1509e-03, -7.9018e-02, -8.6882e-04,  5.3029e-02,\n",
+      "        -1.1741e-03, -2.4973e-02, -2.6299e-02, -2.3449e-03, -4.1519e-03,\n",
+      "        -3.0891e-03, -8.0555e-03, -5.4540e-02,  1.3044e-03, -4.9814e-02,\n",
+      "         2.0077e-02, -1.6472e-03, -3.7728e-02,  5.9307e-05, -2.7430e-03,\n",
+      "        -3.6916e-02, -1.0256e-02,  7.7477e-03,  2.0900e-02, -4.3562e-02,\n",
+      "        -1.9315e-02,  2.2970e-03, -4.3886e-03,  2.4271e-03,  1.0753e-02,\n",
+      "        -5.0021e-04, -3.8998e-03,  1.6157e-03, -5.4764e-03,  4.5698e-02,\n",
+      "        -2.8106e-03, -3.3078e-03, -6.3084e-04, -1.9648e-03, -3.7218e-03,\n",
+      "        -3.6489e-02, -3.3288e-03, -5.5144e-02,  4.7698e-03, -4.8192e-05,\n",
+      "        -8.0882e-03,  2.3232e-03, -4.6712e-03, -5.8641e-03,  5.9361e-02,\n",
+      "         1.1794e-04, -9.9409e-03, -5.8613e-02, -2.2972e-02, -3.9428e-04,\n",
+      "         1.2542e-03,  6.5479e-03, -2.4827e-02, -1.3871e-03, -1.6134e-03,\n",
+      "        -9.5473e-03, -1.9011e-03,  1.1920e-03, -5.0854e-03, -1.2072e-01,\n",
+      "         2.8961e-03,  1.6099e-02, -7.1729e-04,  1.2322e-02, -7.9168e-04,\n",
+      "        -4.1675e-02, -1.7256e-02, -5.8060e-02, -3.1709e-03, -3.3259e-03,\n",
+      "        -8.5749e-03, -2.2573e-02,  7.6948e-03,  1.5422e-03, -5.6201e-04,\n",
+      "        -7.1701e-04,  6.8620e-03,  1.1833e-03, -4.8314e-02,  2.4524e-02,\n",
+      "        -2.5191e-02, -1.9755e-02, -5.6414e-02,  3.9507e-03,  3.2616e-02,\n",
+      "         5.2452e-03, -2.3417e-02,  1.6777e-03, -3.6002e-02, -1.9792e-03,\n",
+      "         1.5800e-02, -1.0882e-03,  3.6062e-02, -7.1947e-03, -3.3574e-02,\n",
+      "         4.9694e-04, -3.2755e-03, -2.1866e-02,  2.3668e-03, -6.6022e-03,\n",
+      "        -2.2889e-02,  3.5476e-02, -8.1832e-02, -1.5612e-03,  9.8267e-04,\n",
+      "         3.2489e-03, -6.5687e-04, -4.1394e-04,  1.0888e-03, -3.6812e-03,\n",
+      "        -3.7557e-02, -1.1803e-03, -5.7143e-02, -3.9006e-02, -1.7336e-03,\n",
+      "         5.0666e-03, -9.2568e-03,  3.0924e-03, -6.1354e-02,  3.3950e-04,\n",
+      "         4.3909e-03,  6.8111e-03, -6.4743e-02, -2.9755e-03, -6.1767e-02,\n",
+      "        -6.0287e-02, -4.2238e-05, -3.7387e-02, -3.7622e-02, -3.5397e-02,\n",
+      "         1.0525e-03, -4.6882e-02,  5.3699e-02, -3.9021e-03, -6.1607e-02,\n",
+      "         3.3238e-02,  4.9917e-03, -2.3629e-02, -1.4045e-02, -2.5811e-04,\n",
+      "         3.1544e-03, -6.7996e-04, -2.7916e-02,  2.0640e-02,  3.5198e-02,\n",
+      "         2.9060e-03,  4.3517e-02,  4.5482e-02,  4.0084e-04, -1.2054e-03,\n",
+      "        -3.9958e-03, -2.6190e-03, -2.2087e-03, -6.8217e-04, -4.7207e-04,\n",
+      "         7.6566e-04, -4.5923e-02, -1.3354e-03, -5.6512e-03,  1.8504e-02,\n",
+      "        -1.8705e-03,  3.9357e-02, -2.8003e-04, -1.4201e-02, -4.2785e-02,\n",
+      "         3.2209e-04, -1.1184e-03,  2.1199e-02,  6.3559e-03,  2.4256e-02,\n",
+      "        -3.3985e-02, -3.7890e-02,  1.5556e-03, -1.2324e-02, -2.0591e-02,\n",
+      "        -3.4749e-02,  1.7616e-03, -3.4538e-02, -6.0363e-03,  7.2704e-06,\n",
+      "        -1.5388e-02, -1.5290e-03,  1.5149e-02, -4.6384e-03, -2.3980e-03,\n",
+      "        -2.0103e-03, -2.8195e-03, -3.3677e-04,  1.8346e-02,  1.2412e-02,\n",
+      "        -1.1485e-03, -1.7933e-02, -2.4074e-03,  9.4981e-05,  2.0296e-02,\n",
+      "         2.5812e-03, -1.3834e-02, -1.3207e-02,  2.4354e-04,  1.4389e-02,\n",
+      "         1.1440e-03, -1.3794e-02, -1.6470e-02, -1.4824e-03, -7.8401e-03,\n",
+      "        -2.0994e-02, -6.1452e-02, -4.7265e-03, -1.0487e-02, -1.7335e-02,\n",
+      "         1.1305e-02, -1.7841e-02, -3.7629e-02,  5.8795e-03, -2.1944e-02,\n",
+      "        -2.0757e-03, -2.1921e-02,  3.3518e-02,  1.0182e-03, -1.3061e-04,\n",
+      "        -1.3045e-02, -1.4114e-03, -2.8737e-03, -4.5277e-03, -1.9346e-02,\n",
+      "         2.4419e-02,  1.4120e-03, -5.5052e-02,  4.8013e-04, -2.2372e-03,\n",
+      "         3.1678e-04, -2.5003e-02, -7.4276e-03, -1.7020e-02,  7.8867e-04,\n",
+      "         5.4318e-03, -8.3970e-03,  1.4244e-03,  1.8663e-03, -1.3197e-02,\n",
+      "         4.2709e-03, -6.7662e-03, -1.1666e-02, -7.8154e-04,  2.9129e-03,\n",
+      "        -1.3140e-03,  8.1042e-04,  6.8997e-03, -4.4290e-03,  5.2418e-06,\n",
+      "        -6.6178e-02])), ('pretrained_model.layer1.2.bn3.running_var', tensor([3.0057e-04, 8.1103e-04, 2.2723e-03, 3.1375e-04, 1.9491e-03, 2.0159e-04,\n",
+      "        1.9765e-03, 1.0627e-03, 3.1710e-04, 2.5756e-04, 3.2429e-04, 1.2134e-03,\n",
+      "        2.8736e-03, 4.6798e-04, 1.7755e-03, 1.5874e-03, 1.5920e-04, 1.6177e-03,\n",
+      "        5.7723e-05, 4.0232e-04, 1.1294e-03, 5.7427e-04, 1.6745e-03, 1.0046e-03,\n",
+      "        1.4724e-03, 1.5745e-03, 1.8716e-04, 6.9241e-04, 2.4553e-04, 2.0783e-04,\n",
+      "        1.4681e-04, 2.8131e-04, 2.2930e-04, 4.6256e-04, 1.2927e-03, 1.6036e-04,\n",
+      "        2.3870e-04, 1.8602e-04, 6.9227e-04, 3.6907e-04, 5.1404e-03, 4.3868e-04,\n",
+      "        1.8329e-03, 2.3073e-04, 8.0349e-05, 2.0541e-03, 1.2178e-04, 1.6175e-03,\n",
+      "        2.9589e-03, 2.2437e-03, 2.7350e-04, 6.1659e-04, 2.6009e-03, 1.4981e-03,\n",
+      "        1.5126e-04, 2.1365e-04, 2.3185e-04, 1.1545e-03, 1.5770e-04, 1.2417e-04,\n",
+      "        2.1698e-04, 2.0547e-04, 1.4326e-04, 8.1491e-05, 5.1454e-03, 5.9027e-04,\n",
+      "        2.4709e-03, 2.7920e-04, 3.4625e-04, 1.8229e-04, 9.8009e-04, 4.0889e-03,\n",
+      "        1.1502e-03, 6.3532e-04, 2.3754e-04, 7.1029e-04, 1.4831e-03, 1.2864e-04,\n",
+      "        1.3546e-04, 3.9806e-04, 1.5522e-04, 2.4646e-04, 1.5876e-04, 2.5003e-03,\n",
+      "        1.4196e-03, 2.5313e-03, 1.8475e-03, 2.5492e-03, 3.4099e-04, 2.9365e-03,\n",
+      "        1.0011e-03, 3.8141e-04, 2.9253e-04, 3.0886e-03, 1.1278e-03, 4.8055e-04,\n",
+      "        2.2407e-04, 1.1520e-03, 1.0333e-04, 6.9146e-04, 5.4618e-04, 3.6920e-03,\n",
+      "        1.6706e-03, 1.3745e-04, 9.0706e-04, 1.1581e-03, 1.5826e-03, 2.8487e-03,\n",
+      "        1.6644e-04, 2.2560e-04, 4.7802e-04, 9.3595e-05, 3.2653e-04, 2.6407e-04,\n",
+      "        5.9273e-04, 8.8906e-04, 3.1962e-04, 1.7271e-03, 3.1023e-03, 6.9661e-04,\n",
+      "        4.2531e-04, 5.9078e-04, 1.7876e-04, 4.4475e-03, 1.8779e-04, 1.5149e-04,\n",
+      "        9.4099e-04, 4.3127e-03, 2.1759e-03, 1.8389e-03, 2.7440e-03, 5.5428e-04,\n",
+      "        1.9017e-03, 1.9578e-03, 1.9887e-03, 1.2182e-04, 8.8894e-04, 2.0013e-03,\n",
+      "        1.7949e-04, 1.5478e-03, 2.1864e-03, 1.8406e-04, 4.9800e-04, 1.3918e-03,\n",
+      "        1.0173e-04, 1.8008e-04, 2.5241e-04, 5.3462e-04, 4.8801e-04, 7.8776e-04,\n",
+      "        2.6625e-04, 1.4634e-03, 1.6879e-03, 1.2860e-03, 7.3989e-05, 8.7228e-04,\n",
+      "        1.2420e-04, 9.2460e-04, 1.7226e-04, 1.6636e-04, 2.7379e-04, 1.2422e-03,\n",
+      "        9.6635e-05, 7.6312e-04, 1.4405e-03, 1.0047e-04, 7.9917e-04, 2.5115e-04,\n",
+      "        1.0693e-03, 2.7552e-03, 1.4970e-03, 1.1782e-04, 1.2420e-03, 1.5936e-03,\n",
+      "        1.4700e-03, 1.7399e-03, 6.8888e-04, 3.0020e-04, 8.9726e-04, 1.4293e-03,\n",
+      "        1.7731e-03, 1.2342e-04, 5.0383e-04, 8.9170e-04, 2.3127e-04, 2.2665e-03,\n",
+      "        1.8115e-04, 1.1867e-03, 1.4895e-04, 1.0630e-03, 3.1113e-04, 2.3814e-04,\n",
+      "        6.3094e-04, 2.5277e-04, 1.6217e-03, 1.6485e-04, 8.9544e-04, 4.5802e-04,\n",
+      "        1.2812e-04, 2.0101e-03, 6.1005e-04, 6.3701e-04, 2.3404e-03, 2.4721e-04,\n",
+      "        1.7865e-03, 1.7465e-04, 1.3793e-03, 1.3383e-03, 4.7268e-04, 6.0637e-04,\n",
+      "        1.4430e-03, 1.9648e-03, 8.5075e-04, 7.9932e-04, 2.5655e-04, 2.6408e-04,\n",
+      "        1.1384e-03, 1.1461e-03, 1.1666e-03, 1.0980e-03, 1.9096e-03, 1.4982e-03,\n",
+      "        2.1554e-03, 5.6180e-04, 7.3514e-05, 7.4471e-04, 6.3387e-04, 1.0441e-04,\n",
+      "        4.9925e-04, 9.6370e-04, 2.3275e-03, 3.0120e-04, 8.0723e-04, 2.0674e-04,\n",
+      "        1.3016e-04, 1.5015e-04, 1.0323e-03, 2.4708e-03, 2.3746e-04, 6.3893e-05,\n",
+      "        5.6555e-04, 1.9992e-04, 5.9217e-04, 1.8497e-04, 3.7805e-04, 1.5023e-04,\n",
+      "        2.5106e-03, 8.1442e-04, 1.5811e-03, 1.4444e-03, 1.3790e-04, 7.1378e-04,\n",
+      "        4.5824e-04, 4.0130e-04, 4.3718e-04, 1.5886e-03])), ('pretrained_model.layer1.2.bn3.num_batches_tracked', tensor(0)), ('pretrained_model.layer2.0.conv1.weight', tensor([[[[ 4.5343e-03]],\n",
+      "\n",
+      "         [[ 1.1748e-02]],\n",
+      "\n",
+      "         [[ 3.3852e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.9350e-02]],\n",
+      "\n",
+      "         [[-4.2080e-02]],\n",
+      "\n",
+      "         [[-4.5053e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 2.6542e-03]],\n",
+      "\n",
+      "         [[ 1.4593e-02]],\n",
+      "\n",
+      "         [[-1.5412e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 2.9243e-04]],\n",
+      "\n",
+      "         [[-1.0877e-02]],\n",
+      "\n",
+      "         [[-6.4733e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 2.8357e-02]],\n",
+      "\n",
+      "         [[ 3.2428e-04]],\n",
+      "\n",
+      "         [[-6.2485e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 7.0594e-03]],\n",
+      "\n",
+      "         [[-1.6951e-02]],\n",
+      "\n",
+      "         [[ 1.1556e-02]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-9.4777e-03]],\n",
+      "\n",
+      "         [[ 3.1819e-03]],\n",
+      "\n",
+      "         [[-2.3580e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.1810e-02]],\n",
+      "\n",
+      "         [[ 1.0766e-02]],\n",
+      "\n",
+      "         [[-6.0616e-05]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.8248e-03]],\n",
+      "\n",
+      "         [[ 9.7643e-04]],\n",
+      "\n",
+      "         [[ 1.3102e-01]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.3856e-03]],\n",
+      "\n",
+      "         [[-1.0145e-02]],\n",
+      "\n",
+      "         [[ 4.0384e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.3444e-02]],\n",
+      "\n",
+      "         [[ 9.1729e-03]],\n",
+      "\n",
+      "         [[-1.3657e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-2.9624e-03]],\n",
+      "\n",
+      "         [[ 2.5402e-02]],\n",
+      "\n",
+      "         [[-4.6575e-02]]]])), ('pretrained_model.layer2.0.bn1.weight', tensor([0.2513, 0.1863, 0.1840, 0.2117, 0.1893, 0.2120, 0.1955, 0.1681, 0.2040,\n",
+      "        0.1707, 0.2279, 0.1493, 0.2366, 0.2081, 0.1970, 0.2125, 0.1820, 0.1446,\n",
+      "        0.1872, 0.1395, 0.1818, 0.1595, 0.2662, 0.1853, 0.2570, 0.1564, 0.2403,\n",
+      "        0.1459, 0.3141, 0.2310, 0.1677, 0.1634, 0.1658, 0.1836, 0.1980, 0.1904,\n",
+      "        0.1515, 0.1836, 0.3498, 0.1966, 0.2346, 0.1635, 0.2108, 0.1326, 0.1672,\n",
+      "        0.2205, 0.1711, 0.1924, 0.1359, 0.2204, 0.1936, 0.2285, 0.1862, 0.2276,\n",
+      "        0.1478, 0.2086, 0.1706, 0.2293, 0.2155, 0.1725, 0.2163, 0.1701, 0.2560,\n",
+      "        0.2018, 0.2289, 0.2167, 0.2529, 0.1370, 0.1906, 0.1870, 0.1969, 0.1816,\n",
+      "        0.2087, 0.1586, 0.1840, 0.1701, 0.1730, 0.2286, 0.2430, 0.1611, 0.1645,\n",
+      "        0.1958, 0.1809, 0.2104, 0.1695, 0.2597, 0.2085, 0.1479, 0.2106, 0.2624,\n",
+      "        0.1901, 0.1895, 0.2017, 0.2167, 0.1824, 0.2133, 0.2200, 0.2333, 0.2119,\n",
+      "        0.2129, 0.1652, 0.2199, 0.1588, 0.1832, 0.2228, 0.1695, 0.2353, 0.1650,\n",
+      "        0.2455, 0.1670, 0.1960, 0.1597, 0.2395, 0.1649, 0.2301, 0.1674, 0.2248,\n",
+      "        0.2217, 0.2369, 0.2168, 0.2163, 0.1925, 0.2041, 0.1576, 0.2133, 0.2164,\n",
+      "        0.1767, 0.2702])), ('pretrained_model.layer2.0.bn1.bias', tensor([-0.1749, -0.0989, -0.2003, -0.1252, -0.0254, -0.1331, -0.1085, -0.1223,\n",
+      "        -0.0369,  0.0936, -0.1649,  0.0882, -0.2089, -0.1872, -0.1133, -0.0098,\n",
+      "        -0.0924,  0.0967, -0.0839,  0.0607, -0.0266,  0.0473, -0.1820,  0.1063,\n",
+      "        -0.1482,  0.1258, -0.1230,  0.1178, -0.1445, -0.1921,  0.0832,  0.0103,\n",
+      "        -0.0533,  0.0278, -0.1543,  0.0640,  0.1207, -0.1026, -0.2063,  0.0856,\n",
+      "        -0.1044,  0.1045, -0.1481,  0.1032,  0.0935, -0.1544,  0.0497,  0.0236,\n",
+      "         0.1002, -0.1708, -0.0827, -0.1106, -0.1579, -0.1763, -0.0822, -0.0475,\n",
+      "        -0.1373, -0.0698, -0.1020, -0.0443, -0.0809, -0.1353, -0.0792, -0.1845,\n",
+      "        -0.1199, -0.0872, -0.2732,  0.0610, -0.1402,  0.0765, -0.1929,  0.1110,\n",
+      "         0.0095, -0.0857,  0.0917, -0.0914, -0.0497, -0.1031, -0.1926,  0.0276,\n",
+      "         0.0153, -0.1141, -0.1598, -0.0812, -0.0843, -0.1548, -0.1428,  0.0315,\n",
+      "        -0.1190, -0.2558, -0.0348,  0.0132, -0.1428,  0.0459,  0.0512, -0.1184,\n",
+      "        -0.1237, -0.1603, -0.1124, -0.2234,  0.0375, -0.0905, -0.0655, -0.0370,\n",
+      "        -0.1296,  0.0452, -0.0911,  0.1254, -0.2324, -0.1575, -0.1613,  0.0121,\n",
+      "        -0.1676, -0.0890, -0.1462, -0.1014, -0.1221, -0.1338, -0.0885, -0.1164,\n",
+      "        -0.3214, -0.2257, -0.1326,  0.0556, -0.1250, -0.1579,  0.0410, -0.2693])), ('pretrained_model.layer2.0.bn1.running_mean', tensor([-0.0034, -0.0625, -0.1594, -0.0257,  0.2689, -0.0518, -0.2382, -0.1921,\n",
+      "         0.0755,  0.1956, -0.0685, -0.0838,  0.0244, -0.0322, -0.2694, -0.1175,\n",
+      "        -0.1910, -0.0748, -0.1551,  0.0930, -0.2007, -0.0213,  0.0315,  0.1128,\n",
+      "         0.3826, -0.2688,  0.0997,  0.0238,  0.0149,  0.1118,  0.1560, -0.1715,\n",
+      "        -0.1452,  0.0982, -0.0938, -0.1664, -0.0283, -0.1009, -0.0163,  0.0869,\n",
+      "        -0.1692, -0.0017, -0.1183,  0.0105,  0.1186, -0.1187, -0.0136, -0.0372,\n",
+      "         0.0095,  0.1447, -0.2011,  0.0328, -0.2856,  0.0725,  0.1336, -0.1205,\n",
+      "        -0.4759, -0.0623, -0.1532, -0.2125, -0.0403, -0.1233,  0.1129, -0.3682,\n",
+      "        -0.1391, -0.1427, -0.4176, -0.0009, -0.0141,  0.0356, -0.1378,  0.1105,\n",
+      "         0.1945, -0.1865,  0.0760, -0.1450, -0.2635, -0.1708,  0.1501, -0.1029,\n",
+      "         0.0383, -0.3675, -0.0712, -0.2230, -0.0090,  0.0308, -0.1986, -0.0213,\n",
+      "        -0.2477, -0.0753, -0.2387,  0.1133,  0.0762,  0.1303, -0.0922, -0.1429,\n",
+      "        -0.2628, -0.0515,  0.0495, -0.3863, -0.1182, -0.0742, -0.2044, -0.1750,\n",
+      "        -0.4518,  0.1623, -0.1164,  0.0650, -0.2930, -0.2621, -0.0810,  0.0222,\n",
+      "        -0.0042, -0.3868, -0.2313, -0.1786, -0.1264, -0.2107, -0.0476, -0.0306,\n",
+      "        -0.3867, -0.1971, -0.1119,  0.0409, -0.2934, -0.0337,  0.0828, -0.0976])), ('pretrained_model.layer2.0.bn1.running_var', tensor([0.0363, 0.0177, 0.0169, 0.0193, 0.0388, 0.0174, 0.0230, 0.0110, 0.0197,\n",
+      "        0.0242, 0.0208, 0.0154, 0.0108, 0.0208, 0.0147, 0.0375, 0.0190, 0.0220,\n",
+      "        0.0312, 0.0121, 0.0394, 0.0186, 0.0264, 0.0320, 0.0292, 0.0223, 0.0286,\n",
+      "        0.0287, 0.1469, 0.0232, 0.0274, 0.0187, 0.0211, 0.0371, 0.0151, 0.0333,\n",
+      "        0.0295, 0.0264, 0.1290, 0.0394, 0.0281, 0.0280, 0.0232, 0.0165, 0.0403,\n",
+      "        0.0152, 0.0190, 0.0249, 0.0182, 0.0185, 0.0178, 0.0270, 0.0153, 0.0141,\n",
+      "        0.0052, 0.0331, 0.0276, 0.0438, 0.0244, 0.0341, 0.0355, 0.0172, 0.0322,\n",
+      "        0.0136, 0.0248, 0.0300, 0.0355, 0.0126, 0.0113, 0.0230, 0.0143, 0.0458,\n",
+      "        0.0423, 0.0231, 0.0255, 0.0243, 0.0182, 0.0241, 0.0328, 0.0168, 0.0218,\n",
+      "        0.0247, 0.0232, 0.0337, 0.0190, 0.0251, 0.0196, 0.0141, 0.0258, 0.0137,\n",
+      "        0.0133, 0.0352, 0.0072, 0.0459, 0.0415, 0.0315, 0.0252, 0.0214, 0.0194,\n",
+      "        0.0218, 0.0243, 0.0191, 0.0215, 0.0442, 0.0266, 0.0387, 0.0380, 0.0358,\n",
+      "        0.0279, 0.0203, 0.0132, 0.0225, 0.0233, 0.0192, 0.0257, 0.0285, 0.0399,\n",
+      "        0.0169, 0.0241, 0.0184, 0.0211, 0.0131, 0.0129, 0.0136, 0.0261, 0.0259,\n",
+      "        0.0312, 0.0290])), ('pretrained_model.layer2.0.bn1.num_batches_tracked', tensor(0)), ('pretrained_model.layer2.0.conv2.weight', tensor([[[[ 3.9157e-04,  2.7163e-03,  2.4243e-03],\n",
+      "          [-3.3300e-03,  8.8771e-03,  1.3304e-02],\n",
+      "          [ 5.8324e-03,  1.5874e-02,  2.5939e-02]],\n",
+      "\n",
+      "         [[-5.4987e-03, -2.6581e-02, -1.8247e-02],\n",
+      "          [ 9.6140e-03,  1.8665e-02,  1.3539e-02],\n",
+      "          [ 1.0390e-02,  2.1880e-02,  3.4606e-02]],\n",
+      "\n",
+      "         [[ 4.1082e-03, -9.6584e-03,  3.4262e-03],\n",
+      "          [-8.9566e-03, -8.3364e-03, -3.4753e-03],\n",
+      "          [ 1.0935e-02,  6.6114e-03,  2.4962e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.2374e-02, -8.6722e-03, -1.6257e-02],\n",
+      "          [-7.3191e-03,  8.7464e-04, -4.9100e-03],\n",
+      "          [-2.1423e-03, -1.6639e-02,  1.1734e-02]],\n",
+      "\n",
+      "         [[-4.5237e-02, -3.1673e-02, -1.8064e-02],\n",
+      "          [-2.4540e-02, -1.4516e-03, -2.1449e-02],\n",
+      "          [-2.2097e-02,  3.5970e-03,  2.5711e-02]],\n",
+      "\n",
+      "         [[-6.3141e-05, -1.8139e-03, -1.6226e-02],\n",
+      "          [ 1.0186e-02,  2.7595e-03, -1.4243e-02],\n",
+      "          [-1.1770e-02, -2.7822e-02, -2.3445e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 3.1273e-02,  1.2293e-02,  1.2143e-02],\n",
+      "          [ 1.7000e-02,  2.0430e-02,  2.9604e-02],\n",
+      "          [ 1.0591e-02,  1.6537e-02,  5.0549e-03]],\n",
+      "\n",
+      "         [[ 1.3543e-03,  1.1283e-02, -9.4035e-03],\n",
+      "          [-1.1163e-02,  5.8077e-04, -5.0411e-03],\n",
+      "          [-2.4297e-04,  4.1198e-03, -1.8542e-02]],\n",
+      "\n",
+      "         [[-8.3210e-03, -2.0656e-02,  2.6997e-02],\n",
+      "          [-1.6906e-02, -1.1644e-03,  1.1285e-02],\n",
+      "          [-2.0610e-02, -6.9446e-03,  1.6334e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.0998e-03, -2.4464e-02, -1.9933e-02],\n",
+      "          [-2.1767e-02, -1.3821e-02, -2.4438e-02],\n",
+      "          [-2.4310e-02, -2.1467e-02, -9.1311e-03]],\n",
+      "\n",
+      "         [[ 2.6214e-02,  3.1041e-02,  2.4545e-02],\n",
+      "          [ 1.8407e-02, -8.8793e-03,  2.1081e-02],\n",
+      "          [ 3.0385e-02,  3.8550e-02,  3.2590e-02]],\n",
+      "\n",
+      "         [[ 2.0733e-02,  2.4819e-02,  1.2013e-03],\n",
+      "          [ 2.6182e-02,  3.5007e-02,  2.0002e-02],\n",
+      "          [ 1.7705e-02,  3.3754e-02,  1.3039e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.6248e-02, -1.7419e-02, -4.5411e-02],\n",
+      "          [ 3.4571e-02,  6.1084e-03, -3.0384e-02],\n",
+      "          [ 1.7354e-02, -1.1429e-02, -2.8254e-02]],\n",
+      "\n",
+      "         [[-5.3599e-03, -2.0992e-03,  1.8247e-02],\n",
+      "          [ 3.2450e-03,  1.1929e-02, -1.6518e-04],\n",
+      "          [ 5.8611e-03, -4.2213e-03,  4.3378e-03]],\n",
+      "\n",
+      "         [[-2.9458e-02,  7.4996e-03,  4.2710e-02],\n",
+      "          [-2.5482e-02,  1.0413e-03,  3.6006e-02],\n",
+      "          [-3.5817e-02, -2.0470e-02,  2.2258e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.8723e-02, -2.2601e-03,  7.8434e-03],\n",
+      "          [ 1.3954e-02, -3.9793e-03,  8.0539e-04],\n",
+      "          [ 2.6507e-03, -2.0229e-02,  1.3633e-03]],\n",
+      "\n",
+      "         [[ 4.4697e-02,  4.0954e-02,  8.7336e-03],\n",
+      "          [ 1.5761e-02,  2.0444e-04,  3.4453e-03],\n",
+      "          [ 1.0793e-02,  3.5539e-02,  1.5560e-03]],\n",
+      "\n",
+      "         [[-1.2518e-02, -1.4133e-02, -3.1826e-02],\n",
+      "          [-1.6965e-03, -6.0310e-03, -4.6433e-02],\n",
+      "          [-1.0617e-02, -2.2489e-02, -3.8060e-02]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-1.2963e-02, -2.4047e-02, -2.5092e-02],\n",
+      "          [-2.6217e-02, -1.4862e-02, -3.9629e-02],\n",
+      "          [-2.1347e-02, -2.7811e-02, -4.3899e-02]],\n",
+      "\n",
+      "         [[-5.8557e-03, -2.9872e-03, -3.7233e-03],\n",
+      "          [-5.4543e-03, -8.3088e-04, -1.2241e-02],\n",
+      "          [-4.0873e-03, -1.7943e-02, -1.1948e-02]],\n",
+      "\n",
+      "         [[-1.9501e-02, -1.6190e-02,  1.6275e-02],\n",
+      "          [-3.2240e-02, -2.0313e-02,  2.4476e-02],\n",
+      "          [ 1.2209e-02,  1.6459e-02,  6.0424e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.7562e-02, -2.0256e-03,  3.1596e-03],\n",
+      "          [-5.8696e-03, -9.9424e-03,  3.3814e-03],\n",
+      "          [ 5.4374e-04, -8.1072e-03, -6.5874e-03]],\n",
+      "\n",
+      "         [[-6.4275e-03,  3.1021e-02,  1.6022e-02],\n",
+      "          [-1.6778e-02,  1.5383e-02,  6.7115e-03],\n",
+      "          [-3.5828e-02, -1.4229e-02, -1.7205e-02]],\n",
+      "\n",
+      "         [[-8.8585e-03, -6.4179e-03, -2.5786e-02],\n",
+      "          [-1.1315e-02, -1.0126e-02, -2.0843e-02],\n",
+      "          [-3.9242e-03, -3.3757e-03, -1.5657e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 7.5873e-03,  9.4366e-03, -1.8550e-02],\n",
+      "          [ 1.1098e-02, -3.2289e-03,  1.0598e-03],\n",
+      "          [-1.5398e-02, -3.9005e-03,  1.2341e-02]],\n",
+      "\n",
+      "         [[-7.2070e-03, -7.7926e-03,  2.5382e-02],\n",
+      "          [-1.8016e-02, -8.0922e-04,  1.8401e-02],\n",
+      "          [-1.4523e-02,  1.4517e-03, -1.5064e-02]],\n",
+      "\n",
+      "         [[-4.4941e-03,  1.5376e-02, -2.0750e-03],\n",
+      "          [ 1.2707e-03, -1.8859e-03, -6.5637e-03],\n",
+      "          [ 1.0128e-02,  2.8928e-03, -7.1483e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 2.2405e-03, -2.3762e-03,  1.6470e-02],\n",
+      "          [ 4.5117e-03,  1.4172e-04, -4.4227e-03],\n",
+      "          [-9.8842e-03,  2.2886e-02, -2.4238e-02]],\n",
+      "\n",
+      "         [[ 4.1568e-02,  1.5931e-03, -1.8521e-02],\n",
+      "          [ 1.0036e-02,  1.2103e-03, -2.5269e-02],\n",
+      "          [ 1.8080e-02, -2.5183e-02,  1.6178e-02]],\n",
+      "\n",
+      "         [[-2.4473e-02, -2.3830e-02, -1.4847e-02],\n",
+      "          [-1.7393e-02, -2.0575e-02,  6.0835e-03],\n",
+      "          [-1.7162e-02, -1.6309e-02,  1.8961e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.0061e-02, -2.5921e-02,  4.7780e-03],\n",
+      "          [-2.0655e-02, -2.8235e-02, -2.4998e-02],\n",
+      "          [-3.1229e-02, -4.4019e-02, -2.6475e-02]],\n",
+      "\n",
+      "         [[ 1.7756e-02,  1.4039e-02,  1.6651e-02],\n",
+      "          [ 3.1400e-02,  2.0089e-02,  2.9915e-02],\n",
+      "          [-5.6600e-03,  1.0724e-02,  7.0019e-03]],\n",
+      "\n",
+      "         [[-1.5029e-03, -4.5874e-03, -2.1283e-03],\n",
+      "          [ 1.9380e-02, -6.7429e-03, -1.7276e-02],\n",
+      "          [ 1.0648e-02,  3.5506e-02,  3.2538e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 2.9352e-02, -1.2356e-02, -1.4653e-02],\n",
+      "          [ 1.5338e-02,  2.7154e-02, -8.8433e-03],\n",
+      "          [-1.8926e-02, -1.6565e-03, -8.4622e-03]],\n",
+      "\n",
+      "         [[ 1.6170e-04,  1.9328e-02,  3.2506e-02],\n",
+      "          [-2.0583e-02,  2.4892e-02,  2.6877e-03],\n",
+      "          [ 1.3006e-02, -2.5178e-02, -2.7266e-02]],\n",
+      "\n",
+      "         [[-3.4030e-03, -6.0520e-03, -5.6497e-03],\n",
+      "          [ 2.0555e-02,  6.2291e-03, -5.8743e-03],\n",
+      "          [ 4.2028e-03, -4.6056e-03, -1.7454e-03]]]])), ('pretrained_model.layer2.0.bn2.weight', tensor([0.2027, 0.1685, 0.1642, 0.2266, 0.2075, 0.1856, 0.2181, 0.1656, 0.2172,\n",
+      "        0.2082, 0.2276, 0.1698, 0.1869, 0.1964, 0.1805, 0.2076, 0.1551, 0.2118,\n",
+      "        0.2088, 0.2084, 0.2507, 0.2165, 0.1985, 0.1653, 0.1573, 0.1993, 0.1824,\n",
+      "        0.1906, 0.2055, 0.1766, 0.2138, 0.1353, 0.1906, 0.2436, 0.2042, 0.3271,\n",
+      "        0.2698, 0.2011, 0.1710, 0.1549, 0.2589, 0.2023, 0.2360, 0.1531, 0.2158,\n",
+      "        0.1937, 0.1879, 0.2092, 0.1756, 0.2725, 0.1397, 0.2070, 0.1557, 0.2177,\n",
+      "        0.2430, 0.2156, 0.1669, 0.2475, 0.2470, 0.1538, 0.1980, 0.2142, 0.1643,\n",
+      "        0.1869, 0.1940, 0.1567, 0.2023, 0.2072, 0.1314, 0.1934, 0.1462, 0.1420,\n",
+      "        0.2019, 0.3136, 0.1947, 0.1999, 0.1905, 0.1905, 0.2208, 0.1416, 0.2285,\n",
+      "        0.2015, 0.1568, 0.2019, 0.2034, 0.1523, 0.2042, 0.1932, 0.2219, 0.1909,\n",
+      "        0.2872, 0.1735, 0.2418, 0.1633, 0.1569, 0.1778, 0.2272, 0.2306, 0.1740,\n",
+      "        0.1607, 0.2009, 0.2249, 0.1356, 0.1682, 0.1638, 0.2182, 0.2131, 0.2568,\n",
+      "        0.1473, 0.2024, 0.2076, 0.1555, 0.1788, 0.1626, 0.2117, 0.2317, 0.1691,\n",
+      "        0.1946, 0.1572, 0.1919, 0.2173, 0.1945, 0.2210, 0.1764, 0.1679, 0.1569,\n",
+      "        0.2027, 0.1897])), ('pretrained_model.layer2.0.bn2.bias', tensor([-0.0692,  0.1545,  0.1520, -0.0693, -0.0768, -0.1262,  0.0783,  0.0129,\n",
+      "        -0.0138, -0.0508, -0.0450,  0.0133, -0.0498,  0.0222, -0.0152,  0.1282,\n",
+      "         0.0823, -0.0357, -0.0264, -0.0383,  0.0411,  0.1064, -0.0476, -0.0185,\n",
+      "         0.0229, -0.0535, -0.0291, -0.0087, -0.0277, -0.0616, -0.0524,  0.1289,\n",
+      "        -0.0826, -0.0470, -0.0048, -0.1723,  0.0140, -0.0173, -0.0210,  0.1796,\n",
+      "         0.0007, -0.0932, -0.0956, -0.0730,  0.0378,  0.1326, -0.0621, -0.0425,\n",
+      "         0.1783,  0.0062,  0.1603, -0.0238,  0.2431, -0.0320, -0.0973,  0.0693,\n",
+      "         0.2111, -0.0681,  0.0485,  0.0602, -0.0463, -0.0304,  0.2014,  0.0238,\n",
+      "         0.0490,  0.0429, -0.0611, -0.0312,  0.2248, -0.0336,  0.2353,  0.1777,\n",
+      "        -0.0492, -0.1014, -0.0398, -0.0181,  0.1321, -0.0369, -0.0053,  0.2267,\n",
+      "        -0.0098, -0.0237,  0.1650, -0.0484,  0.0034,  0.1557, -0.0734, -0.0199,\n",
+      "        -0.0422, -0.0146, -0.3140,  0.0915,  0.0694,  0.0223,  0.0530,  0.1684,\n",
+      "        -0.0528,  0.0561,  0.1400, -0.0214, -0.0747, -0.1160,  0.2798, -0.0587,\n",
+      "         0.1446,  0.0228, -0.0236, -0.0257,  0.2521, -0.0347, -0.0583,  0.0037,\n",
+      "         0.0679, -0.0385, -0.0063, -0.1050,  0.0975,  0.0069,  0.1837,  0.0237,\n",
+      "         0.0202,  0.1829, -0.0343,  0.0321,  0.1072,  0.1445, -0.0434,  0.0272])), ('pretrained_model.layer2.0.bn2.running_mean', tensor([-1.3809e-01, -1.4797e-01, -1.0628e-02, -1.3368e-01, -4.9009e-02,\n",
+      "         6.1371e-02, -3.2920e-03, -9.8756e-02, -1.0202e-01, -3.2609e-02,\n",
+      "        -2.8215e-01, -2.8690e-02, -7.9791e-02, -9.6122e-02, -1.9040e-01,\n",
+      "        -6.2653e-02, -1.4726e-01, -1.3161e-01,  2.7964e-02, -2.9221e-02,\n",
+      "        -1.8804e-01, -3.1401e-02, -6.9462e-02, -2.1670e-01, -6.7773e-02,\n",
+      "        -6.5584e-03, -3.4808e-02, -8.5226e-02, -4.5418e-02, -1.3691e-01,\n",
+      "        -1.4117e-02,  8.6094e-02, -5.8088e-02, -2.1865e-01, -2.7219e-02,\n",
+      "        -3.0167e-01, -1.1778e-02, -8.6778e-02, -5.1265e-02, -7.7133e-02,\n",
+      "        -1.6384e-01, -1.1909e-01, -9.4624e-02,  4.0862e-01, -1.0759e-01,\n",
+      "         6.8417e-02, -2.2410e-02, -8.5397e-02, -3.7285e-02, -2.1230e-01,\n",
+      "         8.3572e-03, -3.3536e-02,  4.2985e-02, -2.1622e-01, -1.7318e-01,\n",
+      "        -4.5823e-02,  1.4785e-01, -1.9308e-01,  2.0155e-02, -1.2551e-01,\n",
+      "        -1.2031e-01, -1.2211e-01,  5.7779e-02, -4.3109e-02, -5.9515e-02,\n",
+      "        -2.1904e-02,  8.3011e-02, -4.6725e-02, -2.7513e-02, -1.1137e-01,\n",
+      "         1.0274e-01,  5.7194e-02, -1.1589e-01,  8.2677e-03,  1.8707e-02,\n",
+      "        -3.1318e-04, -2.6258e-02, -4.1081e-02, -3.7620e-02,  9.2926e-03,\n",
+      "        -1.1232e-01, -2.8300e-02, -1.5010e-02, -6.5290e-02, -1.2237e-01,\n",
+      "         1.1920e-01, -1.2936e-01,  3.0692e-02, -7.1760e-02,  7.0157e-02,\n",
+      "        -2.1265e-01, -1.1893e-02, -6.4886e-02, -5.7983e-02,  1.7661e-02,\n",
+      "        -6.4548e-02, -5.3877e-03, -1.1466e-02, -4.5377e-02,  1.2067e-01,\n",
+      "        -3.3659e-02, -9.1209e-02, -4.8357e-02, -6.0733e-02,  1.5558e-02,\n",
+      "        -4.7630e-02, -8.4936e-02, -1.1608e-01,  9.4547e-02, -5.5171e-02,\n",
+      "        -7.4602e-02, -6.5475e-02, -4.0191e-02, -1.8818e-01, -1.9010e-01,\n",
+      "        -1.8164e-01, -1.1974e-01, -5.4975e-02, -1.3062e-02, -4.1648e-02,\n",
+      "         8.9425e-03,  8.2570e-03, -1.0924e-01, -6.9737e-02, -3.0003e-02,\n",
+      "         7.6281e-03,  1.5960e-02, -5.9552e-02])), ('pretrained_model.layer2.0.bn2.running_var', tensor([0.0219, 0.0644, 0.0212, 0.0213, 0.0304, 0.0157, 0.0387, 0.0139, 0.0239,\n",
+      "        0.0186, 0.0488, 0.0209, 0.0142, 0.0209, 0.0164, 0.0634, 0.0137, 0.0236,\n",
+      "        0.0198, 0.0232, 0.0297, 0.0263, 0.0189, 0.0318, 0.0327, 0.0179, 0.0188,\n",
+      "        0.0137, 0.0215, 0.0180, 0.0243, 0.0264, 0.0183, 0.0519, 0.0226, 0.0406,\n",
+      "        0.0316, 0.0246, 0.0128, 0.0323, 0.0739, 0.0171, 0.0250, 0.0200, 0.0311,\n",
+      "        0.0460, 0.0141, 0.0161, 0.0353, 0.0665, 0.0178, 0.0265, 0.0342, 0.0337,\n",
+      "        0.0297, 0.0254, 0.0330, 0.0357, 0.0288, 0.0234, 0.0205, 0.0268, 0.0245,\n",
+      "        0.0213, 0.0365, 0.0108, 0.0148, 0.0171, 0.0217, 0.0222, 0.0348, 0.0218,\n",
+      "        0.0224, 0.0215, 0.0206, 0.0198, 0.0332, 0.0151, 0.0219, 0.0266, 0.0176,\n",
+      "        0.0214, 0.0292, 0.0197, 0.0184, 0.0243, 0.0215, 0.0216, 0.0183, 0.0236,\n",
+      "        0.0175, 0.0370, 0.0337, 0.0139, 0.0153, 0.0744, 0.0247, 0.0260, 0.0312,\n",
+      "        0.0268, 0.0140, 0.0225, 0.0208, 0.0126, 0.0306, 0.0265, 0.0160, 0.0404,\n",
+      "        0.0206, 0.0162, 0.0170, 0.0295, 0.0218, 0.0304, 0.0176, 0.0307, 0.0183,\n",
+      "        0.0209, 0.0211, 0.0532, 0.0339, 0.0406, 0.0229, 0.0160, 0.0199, 0.0222,\n",
+      "        0.0152, 0.0278])), ('pretrained_model.layer2.0.bn2.num_batches_tracked', tensor(0)), ('pretrained_model.layer2.0.conv3.weight', tensor([[[[ 6.7131e-03]],\n",
+      "\n",
+      "         [[-8.3220e-03]],\n",
+      "\n",
+      "         [[ 1.2534e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 6.5452e-03]],\n",
+      "\n",
+      "         [[-1.3119e-02]],\n",
+      "\n",
+      "         [[-7.6401e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-2.5629e-02]],\n",
+      "\n",
+      "         [[-7.8287e-03]],\n",
+      "\n",
+      "         [[ 3.1978e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.2930e-03]],\n",
+      "\n",
+      "         [[-1.5851e-02]],\n",
+      "\n",
+      "         [[ 5.6789e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.7464e-03]],\n",
+      "\n",
+      "         [[-8.8041e-04]],\n",
+      "\n",
+      "         [[-1.7429e-04]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.9089e-04]],\n",
+      "\n",
+      "         [[-1.3238e-05]],\n",
+      "\n",
+      "         [[-3.3032e-04]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 1.1428e-07]],\n",
+      "\n",
+      "         [[ 3.4040e-07]],\n",
+      "\n",
+      "         [[-1.7026e-07]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.8361e-07]],\n",
+      "\n",
+      "         [[-8.3477e-08]],\n",
+      "\n",
+      "         [[ 1.9728e-07]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 3.7482e-02]],\n",
+      "\n",
+      "         [[-1.2211e-01]],\n",
+      "\n",
+      "         [[-5.1035e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.2404e-01]],\n",
+      "\n",
+      "         [[ 4.6716e-02]],\n",
+      "\n",
+      "         [[-8.8095e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-3.2811e-04]],\n",
+      "\n",
+      "         [[-1.3200e-02]],\n",
+      "\n",
+      "         [[ 7.9054e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.3529e-02]],\n",
+      "\n",
+      "         [[ 6.5681e-03]],\n",
+      "\n",
+      "         [[ 8.9372e-03]]]])), ('pretrained_model.layer2.0.bn3.weight', tensor([-3.7536e-03,  2.2792e-01, -1.1058e-03,  1.5568e-01,  1.1461e-02,\n",
+      "        -2.0221e-06,  1.9275e-01,  4.3355e-04, -9.5935e-04,  1.3693e-02,\n",
+      "         1.1872e-01,  1.2828e-01,  1.1904e-01,  3.7525e-02,  4.4485e-06,\n",
+      "         1.0198e-01,  3.2855e-01, -6.0964e-03,  1.3745e-01,  9.2777e-02,\n",
+      "         8.6592e-02, -8.3579e-03,  1.7253e-01,  1.5008e-07,  1.4767e-01,\n",
+      "        -2.1019e-02,  1.5909e-01,  1.2322e-01,  6.4784e-06,  1.3522e-01,\n",
+      "         2.7370e-01, -6.7413e-03,  7.0103e-02,  1.2746e-01,  7.1862e-02,\n",
+      "         2.1193e-01,  6.3599e-02,  2.0219e-01,  1.7956e-03,  2.0884e-01,\n",
+      "         2.2489e-01,  1.5471e-01,  8.3623e-02, -1.2283e-02, -1.2660e-02,\n",
+      "         1.8592e-01,  2.2011e-02,  1.8886e-01,  1.1205e-01,  1.8651e-01,\n",
+      "        -5.7808e-04,  1.1498e-04,  5.4319e-02,  1.3374e-01,  2.5594e-03,\n",
+      "         1.6380e-01,  3.3894e-02,  8.4218e-02,  2.1708e-01, -7.5252e-08,\n",
+      "         1.9827e-02,  1.3743e-01,  1.4326e-01,  1.6216e-02,  1.3970e-01,\n",
+      "         1.6433e-01,  7.4800e-02,  1.7299e-01, -9.9884e-07,  2.0049e-01,\n",
+      "         2.4656e-01,  1.3552e-01,  2.2756e-01,  1.4779e-01,  2.5499e-01,\n",
+      "         1.3264e-02,  2.3030e-01, -1.5018e-02,  1.6245e-01,  1.7027e-01,\n",
+      "         2.3799e-01,  1.1879e-01, -3.5511e-03,  2.0326e-01,  8.5731e-02,\n",
+      "         1.7992e-01,  1.5234e-01,  1.9868e-02,  5.8057e-03,  2.3282e-06,\n",
+      "         6.2633e-07,  1.8958e-01,  1.5204e-01,  1.2299e-02,  2.6232e-08,\n",
+      "         1.6355e-01,  1.8540e-01, -3.1568e-02,  1.7122e-01, -1.0840e-02,\n",
+      "         1.2992e-01,  1.6988e-01,  1.5931e-02,  1.6968e-01,  1.3347e-02,\n",
+      "        -1.8726e-04,  1.2811e-01,  1.6308e-01,  1.4577e-01,  2.1610e-02,\n",
+      "         1.1296e-01,  1.3421e-01, -1.0578e-07,  1.5084e-01,  4.1567e-03,\n",
+      "         1.0862e-01,  1.4941e-01,  1.3722e-01,  1.9990e-01,  4.0433e-02,\n",
+      "         1.0797e-01,  1.1535e-01,  5.3300e-02,  1.2161e-01,  1.0429e-01,\n",
+      "         2.1532e-02,  2.3695e-01,  5.7451e-02,  6.8726e-02,  1.2247e-01,\n",
+      "         1.4501e-01,  1.3733e-01,  1.1133e-01,  1.7260e-06,  9.1141e-02,\n",
+      "         8.5582e-02,  1.4989e-01,  1.8829e-01,  4.4695e-07,  1.6226e-01,\n",
+      "         1.2052e-01,  1.3644e-01,  1.8672e-01,  1.6222e-04, -3.7735e-02,\n",
+      "        -3.7013e-02, -4.8983e-03,  1.8972e-01,  2.4273e-01,  1.7466e-01,\n",
+      "         2.2168e-01,  5.7998e-02,  8.2959e-02, -5.8230e-06, -7.1459e-04,\n",
+      "         1.1283e-01,  6.0031e-03,  2.2076e-06,  1.4791e-01,  1.0526e-01,\n",
+      "         2.1583e-01,  7.2964e-03,  1.8503e-01,  9.9037e-02,  2.0674e-01,\n",
+      "         2.6136e-04,  1.1525e-01,  1.3527e-01,  1.8114e-01,  1.0606e-01,\n",
+      "         2.4732e-08,  1.9767e-01,  1.9812e-01, -1.4777e-02,  1.4542e-06,\n",
+      "         2.4299e-01,  5.3278e-02,  2.3099e-01, -9.3978e-03,  1.7281e-01,\n",
+      "         2.7380e-01,  1.3945e-01,  2.0375e-01,  1.3949e-04,  1.1731e-01,\n",
+      "        -2.0713e-02, -2.7799e-07,  1.1143e-01, -5.0742e-03,  1.0263e-01,\n",
+      "         1.8948e-01,  1.6115e-01,  1.2707e-01,  9.5293e-02, -3.7819e-03,\n",
+      "         1.8032e-01,  2.4595e-08,  2.1096e-01,  3.7619e-02,  2.0873e-03,\n",
+      "         2.6174e-06,  1.2890e-01,  2.2203e-01, -9.3542e-03, -2.4581e-08,\n",
+      "         1.4823e-01,  1.5957e-01,  1.2250e-01,  1.9843e-02,  1.4884e-02,\n",
+      "         1.2296e-01,  2.0728e-01,  1.0971e-01,  1.4119e-06,  7.4279e-02,\n",
+      "         2.4339e-01,  1.2208e-01, -1.4939e-03,  1.6125e-02,  2.3119e-01,\n",
+      "         6.8806e-02,  1.1316e-01, -4.6669e-09,  1.4426e-01,  1.3166e-01,\n",
+      "         1.4912e-01,  1.0296e-01,  7.0459e-03,  1.7547e-01,  1.9045e-01,\n",
+      "         1.5886e-01,  1.1511e-01,  8.6107e-03,  5.3727e-02, -5.8616e-09,\n",
+      "         1.7803e-01,  3.1269e-06,  2.0016e-01,  1.8456e-01,  1.2445e-01,\n",
+      "        -9.3583e-06, -9.1894e-04,  1.7969e-01, -1.7815e-02,  1.2945e-01,\n",
+      "         1.3081e-01,  1.6246e-01,  2.3319e-01,  1.7807e-01, -2.0302e-03,\n",
+      "         1.5167e-01, -7.9629e-03,  1.5929e-01,  1.4404e-01,  9.7239e-02,\n",
+      "         1.3377e-02,  2.1577e-01,  1.3806e-01,  1.8446e-01,  2.1094e-01,\n",
+      "         1.0930e-01,  2.3248e-01,  2.2080e-01, -3.3707e-03,  1.8402e-01,\n",
+      "         3.8788e-02,  4.2815e-02,  9.8921e-04, -6.3128e-03, -2.4597e-03,\n",
+      "        -8.2412e-07,  1.5739e-01, -3.2417e-07,  8.9110e-02,  1.8812e-01,\n",
+      "        -3.1291e-03,  7.0322e-02,  3.9466e-03,  1.5347e-01,  2.0344e-01,\n",
+      "         1.4272e-01,  2.2211e-02,  1.6646e-01, -4.8157e-03, -1.4033e-02,\n",
+      "        -4.0384e-03,  1.8844e-01,  1.8039e-01,  1.9051e-01,  1.4870e-01,\n",
+      "        -2.0324e-03,  1.3211e-04,  1.8938e-01,  2.2296e-01,  1.8915e-01,\n",
+      "         2.1269e-01,  1.7326e-01,  8.6291e-06, -2.4293e-02,  2.9089e-04,\n",
+      "         1.7144e-01,  1.6312e-01,  1.2742e-01,  1.0330e-01,  1.4889e-01,\n",
+      "         1.0801e-01,  1.1188e-01,  1.2059e-01,  4.8762e-02, -2.4179e-03,\n",
+      "         1.7415e-01, -1.4257e-06,  4.5668e-08,  6.0625e-07,  1.5862e-02,\n",
+      "         7.1967e-02,  1.5601e-01,  1.6337e-02,  7.7235e-08,  1.9838e-02,\n",
+      "         1.5968e-01,  1.5004e-01,  7.9328e-02,  9.3554e-02,  1.9014e-01,\n",
+      "         2.5329e-08,  1.8498e-01,  1.3478e-01,  9.7878e-02,  8.8486e-02,\n",
+      "         1.5854e-01,  2.4043e-01,  1.5618e-07, -2.5971e-03,  9.7443e-02,\n",
+      "         8.6303e-02,  2.0683e-01, -8.2538e-04,  2.1347e-01,  7.6359e-02,\n",
+      "        -2.5149e-02,  1.4442e-01,  1.8309e-02,  2.0526e-01, -1.4693e-02,\n",
+      "         1.7849e-01,  7.9114e-08,  2.0450e-02,  1.1448e-01,  4.0140e-03,\n",
+      "         1.1203e-01,  1.4669e-02,  2.4230e-01, -6.2253e-03,  1.2530e-02,\n",
+      "         1.2609e-01,  1.1775e-01, -4.5260e-03,  1.5602e-01,  1.8208e-01,\n",
+      "         1.2361e-01,  1.1632e-01,  1.2353e-01,  4.8971e-03,  1.1455e-05,\n",
+      "         2.4837e-01,  9.4772e-02,  2.2496e-01,  1.4352e-01,  1.5469e-01,\n",
+      "         1.4535e-07,  2.6228e-03,  1.3846e-01,  1.4544e-01,  2.3891e-01,\n",
+      "         2.6665e-01,  1.2458e-01,  1.5224e-01,  8.5391e-02,  1.1822e-02,\n",
+      "         2.5172e-01,  2.0427e-01,  1.7319e-02,  1.2629e-01,  2.4076e-01,\n",
+      "         1.4675e-01,  1.3934e-06, -1.3360e-03,  1.0599e-01,  1.9155e-01,\n",
+      "         2.0562e-01,  2.0821e-01, -1.1087e-02,  7.8573e-02,  1.9355e-01,\n",
+      "         5.1861e-03,  1.9131e-02,  1.3317e-01,  1.3308e-01,  5.5578e-02,\n",
+      "        -1.9918e-07, -7.6960e-03,  2.1280e-01,  1.3417e-01,  2.5001e-01,\n",
+      "         2.0993e-01,  1.1852e-02,  7.5911e-02,  1.6467e-01, -3.0187e-10,\n",
+      "         1.6681e-01,  1.4945e-01,  7.4217e-03,  6.8212e-08,  9.0545e-02,\n",
+      "         1.8215e-01,  2.3055e-02,  2.2705e-01,  8.9109e-03,  1.0287e-01,\n",
+      "         1.7038e-01,  3.9006e-02,  1.1798e-01,  1.2747e-01,  7.6077e-02,\n",
+      "         7.6141e-02, -4.0403e-07,  3.7531e-02,  1.7699e-01,  8.7104e-02,\n",
+      "         1.5778e-06,  1.1370e-01,  2.0421e-01,  1.6428e-06,  3.1388e-01,\n",
+      "         1.8305e-01,  1.8686e-01,  2.2847e-01,  1.5244e-01,  1.7327e-01,\n",
+      "         1.0516e-01,  7.5578e-03,  6.8609e-02,  1.0553e-03,  2.4934e-02,\n",
+      "         1.4416e-01,  5.9387e-07,  1.9742e-01,  2.2580e-01,  6.3157e-05,\n",
+      "         1.9796e-01,  2.4812e-07,  1.9042e-08,  1.7224e-01,  1.0119e-03,\n",
+      "         1.1858e-01,  1.6538e-01,  1.8155e-01,  8.5825e-04,  1.5060e-01,\n",
+      "         1.2668e-01,  1.4855e-01,  6.2714e-02,  1.1039e-01,  6.0725e-03,\n",
+      "         2.1395e-01,  9.9986e-02,  4.3412e-08,  7.5498e-03,  1.7211e-01,\n",
+      "         1.5632e-01,  1.6793e-02, -4.4061e-08,  7.6376e-03, -2.3899e-03,\n",
+      "         1.3010e-01,  9.2336e-03,  3.0017e-02,  1.5577e-01,  2.4700e-01,\n",
+      "         5.1408e-02,  1.5198e-01,  9.7509e-03,  2.1201e-01,  1.8695e-01,\n",
+      "         1.2536e-01,  5.6894e-06,  1.4500e-01, -7.8808e-03,  8.2016e-02,\n",
+      "         1.8991e-01,  1.8401e-01, -3.3342e-02,  1.8871e-01,  2.3622e-03,\n",
+      "         1.5010e-01,  1.8013e-01,  5.7469e-02,  9.5293e-09,  1.8980e-01,\n",
+      "         2.4270e-02,  1.4845e-01,  1.6969e-01,  6.1408e-02,  1.4280e-01,\n",
+      "         2.8661e-02, -5.8349e-03,  1.1554e-01,  1.3329e-01,  1.4505e-07,\n",
+      "         1.3798e-01, -6.5271e-03])), ('pretrained_model.layer2.0.bn3.bias', tensor([ 6.9339e-02, -6.4782e-02, -4.8200e-03,  1.7740e-02,  4.2893e-02,\n",
+      "        -7.7263e-06,  5.6366e-03,  7.1845e-02,  4.7598e-02,  7.8273e-02,\n",
+      "         1.1747e-02, -4.8748e-02,  3.4993e-04,  6.9786e-02, -1.6638e-05,\n",
+      "        -2.9534e-02, -3.0673e-03,  1.6046e-02,  4.2380e-02, -1.4634e-02,\n",
+      "         4.9653e-02,  9.3853e-02, -2.0659e-02, -8.4248e-07,  1.4503e-02,\n",
+      "         6.7039e-02, -1.5668e-03, -4.1820e-02, -3.1132e-05,  3.7010e-02,\n",
+      "        -1.0305e-01,  8.8391e-02,  3.4045e-02, -1.7633e-02,  7.8432e-03,\n",
+      "        -1.8901e-02,  8.1341e-02,  6.1083e-02, -4.6983e-03,  1.0383e-01,\n",
+      "        -3.4040e-02,  6.8568e-03, -1.5223e-02,  4.4327e-02,  1.3771e-02,\n",
+      "        -5.4513e-02,  8.0323e-02, -3.8432e-02,  6.8424e-02, -6.0933e-02,\n",
+      "         9.4187e-02, -8.1873e-04,  6.3961e-02,  1.9933e-02,  8.5462e-02,\n",
+      "        -1.9864e-02, -1.2483e-02, -1.2199e-02,  2.3127e-02, -3.9750e-06,\n",
+      "         6.9949e-02,  2.1607e-03, -9.1863e-03, -1.4718e-02, -1.0497e-02,\n",
+      "         6.2319e-03, -9.8826e-02,  4.2343e-02, -7.6990e-06, -1.3164e-02,\n",
+      "        -1.5374e-03,  2.2193e-02, -1.6292e-02, -5.9422e-03, -6.7113e-02,\n",
+      "         3.9987e-02, -5.0628e-02,  5.2359e-02,  5.3470e-03, -6.0301e-02,\n",
+      "        -1.9681e-02,  1.9827e-02, -2.5480e-02,  4.9395e-02, -7.7383e-03,\n",
+      "         4.1438e-02,  9.6639e-02,  1.1351e-02,  7.4442e-02, -9.9106e-06,\n",
+      "        -7.4712e-06, -5.1581e-02, -5.3561e-02,  2.1121e-02, -1.5526e-07,\n",
+      "        -1.7140e-02,  2.0112e-02,  3.4612e-02,  1.0481e-02,  1.7325e-02,\n",
+      "        -1.0769e-02, -4.2280e-02,  7.8137e-02,  3.4714e-02,  1.0917e-01,\n",
+      "        -8.7885e-04,  3.6658e-02, -5.1895e-02,  2.8223e-02, -9.7024e-03,\n",
+      "         9.4298e-02,  4.5469e-02, -2.7883e-06, -2.8293e-02,  9.3717e-02,\n",
+      "         1.0465e-01, -1.8332e-02, -1.6307e-02,  4.2130e-02,  6.0928e-02,\n",
+      "         6.4616e-04,  4.4633e-02,  6.8948e-02, -1.2417e-02, -3.2055e-02,\n",
+      "         1.7810e-01, -3.3538e-02,  7.3654e-02,  6.9471e-04, -5.2052e-02,\n",
+      "        -2.1123e-02,  1.5327e-02,  1.8440e-02, -6.9650e-06,  8.4333e-02,\n",
+      "        -8.2091e-03,  1.7105e-02,  2.5182e-02, -1.3876e-06,  3.3132e-03,\n",
+      "        -4.9984e-03, -3.3982e-02, -2.5524e-02, -4.6927e-04, -3.2537e-02,\n",
+      "        -9.3983e-03,  5.6763e-02, -3.1186e-02,  6.5809e-02, -3.7913e-02,\n",
+      "         5.9931e-03,  3.7800e-02,  9.2255e-02, -6.1208e-05,  1.1271e-01,\n",
+      "         3.2105e-02,  3.3985e-02, -8.9602e-06,  4.9354e-02, -2.5818e-02,\n",
+      "         5.8767e-03,  8.3674e-02,  1.5523e-02,  6.1113e-02,  5.7355e-02,\n",
+      "        -1.3559e-03, -2.2360e-02, -2.3222e-02, -4.1805e-02, -1.5457e-02,\n",
+      "        -1.3183e-06,  3.3876e-02,  1.1503e-01,  1.2987e-01, -2.6607e-05,\n",
+      "        -6.6877e-02,  9.5109e-02, -3.3378e-02,  7.4441e-02, -1.1809e-02,\n",
+      "        -2.5652e-02, -1.2127e-02,  3.7790e-03,  7.8767e-02,  1.1977e-02,\n",
+      "         1.2906e-01, -2.7604e-06,  6.9785e-03,  8.0959e-02, -3.6111e-02,\n",
+      "        -1.3976e-02, -2.6720e-02,  4.2711e-02,  8.7091e-02,  1.7269e-01,\n",
+      "         1.3124e-02, -1.1463e-07, -2.3092e-02,  1.4040e-02, -3.4951e-02,\n",
+      "        -6.1428e-06,  4.0789e-02, -2.0534e-02,  5.3701e-02, -6.9600e-07,\n",
+      "        -5.0292e-02,  3.4429e-02,  4.3889e-02,  4.6811e-02, -8.6822e-03,\n",
+      "        -8.9620e-03,  1.1005e-01,  4.7067e-02, -9.9011e-06, -1.6912e-02,\n",
+      "        -1.6816e-02, -2.1849e-02,  1.6579e-01,  3.4252e-02,  1.2370e-02,\n",
+      "         4.9945e-02, -2.5040e-02, -1.2667e-07, -2.6292e-02,  1.9273e-02,\n",
+      "         1.0222e-02,  7.3961e-02,  2.3129e-01,  1.7878e-02, -1.5289e-02,\n",
+      "        -1.0321e-02,  5.3313e-02,  1.0399e-01, -2.9707e-02, -1.0903e-07,\n",
+      "         4.9294e-02, -2.6758e-05, -1.5038e-02,  3.5801e-02, -2.9614e-02,\n",
+      "        -1.8011e-04,  2.1745e-01,  2.1626e-02,  1.1472e-01,  2.4636e-03,\n",
+      "        -5.1773e-02,  3.9879e-02, -2.7467e-03, -4.0029e-02,  4.2881e-02,\n",
+      "         3.9950e-02,  1.4953e-01, -1.0647e-02,  1.0100e-02,  1.2328e-02,\n",
+      "         7.1610e-02, -2.4942e-02, -1.3498e-02,  4.0928e-02, -1.0016e-02,\n",
+      "        -3.7004e-02,  1.5781e-02,  1.6239e-03,  8.6911e-02,  7.1281e-05,\n",
+      "         1.0126e-01,  1.7498e-02,  3.4819e-02,  8.3628e-02,  6.1378e-02,\n",
+      "        -1.1950e-04, -2.1610e-02, -3.1952e-06,  6.7290e-02,  1.8532e-03,\n",
+      "         4.7994e-02, -1.0699e-03,  4.8065e-02, -2.1763e-02, -4.9477e-02,\n",
+      "        -2.9028e-02,  9.7271e-03, -1.9515e-02,  5.0183e-02,  9.6438e-02,\n",
+      "        -8.0472e-02,  7.7073e-03,  1.9895e-04, -3.7481e-02, -4.0463e-02,\n",
+      "         1.7932e-02, -9.6618e-04, -4.6559e-02, -5.3132e-02, -8.5598e-02,\n",
+      "         2.3857e-02,  4.1656e-02, -9.3212e-05,  2.9152e-02, -1.1914e-03,\n",
+      "         3.7758e-02, -2.1093e-02,  1.7667e-02,  5.1209e-02, -1.2304e-02,\n",
+      "        -1.5844e-02, -4.7244e-02,  3.8676e-02,  4.2152e-03, -8.2820e-02,\n",
+      "        -3.9472e-02, -1.7549e-05, -2.3700e-07, -2.2667e-06,  8.1415e-02,\n",
+      "        -1.7837e-02, -7.0754e-03,  1.3596e-01, -5.2882e-07,  8.3548e-02,\n",
+      "         2.0505e-02, -9.5717e-04,  3.9108e-02, -3.0842e-03,  9.6140e-03,\n",
+      "        -1.4764e-07, -7.7768e-02, -1.4023e-02, -5.1185e-03,  3.8983e-02,\n",
+      "         8.6186e-02,  1.0274e-02, -5.9361e-07, -7.6753e-02, -1.0281e-02,\n",
+      "         2.0084e-02, -3.9218e-03,  8.0291e-02, -2.5749e-02, -3.8512e-02,\n",
+      "         1.2795e-01, -5.2775e-03,  1.2438e-01, -4.1034e-02,  1.3129e-01,\n",
+      "         1.0288e-02, -1.8538e-07,  9.6370e-02, -1.3538e-02,  1.3604e-01,\n",
+      "         1.8194e-02, -8.2912e-02, -1.9061e-02,  3.3216e-02,  1.4159e-01,\n",
+      "        -1.0698e-02,  2.9216e-02,  1.7318e-01,  5.1754e-02, -4.0425e-02,\n",
+      "        -1.3848e-03,  2.4604e-02, -5.2583e-04, -4.7639e-02, -6.6002e-05,\n",
+      "        -2.9295e-02, -3.5808e-03, -1.2913e-02,  3.7809e-02, -2.9585e-02,\n",
+      "        -4.8915e-06,  1.4370e-01,  1.5088e-02,  4.3214e-02,  9.6021e-02,\n",
+      "        -2.8393e-02, -3.3584e-02,  4.5524e-03, -2.3623e-02,  3.5189e-02,\n",
+      "        -4.0384e-02,  8.7347e-03,  1.5261e-01,  5.9962e-02,  1.5251e-02,\n",
+      "         8.8878e-03, -5.8449e-05,  9.8839e-02,  7.7859e-02, -3.6466e-02,\n",
+      "         4.8346e-03, -5.4170e-03,  7.9756e-02, -3.1093e-02, -1.9649e-02,\n",
+      "         1.0686e-01,  7.7954e-02, -4.7760e-02, -5.7521e-03,  3.7461e-02,\n",
+      "        -1.8750e-06, -1.0218e-02, -4.1230e-02, -4.2377e-03, -4.2145e-02,\n",
+      "        -6.0218e-02,  3.6873e-02,  1.4680e-03,  2.8768e-02, -9.4124e-07,\n",
+      "         4.2859e-03, -1.5244e-02,  1.4775e-01, -2.3495e-07,  2.9173e-03,\n",
+      "        -3.4779e-02,  8.7643e-03, -4.1073e-02, -1.3386e-02, -6.6003e-03,\n",
+      "        -1.6743e-02, -4.7242e-02,  1.6029e-02, -2.8244e-02,  1.6250e-02,\n",
+      "        -3.2907e-02, -1.8808e-06,  6.1997e-03, -3.7102e-03, -2.4955e-03,\n",
+      "        -8.5595e-06,  4.2637e-02,  9.5459e-02, -7.8317e-06, -1.3040e-01,\n",
+      "        -1.6501e-02, -4.4692e-02, -5.7310e-02, -1.6812e-02, -6.1870e-03,\n",
+      "         2.5548e-02,  1.2538e-01, -6.5666e-02,  1.9255e-01,  6.5002e-02,\n",
+      "        -4.9470e-02, -2.2992e-06, -1.2185e-02,  1.8046e-03, -1.6454e-04,\n",
+      "        -4.1050e-02, -2.2847e-06, -4.5980e-07,  2.6041e-02, -4.3323e-03,\n",
+      "         2.0076e-02,  6.8514e-02, -3.4616e-02,  1.5082e-01,  8.6685e-02,\n",
+      "        -1.8361e-02,  4.5760e-02, -1.8631e-02,  5.3029e-02,  2.0477e-01,\n",
+      "        -1.0698e-02, -2.7648e-02, -3.7166e-07,  4.1970e-02, -3.0784e-02,\n",
+      "        -3.5303e-02,  1.6532e-01, -1.0183e-07,  9.6517e-02,  6.4394e-02,\n",
+      "         8.3244e-03,  8.1777e-02,  3.5471e-03,  1.3154e-02, -6.5233e-02,\n",
+      "        -5.3267e-03, -8.3223e-03,  4.2116e-02, -4.2961e-02, -2.2934e-02,\n",
+      "        -9.7483e-03, -1.6165e-05,  3.5856e-02,  6.9786e-02, -2.6884e-02,\n",
+      "        -2.0144e-02, -3.9733e-02,  5.9605e-02,  4.3758e-02,  1.2512e-01,\n",
+      "        -3.3471e-02, -1.8332e-02, -6.2678e-02, -5.8601e-08, -2.3637e-02,\n",
+      "         9.1848e-02, -9.9164e-02, -2.0208e-02,  7.6334e-03,  1.9571e-02,\n",
+      "         5.3493e-02,  4.0363e-02, -1.4143e-02, -3.7347e-02, -8.5167e-07,\n",
+      "         7.7024e-02,  1.4073e-01])), ('pretrained_model.layer2.0.bn3.running_mean', tensor([-1.2678e-02,  5.7718e-02,  1.1580e-03,  7.2034e-03,  1.4888e-02,\n",
+      "         2.0887e-06, -5.3912e-02, -2.5610e-03, -6.1463e-03,  4.2648e-03,\n",
+      "        -3.3758e-02,  2.9575e-02, -3.5922e-02,  2.6144e-02, -6.1315e-06,\n",
+      "        -9.2134e-02, -4.6905e-02,  3.5792e-03, -6.5615e-02, -3.2531e-02,\n",
+      "         7.2118e-03,  9.8681e-03, -1.5064e-02, -2.2652e-07,  8.6260e-02,\n",
+      "        -4.2447e-03, -1.9983e-02,  1.0866e-01,  1.3643e-05,  3.2215e-02,\n",
+      "        -9.1651e-03, -2.9306e-02, -2.0787e-03,  9.0601e-02,  1.1774e-02,\n",
+      "        -1.8392e-02, -3.5769e-02, -3.7960e-02,  3.3474e-03,  8.2905e-02,\n",
+      "         5.9541e-03,  5.3593e-02, -3.9411e-02, -1.6505e-02, -7.0773e-03,\n",
+      "        -4.8424e-02,  1.5326e-03, -4.3876e-02, -3.0384e-02, -3.1740e-02,\n",
+      "         2.5190e-03, -1.2213e-04,  5.8824e-02,  7.4737e-03,  6.4670e-03,\n",
+      "        -9.9279e-02, -3.6167e-02,  1.7671e-02,  3.1855e-02,  8.4398e-07,\n",
+      "        -5.7723e-03,  4.9815e-03, -3.5381e-02,  1.2092e-02,  7.0949e-02,\n",
+      "        -9.2566e-03,  4.1038e-02, -4.7445e-03, -1.0760e-06,  4.2986e-02,\n",
+      "         4.1997e-02, -3.6137e-02, -3.0639e-02,  7.8017e-02, -2.5080e-02,\n",
+      "        -3.8469e-02,  1.0298e-01,  5.4568e-03, -7.6763e-02,  6.1297e-03,\n",
+      "        -2.5526e-02,  3.6030e-04,  1.8928e-03, -6.4625e-02, -3.3946e-02,\n",
+      "         6.3493e-02, -3.9935e-02,  3.4918e-03, -1.1496e-02,  1.6709e-06,\n",
+      "         1.6688e-06,  2.1906e-02, -2.9420e-02,  2.5808e-02,  2.4148e-08,\n",
+      "        -1.0898e-02, -1.6287e-02, -5.5655e-02,  6.2841e-02,  7.5679e-03,\n",
+      "         7.4975e-02,  5.2714e-02,  3.2778e-03, -2.4898e-02,  1.3441e-03,\n",
+      "        -3.7324e-04,  5.1850e-02, -6.0952e-02,  8.7710e-02, -2.5329e-02,\n",
+      "         2.0721e-02,  4.8255e-02,  5.4547e-07, -1.4447e-03,  7.3210e-03,\n",
+      "         7.7623e-02,  6.6987e-02,  5.3203e-02, -7.4881e-02, -5.4301e-02,\n",
+      "        -1.9151e-02, -2.3741e-02,  7.3954e-02, -6.0231e-03,  6.0567e-03,\n",
+      "         4.9360e-03, -5.1888e-02, -4.6340e-04, -2.4614e-02,  2.3243e-02,\n",
+      "        -3.5112e-03,  3.3305e-02, -3.4122e-02, -3.8994e-06, -7.1358e-02,\n",
+      "        -4.1478e-02,  1.4060e-02, -2.1277e-02,  5.1945e-07, -2.3727e-02,\n",
+      "         1.7123e-03,  9.8114e-03,  3.0938e-02, -1.0046e-04, -6.2678e-03,\n",
+      "        -3.5038e-02,  1.0095e-03,  3.2861e-02, -2.8264e-01,  1.0717e-01,\n",
+      "         1.5995e-02, -4.9903e-02,  4.6663e-04, -1.2959e-05, -7.8062e-03,\n",
+      "        -2.5840e-02,  1.1465e-02, -1.3557e-06,  1.6256e-02, -3.5462e-02,\n",
+      "         1.9882e-02, -2.1286e-02,  6.4615e-03,  8.4200e-02,  1.9172e-02,\n",
+      "        -4.8904e-04,  1.2475e-01,  1.3739e-02,  6.6862e-02,  5.2942e-02,\n",
+      "         1.0622e-07,  1.6227e-02,  1.7845e-01, -2.8894e-02,  2.6284e-06,\n",
+      "        -3.4736e-02,  6.3072e-02, -1.1031e-02, -1.0514e-03,  3.2643e-02,\n",
+      "        -5.5582e-02, -6.6460e-02, -7.9844e-03,  1.0050e-03,  7.0434e-02,\n",
+      "        -3.9914e-02, -1.3239e-06,  1.5402e-02,  1.0955e-02,  9.3771e-02,\n",
+      "        -1.1356e-02, -2.1196e-02,  6.7603e-02, -1.0458e-01,  6.3939e-03,\n",
+      "         2.4197e-02, -5.0776e-08,  1.9227e-02,  9.6132e-03, -1.0106e-02,\n",
+      "         5.9145e-07,  2.4910e-02,  6.9844e-02, -9.5380e-03, -3.8487e-07,\n",
+      "        -6.6441e-02,  9.0434e-02,  3.3263e-02, -3.0745e-02, -7.4274e-03,\n",
+      "        -9.5037e-02, -7.8770e-04, -6.3003e-02,  2.0848e-06,  1.4873e-03,\n",
+      "        -1.9432e-02, -7.7709e-02,  3.4016e-02, -1.0584e-02, -9.4147e-02,\n",
+      "         2.6108e-02,  1.7570e-02, -6.0333e-08,  6.1612e-03,  5.1516e-02,\n",
+      "         4.2008e-02, -1.3435e-02,  1.3955e-02,  1.8372e-02, -2.3886e-01,\n",
+      "         9.4850e-02, -3.2080e-02,  7.3585e-04,  1.2906e-02, -6.1881e-08,\n",
+      "         8.5814e-03,  1.3242e-05,  2.4991e-02,  2.4498e-02, -3.7355e-02,\n",
+      "         4.2883e-06, -2.0786e-03,  6.6987e-02, -3.6423e-02,  1.2749e-02,\n",
+      "        -4.6360e-02,  1.3347e-02, -8.8645e-02,  3.0028e-02, -6.4867e-03,\n",
+      "        -3.5715e-02, -2.7882e-02,  1.0875e-03, -3.7710e-02,  3.5614e-02,\n",
+      "         1.5504e-03,  1.8488e-02,  5.5982e-02, -3.5002e-02, -7.2438e-02,\n",
+      "        -4.6995e-04, -1.8975e-02,  7.7292e-03, -2.9798e-02,  4.4936e-02,\n",
+      "        -4.3661e-03, -4.4887e-02, -1.3400e-02, -2.2735e-02, -1.1561e-02,\n",
+      "        -3.2968e-06,  1.2697e-03, -8.1068e-07, -5.0478e-02, -7.1118e-02,\n",
+      "        -5.3450e-03, -5.8371e-02, -3.7603e-03,  3.6666e-02,  8.0564e-02,\n",
+      "         9.3083e-02,  3.4197e-03, -1.1179e-02, -6.6905e-03, -2.2409e-02,\n",
+      "         2.3244e-03, -2.8570e-02, -2.0574e-02,  1.0930e-01,  5.6748e-03,\n",
+      "         1.2463e-02,  1.5936e-04, -6.6477e-03, -7.4448e-03, -7.5719e-02,\n",
+      "        -1.0507e-01, -2.4459e-02,  8.5862e-07,  4.0363e-03,  1.4275e-03,\n",
+      "        -3.8393e-02,  2.8987e-03, -1.4828e-02, -3.5982e-02, -1.4136e-02,\n",
+      "        -1.4410e-01,  4.8296e-03, -6.0564e-02,  3.4368e-02,  5.4797e-03,\n",
+      "         2.4609e-02,  7.8350e-07,  1.5968e-08,  1.2767e-06, -6.7346e-04,\n",
+      "        -8.5233e-03, -8.1489e-03,  2.2686e-03,  2.8720e-07,  9.6015e-03,\n",
+      "         1.4774e-01, -5.0995e-02,  5.7826e-02, -2.4763e-02, -1.1118e-01,\n",
+      "         1.1976e-08, -6.8107e-02,  2.7213e-02, -5.6007e-02,  3.1103e-02,\n",
+      "        -2.6074e-03,  1.3946e-01, -6.9204e-08,  2.0306e-03, -3.6656e-02,\n",
+      "         5.2387e-02, -6.5083e-02,  7.2459e-03,  7.7119e-03,  1.5231e-02,\n",
+      "        -1.4611e-02, -2.5322e-02, -1.3992e-02, -4.2533e-02, -4.8641e-03,\n",
+      "        -1.3506e-02, -3.1356e-08, -4.9230e-03, -1.5462e-02,  1.4888e-02,\n",
+      "         5.7066e-02,  2.2887e-02, -1.3989e-01,  6.2219e-03,  6.4563e-03,\n",
+      "        -9.8418e-03,  2.9612e-02, -2.4053e-03, -1.3029e-01, -3.2010e-02,\n",
+      "        -4.8128e-02, -1.4333e-02,  1.2891e-02, -7.1898e-03, -1.7333e-05,\n",
+      "         1.2888e-03,  3.4755e-02, -1.3055e-01, -6.9665e-02, -4.4241e-02,\n",
+      "         8.2532e-07,  4.5251e-03, -5.9735e-02, -2.6062e-02,  4.4786e-03,\n",
+      "        -9.3038e-02,  1.2912e-02, -8.9062e-03,  1.6966e-02, -1.4413e-02,\n",
+      "        -1.9509e-02,  4.3829e-03, -9.9853e-03, -6.7538e-02, -1.2108e-03,\n",
+      "         4.5184e-02,  6.0995e-06, -1.9248e-02, -4.9861e-02, -3.1567e-02,\n",
+      "         8.4392e-04,  3.3696e-02, -1.0544e-02,  2.3590e-03,  1.9990e-02,\n",
+      "         1.8189e-03,  1.0107e-02, -3.1159e-02,  6.4380e-03, -9.2177e-03,\n",
+      "         2.2857e-07, -9.9787e-03, -1.6562e-02,  1.9596e-03, -3.5848e-02,\n",
+      "         1.7392e-01,  1.6881e-02, -1.5097e-03, -8.6474e-02,  2.2218e-07,\n",
+      "        -5.0976e-02, -7.8236e-03,  1.0093e-02, -1.0367e-07,  3.2229e-02,\n",
+      "        -2.0302e-02,  4.7920e-03, -1.5574e-02,  7.2119e-03, -2.5188e-02,\n",
+      "        -2.5681e-04,  4.2982e-04,  7.8671e-02, -5.6786e-03,  7.6303e-02,\n",
+      "         1.4494e-02, -2.3212e-09,  6.1158e-03, -4.4997e-02, -2.6336e-02,\n",
+      "        -3.1374e-06, -1.0916e-01, -8.1791e-02,  4.7067e-06,  5.5492e-02,\n",
+      "        -2.0825e-02, -2.8649e-03, -2.5738e-02,  7.3144e-02,  9.4058e-03,\n",
+      "         1.1505e-02,  8.7335e-03, -1.4188e-02,  1.1814e-02, -1.9960e-02,\n",
+      "        -3.8797e-02,  8.9446e-07,  1.4323e-02, -3.6206e-02,  5.3555e-05,\n",
+      "         1.6399e-01, -4.1155e-08,  8.1917e-08, -2.1801e-02,  2.3990e-04,\n",
+      "        -5.3187e-02,  1.2736e-02,  3.8947e-02,  2.4145e-02, -2.5333e-02,\n",
+      "        -4.0981e-02,  6.2956e-02, -9.2825e-03, -9.3338e-03, -2.0638e-03,\n",
+      "        -2.0929e-02,  7.5254e-02, -1.0473e-07, -9.1235e-03, -3.5427e-02,\n",
+      "         6.0409e-03,  1.0857e-02, -1.0916e-08,  2.5767e-03,  9.8002e-03,\n",
+      "        -4.1141e-02, -8.4034e-03,  2.0212e-02, -6.3904e-02, -1.6978e-03,\n",
+      "         7.8319e-03,  5.1657e-03, -4.6650e-03, -8.1840e-02, -3.7151e-02,\n",
+      "         8.3244e-03, -8.6334e-06, -2.6810e-02, -5.7618e-03,  1.8626e-02,\n",
+      "         2.0163e-02,  1.0541e-01,  1.7297e-03, -1.3397e-01, -8.3439e-03,\n",
+      "         3.4979e-03, -3.5877e-02,  3.7899e-02,  2.9477e-08, -2.6700e-02,\n",
+      "         2.4249e-03,  2.8696e-03,  2.7628e-02, -1.7960e-02,  9.7157e-05,\n",
+      "         4.6413e-02, -1.6191e-03,  3.8034e-02,  7.9048e-03,  9.9035e-09,\n",
+      "         1.9644e-02, -1.4138e-03])), ('pretrained_model.layer2.0.bn3.running_var', tensor([4.1516e-04, 5.9319e-03, 3.4556e-06, 2.1070e-03, 2.2854e-04, 9.0417e-12,\n",
+      "        4.9586e-03, 4.4758e-04, 1.5877e-04, 4.7678e-04, 1.3206e-03, 2.3911e-03,\n",
+      "        2.5239e-03, 6.1524e-04, 3.3175e-11, 1.7070e-03, 1.1811e-02, 2.3019e-04,\n",
+      "        3.3397e-03, 1.3095e-03, 1.9598e-03, 2.3971e-04, 3.6930e-03, 6.7148e-14,\n",
+      "        5.1691e-03, 1.9098e-04, 2.0953e-03, 2.8020e-03, 2.0333e-10, 4.1032e-03,\n",
+      "        2.9445e-03, 4.7825e-04, 1.5701e-03, 2.3686e-03, 1.9707e-03, 5.0479e-03,\n",
+      "        5.0759e-03, 5.8334e-03, 7.5290e-06, 1.3434e-02, 4.9776e-03, 3.9253e-03,\n",
+      "        1.1153e-03, 1.6338e-04, 1.5153e-04, 3.5822e-03, 2.8160e-04, 2.7108e-03,\n",
+      "        2.6034e-03, 2.7290e-03, 3.6111e-04, 7.0101e-08, 2.0634e-03, 2.3518e-03,\n",
+      "        2.1503e-04, 2.7681e-03, 6.8871e-04, 1.0944e-03, 7.0355e-03, 9.5064e-13,\n",
+      "        2.5590e-04, 2.4661e-03, 2.3166e-03, 1.9599e-04, 1.5887e-03, 2.8458e-03,\n",
+      "        7.5814e-04, 4.0025e-03, 1.3412e-11, 3.7028e-03, 7.6216e-03, 4.0218e-03,\n",
+      "        3.7790e-03, 2.3107e-03, 6.0062e-03, 4.3587e-04, 4.6702e-03, 3.4776e-04,\n",
+      "        5.2212e-03, 2.4083e-03, 4.3189e-03, 2.3910e-03, 6.3264e-05, 4.6010e-03,\n",
+      "        1.8950e-03, 5.8824e-03, 5.2664e-03, 2.1555e-04, 5.0366e-04, 2.0276e-11,\n",
+      "        5.7586e-12, 3.5668e-03, 1.2014e-03, 3.5997e-04, 1.8765e-15, 2.1521e-03,\n",
+      "        5.2134e-03, 7.3282e-04, 2.3625e-03, 4.8430e-04, 3.0430e-03, 2.8533e-03,\n",
+      "        4.3962e-04, 3.6197e-03, 5.4971e-04, 1.7996e-07, 3.6087e-03, 1.8330e-03,\n",
+      "        4.4459e-03, 4.6127e-04, 3.9510e-03, 3.7460e-03, 2.6922e-13, 2.7214e-03,\n",
+      "        2.4722e-04, 5.1834e-03, 1.9177e-03, 4.1438e-03, 5.1866e-03, 1.5785e-03,\n",
+      "        1.9905e-03, 2.2615e-03, 2.6790e-03, 2.1149e-03, 1.3846e-03, 1.1036e-03,\n",
+      "        5.6527e-03, 1.9447e-03, 1.0173e-03, 2.9275e-03, 4.0837e-03, 2.1027e-03,\n",
+      "        2.2198e-03, 2.3379e-11, 4.3485e-03, 1.1055e-03, 3.4127e-03, 4.7221e-03,\n",
+      "        1.9646e-13, 2.2449e-03, 2.5953e-03, 2.9031e-03, 3.4266e-03, 5.8268e-08,\n",
+      "        5.2593e-04, 2.5467e-04, 2.0364e-04, 2.8864e-03, 1.0563e-02, 3.8502e-03,\n",
+      "        7.9475e-03, 1.5343e-03, 2.3341e-03, 2.3690e-10, 3.7504e-04, 5.1385e-03,\n",
+      "        3.4663e-04, 1.3749e-11, 3.7592e-03, 1.8875e-03, 4.3737e-03, 4.5447e-04,\n",
+      "        5.2911e-03, 3.2337e-03, 3.7611e-03, 1.8683e-07, 3.3618e-03, 2.0085e-03,\n",
+      "        2.6251e-03, 1.4517e-03, 7.0709e-14, 1.1928e-02, 1.5009e-02, 6.1177e-04,\n",
+      "        4.7773e-11, 3.6405e-03, 2.3416e-03, 5.7876e-03, 2.2410e-04, 3.1527e-03,\n",
+      "        4.2180e-03, 3.3198e-03, 4.3644e-03, 4.7005e-04, 2.3597e-03, 4.1196e-04,\n",
+      "        1.0273e-12, 2.8070e-03, 2.7657e-04, 3.4665e-03, 5.6706e-03, 2.7554e-03,\n",
+      "        3.1420e-03, 5.0252e-03, 1.2019e-03, 3.9200e-03, 1.4538e-15, 3.4809e-03,\n",
+      "        5.8148e-04, 2.5852e-04, 3.6281e-12, 3.7289e-03, 4.1555e-03, 1.6645e-04,\n",
+      "        1.4155e-13, 1.3698e-03, 2.3157e-03, 3.3245e-03, 8.9913e-04, 7.5587e-05,\n",
+      "        2.1912e-03, 8.8877e-03, 6.5253e-03, 1.7423e-11, 7.9321e-04, 3.8632e-03,\n",
+      "        1.8438e-03, 7.2225e-04, 5.3368e-04, 4.8747e-03, 1.2022e-03, 1.4396e-03,\n",
+      "        8.4618e-16, 1.6034e-03, 3.7454e-03, 3.7687e-03, 2.4507e-03, 8.3690e-04,\n",
+      "        4.2256e-03, 6.3856e-03, 2.3823e-03, 2.7329e-03, 3.3692e-04, 4.6099e-04,\n",
+      "        1.8018e-15, 4.9967e-03, 2.6528e-10, 4.6331e-03, 6.1907e-03, 2.0004e-03,\n",
+      "        1.3179e-09, 1.3984e-03, 3.3665e-03, 6.5440e-04, 1.6510e-03, 2.7930e-03,\n",
+      "        2.4215e-03, 7.8180e-03, 3.0428e-03, 2.1173e-04, 4.4667e-03, 5.9853e-04,\n",
+      "        2.9945e-03, 3.3703e-03, 2.0059e-03, 2.0658e-04, 3.9413e-03, 2.9292e-03,\n",
+      "        6.3838e-03, 4.4543e-03, 1.4000e-03, 6.8841e-03, 5.2028e-03, 2.9922e-04,\n",
+      "        3.2718e-03, 1.3768e-03, 1.3423e-03, 1.7441e-04, 4.5780e-04, 1.5930e-04,\n",
+      "        8.4680e-10, 2.7861e-03, 3.3260e-13, 2.3824e-03, 3.9956e-03, 4.4541e-04,\n",
+      "        1.0428e-03, 1.9248e-04, 2.3697e-03, 6.6609e-03, 2.5596e-03, 3.6487e-04,\n",
+      "        2.8278e-03, 1.7834e-04, 3.9156e-04, 2.2648e-04, 5.3659e-03, 3.2391e-03,\n",
+      "        3.5109e-03, 1.5842e-03, 1.8967e-04, 6.6638e-08, 2.9122e-03, 3.4501e-03,\n",
+      "        1.6974e-03, 6.3686e-03, 5.8792e-03, 1.3137e-09, 2.6207e-04, 7.8143e-07,\n",
+      "        3.7781e-03, 1.6901e-03, 1.4682e-03, 2.3285e-03, 1.2456e-03, 2.3560e-03,\n",
+      "        6.8412e-04, 2.5041e-03, 1.0483e-03, 1.6279e-04, 2.2792e-03, 6.7343e-12,\n",
+      "        1.8507e-14, 9.1546e-13, 4.8266e-04, 1.7482e-03, 3.4322e-03, 4.8957e-04,\n",
+      "        4.7489e-14, 5.4133e-04, 2.7424e-03, 3.2420e-03, 1.8353e-03, 9.0017e-04,\n",
+      "        8.8115e-03, 1.6863e-15, 1.5898e-03, 2.9350e-03, 2.4394e-03, 3.1835e-03,\n",
+      "        4.9231e-03, 6.9455e-03, 7.2698e-14, 1.7022e-04, 1.4084e-03, 1.4628e-03,\n",
+      "        3.1734e-03, 2.3527e-04, 3.8303e-03, 1.1046e-03, 5.1654e-04, 3.0363e-03,\n",
+      "        4.6275e-04, 3.4173e-03, 8.7836e-04, 6.2120e-03, 5.2877e-15, 4.3199e-04,\n",
+      "        1.8823e-03, 7.9704e-04, 3.1212e-03, 2.5516e-04, 5.9743e-03, 2.0826e-04,\n",
+      "        8.0516e-04, 2.6904e-03, 1.7331e-03, 4.3743e-04, 3.2908e-03, 3.2865e-03,\n",
+      "        3.1234e-03, 3.6878e-03, 2.0335e-03, 2.1683e-04, 5.7450e-10, 5.6557e-03,\n",
+      "        2.2494e-03, 4.5001e-03, 4.3671e-03, 1.9956e-03, 2.4376e-12, 2.9500e-04,\n",
+      "        4.2105e-03, 5.7141e-03, 8.7107e-03, 6.7720e-03, 1.4918e-03, 3.8328e-03,\n",
+      "        9.1296e-04, 2.2683e-04, 5.6416e-03, 4.3873e-03, 3.2634e-04, 2.6348e-03,\n",
+      "        5.2999e-03, 2.6988e-03, 4.0886e-10, 4.1228e-04, 4.3375e-03, 4.0456e-03,\n",
+      "        5.8022e-03, 4.8562e-03, 3.0039e-04, 5.1766e-04, 6.6507e-03, 1.1465e-03,\n",
+      "        3.9244e-04, 1.8540e-03, 3.1595e-03, 1.4261e-03, 1.1146e-13, 4.0370e-04,\n",
+      "        4.3588e-03, 2.0398e-03, 3.8991e-03, 9.0730e-03, 1.2462e-03, 1.5706e-03,\n",
+      "        2.4915e-03, 1.2064e-13, 3.3192e-03, 3.8197e-03, 3.5739e-04, 8.4134e-15,\n",
+      "        2.0698e-03, 2.2335e-03, 3.3762e-04, 4.3513e-03, 3.2434e-04, 3.8435e-03,\n",
+      "        3.1343e-03, 6.2436e-04, 1.2736e-03, 2.9089e-03, 2.1598e-03, 1.1986e-03,\n",
+      "        6.8325e-14, 8.1914e-04, 3.9374e-03, 1.3560e-03, 4.9454e-12, 2.2364e-03,\n",
+      "        5.5100e-03, 2.4269e-11, 4.8965e-03, 2.5641e-03, 2.3769e-03, 4.0910e-03,\n",
+      "        4.5554e-03, 3.0534e-03, 1.6065e-03, 3.3777e-04, 1.4112e-03, 1.0037e-03,\n",
+      "        5.0977e-04, 2.9976e-03, 1.3969e-12, 4.4910e-03, 7.4521e-03, 5.9600e-09,\n",
+      "        7.8321e-03, 3.4604e-13, 3.4791e-14, 4.2452e-03, 2.9734e-06, 3.0948e-03,\n",
+      "        4.5035e-03, 3.6172e-03, 6.0754e-04, 8.8752e-03, 1.5881e-03, 4.0475e-03,\n",
+      "        4.5011e-04, 3.3994e-03, 1.0555e-03, 6.7752e-03, 1.2177e-03, 1.7859e-14,\n",
+      "        3.9145e-04, 3.1381e-03, 1.8422e-03, 8.5579e-04, 6.3254e-16, 3.2166e-04,\n",
+      "        2.8144e-04, 3.4405e-03, 1.3782e-03, 3.4368e-04, 4.8875e-03, 3.3888e-03,\n",
+      "        7.9784e-04, 3.3785e-03, 3.5373e-04, 4.1432e-03, 3.7626e-03, 2.2830e-03,\n",
+      "        4.3118e-11, 3.1331e-03, 3.6231e-04, 1.6328e-03, 3.4037e-03, 2.6121e-03,\n",
+      "        4.6299e-04, 6.4190e-03, 3.1169e-04, 3.1148e-03, 4.5350e-03, 9.5884e-04,\n",
+      "        5.0457e-16, 3.6729e-03, 2.7344e-04, 1.1528e-03, 2.7612e-03, 1.3987e-03,\n",
+      "        2.0865e-03, 6.1355e-04, 2.3153e-04, 1.2567e-03, 1.9637e-03, 1.1737e-13,\n",
+      "        6.7311e-03, 3.9002e-04])), ('pretrained_model.layer2.0.bn3.num_batches_tracked', tensor(0)), ('pretrained_model.layer2.0.downsample.0.weight', tensor([[[[ 6.9556e-02]],\n",
+      "\n",
+      "         [[ 1.0062e-02]],\n",
+      "\n",
+      "         [[ 2.1975e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.8937e-01]],\n",
+      "\n",
+      "         [[-2.5890e-03]],\n",
+      "\n",
+      "         [[ 5.9817e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-8.2432e-03]],\n",
+      "\n",
+      "         [[-4.9590e-04]],\n",
+      "\n",
+      "         [[ 1.5342e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-3.0928e-03]],\n",
+      "\n",
+      "         [[-3.2421e-02]],\n",
+      "\n",
+      "         [[-5.3922e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 8.6861e-04]],\n",
+      "\n",
+      "         [[ 1.0023e-03]],\n",
+      "\n",
+      "         [[ 1.5387e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 2.5072e-04]],\n",
+      "\n",
+      "         [[-2.0868e-03]],\n",
+      "\n",
+      "         [[-1.0995e-04]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 1.0169e-07]],\n",
+      "\n",
+      "         [[ 5.2050e-08]],\n",
+      "\n",
+      "         [[ 9.1730e-08]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-3.7455e-08]],\n",
+      "\n",
+      "         [[-1.5335e-07]],\n",
+      "\n",
+      "         [[ 1.0349e-07]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 5.0800e-03]],\n",
+      "\n",
+      "         [[-9.1093e-03]],\n",
+      "\n",
+      "         [[-4.0290e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.4017e-02]],\n",
+      "\n",
+      "         [[ 2.1902e-02]],\n",
+      "\n",
+      "         [[ 1.6923e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 7.8446e-04]],\n",
+      "\n",
+      "         [[-4.8901e-02]],\n",
+      "\n",
+      "         [[-5.4658e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 8.9102e-03]],\n",
+      "\n",
+      "         [[-3.4122e-02]],\n",
+      "\n",
+      "         [[ 9.2510e-03]]]])), ('pretrained_model.layer2.0.downsample.1.weight', tensor([ 2.2905e-01,  1.3334e-01,  2.5130e-03,  8.5237e-02,  1.0498e-01,\n",
+      "         2.2368e-06,  1.0818e-01,  2.6588e-01,  1.7733e-01,  1.8603e-02,\n",
+      "         1.1785e-01,  2.1833e-01,  1.8287e-01,  1.8346e-01, -2.6382e-06,\n",
+      "         1.1347e-01,  6.1128e-02,  1.4771e-01,  8.7260e-02,  1.5906e-01,\n",
+      "         7.4034e-02,  1.9824e-01,  1.4887e-01,  3.5617e-07,  1.8605e-01,\n",
+      "         8.2429e-02,  1.4621e-01,  6.7593e-02, -4.3055e-06,  4.9185e-02,\n",
+      "         1.6909e-01,  1.6868e-01,  9.2845e-02,  1.4064e-01,  2.1738e-01,\n",
+      "         1.5733e-01,  1.9692e-01,  1.5076e-01, -1.6825e-03,  1.2370e-01,\n",
+      "         9.1547e-02,  3.0832e-02,  1.0799e-01,  2.4660e-01,  6.7271e-02,\n",
+      "         7.1339e-02,  2.7283e-01,  1.3606e-01,  4.1260e-02,  1.0782e-01,\n",
+      "         1.4974e-01,  9.3232e-04,  1.8187e-02,  1.9123e-01,  3.1239e-01,\n",
+      "         2.4052e-02,  1.3721e-01,  6.7578e-02,  1.3220e-01,  8.2464e-07,\n",
+      "         1.5912e-01,  1.4003e-01,  5.6259e-02,  2.2975e-01,  4.4554e-02,\n",
+      "         9.2456e-02,  2.0642e-01,  6.8993e-02,  2.7792e-06,  6.6575e-02,\n",
+      "         1.7187e-02,  1.1261e-01,  7.8632e-02,  9.6343e-02,  3.0183e-02,\n",
+      "         2.6061e-01,  5.2601e-02,  2.1547e-01,  1.5773e-01,  9.5484e-02,\n",
+      "         9.0234e-02,  1.0586e-01,  4.4244e-02,  6.5572e-02,  1.0936e-01,\n",
+      "         1.2764e-01,  1.3467e-01,  7.7923e-02,  2.9862e-01, -1.7088e-06,\n",
+      "         1.8683e-06,  1.0026e-01,  6.8955e-02,  2.1377e-01,  5.7626e-09,\n",
+      "         1.6670e-02,  1.6743e-01,  2.0428e-01,  2.3083e-01,  3.0346e-01,\n",
+      "         2.4954e-01,  5.0435e-02,  2.8103e-01,  6.1800e-02,  1.9377e-01,\n",
+      "         1.2615e-04,  9.2148e-02,  9.6367e-02,  1.5461e-01,  1.7177e-01,\n",
+      "         1.6547e-01,  6.3011e-02,  7.0151e-07,  9.9529e-02,  1.9384e-01,\n",
+      "         1.5263e-01,  6.3796e-02,  1.7913e-01,  9.0223e-02,  1.8230e-01,\n",
+      "         7.7168e-02,  1.4827e-01,  1.7350e-01,  1.9863e-01,  1.1434e-01,\n",
+      "         2.4926e-01,  9.2532e-02,  2.4165e-01,  1.4114e-01,  1.0343e-01,\n",
+      "         1.0257e-01,  5.6057e-02,  1.3207e-01,  1.4808e-06,  1.9704e-01,\n",
+      "         9.6485e-02,  1.2138e-01,  1.8418e-01, -1.3311e-07,  1.2205e-01,\n",
+      "         1.6792e-01,  6.0453e-02,  8.9900e-02,  8.4732e-05,  8.6567e-02,\n",
+      "         3.1752e-01,  2.6648e-01,  1.3441e-01,  3.7472e-02,  2.3022e-01,\n",
+      "         1.1840e-01,  7.8287e-02,  2.1065e-01,  9.2223e-06,  2.3664e-01,\n",
+      "         1.7132e-01,  2.6092e-01,  1.9829e-06,  2.0859e-01,  9.9616e-02,\n",
+      "         8.8150e-02,  2.7528e-01,  9.7526e-02,  2.6974e-01,  5.8634e-02,\n",
+      "         3.1023e-04,  2.3380e-01,  9.5560e-02,  4.7185e-02,  6.8233e-02,\n",
+      "         4.9119e-07,  1.5598e-01,  1.1217e-02,  1.8196e-01,  8.8927e-06,\n",
+      "        -9.9172e-04,  1.3585e-01,  1.1154e-01,  1.0893e-01,  2.1318e-01,\n",
+      "         1.3570e-01,  1.2018e-01,  6.7045e-02,  2.3477e-01,  2.4790e-01,\n",
+      "         3.0535e-01,  9.1135e-07,  1.7389e-01,  2.6826e-01,  1.1535e-01,\n",
+      "         1.8509e-01,  1.6915e-01,  1.6463e-01,  2.2461e-01,  2.6131e-01,\n",
+      "         1.0507e-01, -2.1292e-08,  4.8447e-02,  1.0811e-01,  2.9707e-01,\n",
+      "        -1.0774e-06,  5.4698e-02,  1.7205e-01,  1.2100e-01,  2.4477e-07,\n",
+      "         8.2616e-02,  4.3816e-02,  1.4389e-01,  2.2848e-01, -3.1067e-03,\n",
+      "         2.0757e-01,  5.3628e-02,  1.8962e-01,  2.8466e-06,  7.9750e-02,\n",
+      "         9.1455e-02,  1.4500e-01,  2.4923e-01,  4.1857e-02,  3.3492e-02,\n",
+      "         1.4221e-01,  5.3079e-02,  4.2884e-08,  6.7521e-02,  1.8217e-01,\n",
+      "         3.9279e-02,  9.8993e-02,  2.5984e-01,  8.7304e-02,  6.9955e-02,\n",
+      "         1.4327e-02,  2.0386e-01,  2.3879e-02,  5.2014e-02,  4.2899e-08,\n",
+      "         7.3717e-02,  7.3760e-06,  5.6383e-02,  3.8896e-02,  1.6598e-01,\n",
+      "         5.9953e-05,  2.9251e-01,  5.5456e-02,  2.2132e-01,  3.9602e-02,\n",
+      "         1.5667e-01,  2.3712e-01,  1.0620e-01,  7.4309e-02,  2.0643e-01,\n",
+      "         4.7460e-02,  2.2842e-01,  6.8417e-02,  1.1606e-01,  6.0267e-02,\n",
+      "         2.3443e-01,  5.1772e-02,  1.4391e-01,  5.2320e-02,  1.3564e-01,\n",
+      "         1.1835e-01,  4.5913e-02,  5.1183e-02,  2.0833e-01,  6.7737e-02,\n",
+      "         2.9661e-01,  3.8392e-02,  3.0582e-01,  2.1747e-01,  2.3114e-01,\n",
+      "         4.5101e-05,  8.3539e-02,  8.5537e-07,  1.1647e-01,  8.0110e-02,\n",
+      "         2.1434e-01,  1.4334e-01,  8.8062e-02,  9.0352e-02,  1.2399e-01,\n",
+      "         1.5981e-01,  2.1237e-01,  6.9263e-02,  1.7849e-01,  1.7572e-01,\n",
+      "         3.4089e-01,  3.0605e-02,  1.2919e-01,  1.2557e-01,  9.1466e-02,\n",
+      "         2.8423e-01,  3.4785e-04,  6.7436e-02,  7.1915e-02,  1.3424e-01,\n",
+      "         9.2983e-02,  5.8937e-02,  4.1377e-05,  2.2539e-01, -7.6768e-06,\n",
+      "         8.8839e-02,  1.3987e-01,  6.3230e-02,  1.2119e-01,  1.3392e-01,\n",
+      "         1.1308e-01,  8.8913e-02,  1.6650e-01,  1.4328e-01,  3.3727e-01,\n",
+      "         6.9529e-02,  2.7132e-06,  5.9267e-08, -2.2473e-07,  2.3401e-01,\n",
+      "         9.7856e-02,  3.7830e-02,  3.4784e-01,  2.0462e-07,  1.5261e-01,\n",
+      "         3.9215e-02,  1.9968e-01,  7.7037e-02,  8.4943e-02,  1.4937e-01,\n",
+      "        -2.9124e-08,  1.3256e-01,  1.7599e-01,  1.6655e-01,  1.1917e-01,\n",
+      "         1.0304e-01,  6.7605e-02,  1.5522e-07,  3.4164e-01,  7.5571e-02,\n",
+      "         1.6628e-01,  1.0567e-01,  2.1995e-01,  6.1358e-02,  1.6467e-01,\n",
+      "         1.9280e-01,  9.7916e-02,  2.4211e-01,  7.9046e-03,  2.6496e-01,\n",
+      "         1.7196e-01,  1.1313e-08,  1.9653e-01,  6.4405e-02,  1.6719e-01,\n",
+      "         2.1347e-01,  2.1254e-01,  1.6297e-01,  2.8897e-01,  2.0967e-01,\n",
+      "         1.4971e-01,  1.4200e-01,  2.2651e-01,  2.2673e-01,  5.3756e-02,\n",
+      "         1.7092e-01,  1.8247e-01,  1.1341e-01,  3.0826e-01,  1.3472e-05,\n",
+      "         1.5560e-01,  7.7750e-02,  7.9712e-02,  2.0095e-01,  1.6768e-01,\n",
+      "         1.7497e-06,  2.0241e-01,  1.3917e-01,  1.1049e-01,  2.7008e-02,\n",
+      "         9.8754e-02,  1.3049e-01,  8.6774e-02,  5.4223e-02,  2.1883e-01,\n",
+      "        -1.1393e-02,  1.0433e-01,  2.0812e-01,  1.3551e-01,  8.6413e-02,\n",
+      "         6.0741e-02,  2.2140e-05,  2.3596e-01,  1.9811e-01,  9.5988e-02,\n",
+      "         5.2684e-02,  3.7355e-02,  1.5851e-01,  1.3032e-01,  1.1553e-01,\n",
+      "         3.2047e-01,  3.2856e-01,  1.5830e-01,  1.3667e-01,  5.6892e-02,\n",
+      "         4.5362e-07,  3.2641e-01,  1.7188e-02,  1.8355e-01,  2.6297e-01,\n",
+      "         1.6312e-01,  2.3254e-01,  1.0977e-01,  1.0859e-01,  3.3013e-07,\n",
+      "         1.2116e-01,  6.0530e-02,  1.8365e-01,  5.8436e-08,  1.0360e-01,\n",
+      "         3.9891e-02,  1.1232e-01,  2.5503e-04,  2.4289e-01,  1.3483e-01,\n",
+      "         8.9075e-02,  6.6760e-02,  8.9852e-02,  1.7449e-01,  2.1131e-01,\n",
+      "         2.9920e-02,  2.9202e-07,  9.2574e-02,  1.7978e-01,  1.2076e-01,\n",
+      "         2.1570e-06,  5.8588e-02,  4.8617e-02,  1.4497e-06,  3.8282e-01,\n",
+      "         7.3756e-02,  4.5868e-02,  1.2615e-01,  8.8847e-02,  6.2603e-02,\n",
+      "         9.6624e-02,  2.2454e-01,  2.7598e-01,  2.6457e-01,  1.2107e-01,\n",
+      "         7.5170e-02, -2.3648e-07,  8.4870e-02,  1.6950e-01, -2.7121e-05,\n",
+      "         9.8498e-02,  5.4717e-07,  1.0450e-07,  5.0256e-02,  9.4089e-04,\n",
+      "         2.4439e-01,  4.2993e-02,  8.9608e-02,  3.3711e-01,  2.3381e-01,\n",
+      "         5.0922e-02,  3.3525e-02,  3.9632e-02,  1.8665e-01,  2.5028e-01,\n",
+      "         7.6440e-02,  1.6637e-02,  7.6253e-08,  2.5788e-01,  6.4059e-02,\n",
+      "         1.1511e-01,  3.2620e-01,  1.3851e-08,  2.1607e-01,  1.6366e-01,\n",
+      "         1.1917e-01,  2.3523e-01,  1.3468e-01,  1.1608e-01,  2.5347e-02,\n",
+      "         1.1203e-01,  1.2542e-01,  7.3906e-02,  1.3870e-01,  7.3431e-02,\n",
+      "         1.1995e-01, -1.1865e-06,  1.4609e-01,  1.8913e-01,  2.2971e-01,\n",
+      "         5.6234e-02,  9.0699e-02,  1.5800e-01,  9.1420e-02,  2.7979e-01,\n",
+      "         2.7144e-01,  8.6832e-02,  1.8441e-01,  1.4650e-08,  1.1525e-01,\n",
+      "         1.4703e-01,  1.6459e-01,  5.5010e-02,  1.4593e-01,  7.0319e-02,\n",
+      "         2.4041e-01,  2.5173e-01,  1.3909e-01,  1.5496e-01,  1.8202e-07,\n",
+      "         7.6415e-02,  2.2843e-01])), ('pretrained_model.layer2.0.downsample.1.bias', tensor([ 6.9339e-02, -6.4782e-02, -4.8200e-03,  1.7740e-02,  4.2893e-02,\n",
+      "        -7.7263e-06,  5.6366e-03,  7.1845e-02,  4.7598e-02,  7.8273e-02,\n",
+      "         1.1747e-02, -4.8748e-02,  3.4993e-04,  6.9786e-02, -1.6638e-05,\n",
+      "        -2.9534e-02, -3.0673e-03,  1.6046e-02,  4.2380e-02, -1.4634e-02,\n",
+      "         4.9653e-02,  9.3853e-02, -2.0659e-02, -8.4248e-07,  1.4503e-02,\n",
+      "         6.7039e-02, -1.5668e-03, -4.1820e-02, -3.1132e-05,  3.7010e-02,\n",
+      "        -1.0305e-01,  8.8391e-02,  3.4045e-02, -1.7633e-02,  7.8432e-03,\n",
+      "        -1.8901e-02,  8.1341e-02,  6.1083e-02, -4.6983e-03,  1.0383e-01,\n",
+      "        -3.4040e-02,  6.8568e-03, -1.5223e-02,  4.4327e-02,  1.3771e-02,\n",
+      "        -5.4513e-02,  8.0323e-02, -3.8432e-02,  6.8424e-02, -6.0933e-02,\n",
+      "         9.4187e-02, -8.1873e-04,  6.3961e-02,  1.9933e-02,  8.5462e-02,\n",
+      "        -1.9864e-02, -1.2483e-02, -1.2199e-02,  2.3127e-02, -3.9750e-06,\n",
+      "         6.9949e-02,  2.1607e-03, -9.1863e-03, -1.4718e-02, -1.0497e-02,\n",
+      "         6.2319e-03, -9.8826e-02,  4.2343e-02, -7.6990e-06, -1.3164e-02,\n",
+      "        -1.5374e-03,  2.2193e-02, -1.6292e-02, -5.9422e-03, -6.7113e-02,\n",
+      "         3.9987e-02, -5.0628e-02,  5.2359e-02,  5.3470e-03, -6.0301e-02,\n",
+      "        -1.9681e-02,  1.9827e-02, -2.5480e-02,  4.9395e-02, -7.7383e-03,\n",
+      "         4.1438e-02,  9.6639e-02,  1.1351e-02,  7.4442e-02, -9.9106e-06,\n",
+      "        -7.4712e-06, -5.1581e-02, -5.3561e-02,  2.1121e-02, -1.5526e-07,\n",
+      "        -1.7140e-02,  2.0112e-02,  3.4612e-02,  1.0481e-02,  1.7325e-02,\n",
+      "        -1.0769e-02, -4.2280e-02,  7.8137e-02,  3.4714e-02,  1.0917e-01,\n",
+      "        -8.7885e-04,  3.6658e-02, -5.1895e-02,  2.8223e-02, -9.7024e-03,\n",
+      "         9.4298e-02,  4.5469e-02, -2.7883e-06, -2.8293e-02,  9.3717e-02,\n",
+      "         1.0465e-01, -1.8332e-02, -1.6307e-02,  4.2130e-02,  6.0928e-02,\n",
+      "         6.4616e-04,  4.4633e-02,  6.8948e-02, -1.2417e-02, -3.2055e-02,\n",
+      "         1.7810e-01, -3.3538e-02,  7.3654e-02,  6.9471e-04, -5.2052e-02,\n",
+      "        -2.1123e-02,  1.5327e-02,  1.8440e-02, -6.9650e-06,  8.4333e-02,\n",
+      "        -8.2091e-03,  1.7105e-02,  2.5182e-02, -1.3876e-06,  3.3132e-03,\n",
+      "        -4.9984e-03, -3.3982e-02, -2.5524e-02, -4.6927e-04, -3.2537e-02,\n",
+      "        -9.3983e-03,  5.6763e-02, -3.1186e-02,  6.5809e-02, -3.7913e-02,\n",
+      "         5.9931e-03,  3.7800e-02,  9.2255e-02, -6.1208e-05,  1.1271e-01,\n",
+      "         3.2105e-02,  3.3985e-02, -8.9602e-06,  4.9354e-02, -2.5818e-02,\n",
+      "         5.8767e-03,  8.3674e-02,  1.5523e-02,  6.1113e-02,  5.7355e-02,\n",
+      "        -1.3559e-03, -2.2360e-02, -2.3222e-02, -4.1805e-02, -1.5457e-02,\n",
+      "        -1.3183e-06,  3.3876e-02,  1.1503e-01,  1.2987e-01, -2.6607e-05,\n",
+      "        -6.6877e-02,  9.5109e-02, -3.3378e-02,  7.4441e-02, -1.1809e-02,\n",
+      "        -2.5652e-02, -1.2127e-02,  3.7790e-03,  7.8767e-02,  1.1977e-02,\n",
+      "         1.2906e-01, -2.7604e-06,  6.9785e-03,  8.0959e-02, -3.6111e-02,\n",
+      "        -1.3976e-02, -2.6720e-02,  4.2711e-02,  8.7091e-02,  1.7269e-01,\n",
+      "         1.3124e-02, -1.1463e-07, -2.3092e-02,  1.4040e-02, -3.4951e-02,\n",
+      "        -6.1428e-06,  4.0789e-02, -2.0534e-02,  5.3701e-02, -6.9600e-07,\n",
+      "        -5.0292e-02,  3.4429e-02,  4.3889e-02,  4.6811e-02, -8.6822e-03,\n",
+      "        -8.9620e-03,  1.1005e-01,  4.7067e-02, -9.9011e-06, -1.6912e-02,\n",
+      "        -1.6816e-02, -2.1849e-02,  1.6579e-01,  3.4252e-02,  1.2370e-02,\n",
+      "         4.9945e-02, -2.5040e-02, -1.2667e-07, -2.6292e-02,  1.9273e-02,\n",
+      "         1.0222e-02,  7.3961e-02,  2.3129e-01,  1.7878e-02, -1.5289e-02,\n",
+      "        -1.0321e-02,  5.3313e-02,  1.0399e-01, -2.9707e-02, -1.0903e-07,\n",
+      "         4.9294e-02, -2.6758e-05, -1.5038e-02,  3.5801e-02, -2.9614e-02,\n",
+      "        -1.8011e-04,  2.1745e-01,  2.1626e-02,  1.1472e-01,  2.4636e-03,\n",
+      "        -5.1773e-02,  3.9879e-02, -2.7467e-03, -4.0029e-02,  4.2881e-02,\n",
+      "         3.9950e-02,  1.4953e-01, -1.0647e-02,  1.0100e-02,  1.2328e-02,\n",
+      "         7.1610e-02, -2.4942e-02, -1.3498e-02,  4.0928e-02, -1.0016e-02,\n",
+      "        -3.7004e-02,  1.5781e-02,  1.6239e-03,  8.6911e-02,  7.1281e-05,\n",
+      "         1.0126e-01,  1.7498e-02,  3.4819e-02,  8.3628e-02,  6.1378e-02,\n",
+      "        -1.1950e-04, -2.1610e-02, -3.1952e-06,  6.7290e-02,  1.8532e-03,\n",
+      "         4.7994e-02, -1.0699e-03,  4.8065e-02, -2.1763e-02, -4.9477e-02,\n",
+      "        -2.9028e-02,  9.7271e-03, -1.9515e-02,  5.0183e-02,  9.6438e-02,\n",
+      "        -8.0472e-02,  7.7073e-03,  1.9895e-04, -3.7481e-02, -4.0463e-02,\n",
+      "         1.7932e-02, -9.6618e-04, -4.6559e-02, -5.3132e-02, -8.5598e-02,\n",
+      "         2.3857e-02,  4.1656e-02, -9.3212e-05,  2.9152e-02, -1.1914e-03,\n",
+      "         3.7758e-02, -2.1093e-02,  1.7667e-02,  5.1209e-02, -1.2304e-02,\n",
+      "        -1.5844e-02, -4.7244e-02,  3.8676e-02,  4.2152e-03, -8.2820e-02,\n",
+      "        -3.9472e-02, -1.7549e-05, -2.3700e-07, -2.2667e-06,  8.1415e-02,\n",
+      "        -1.7837e-02, -7.0754e-03,  1.3596e-01, -5.2882e-07,  8.3548e-02,\n",
+      "         2.0505e-02, -9.5717e-04,  3.9108e-02, -3.0842e-03,  9.6140e-03,\n",
+      "        -1.4764e-07, -7.7768e-02, -1.4023e-02, -5.1185e-03,  3.8983e-02,\n",
+      "         8.6186e-02,  1.0274e-02, -5.9361e-07, -7.6753e-02, -1.0281e-02,\n",
+      "         2.0084e-02, -3.9218e-03,  8.0291e-02, -2.5749e-02, -3.8512e-02,\n",
+      "         1.2795e-01, -5.2775e-03,  1.2438e-01, -4.1034e-02,  1.3129e-01,\n",
+      "         1.0288e-02, -1.8538e-07,  9.6370e-02, -1.3538e-02,  1.3604e-01,\n",
+      "         1.8194e-02, -8.2912e-02, -1.9061e-02,  3.3216e-02,  1.4159e-01,\n",
+      "        -1.0698e-02,  2.9216e-02,  1.7318e-01,  5.1754e-02, -4.0425e-02,\n",
+      "        -1.3848e-03,  2.4604e-02, -5.2583e-04, -4.7639e-02, -6.6002e-05,\n",
+      "        -2.9295e-02, -3.5808e-03, -1.2913e-02,  3.7809e-02, -2.9585e-02,\n",
+      "        -4.8915e-06,  1.4370e-01,  1.5088e-02,  4.3214e-02,  9.6021e-02,\n",
+      "        -2.8393e-02, -3.3584e-02,  4.5524e-03, -2.3623e-02,  3.5189e-02,\n",
+      "        -4.0384e-02,  8.7347e-03,  1.5261e-01,  5.9962e-02,  1.5251e-02,\n",
+      "         8.8878e-03, -5.8449e-05,  9.8839e-02,  7.7859e-02, -3.6466e-02,\n",
+      "         4.8346e-03, -5.4170e-03,  7.9756e-02, -3.1093e-02, -1.9649e-02,\n",
+      "         1.0686e-01,  7.7954e-02, -4.7760e-02, -5.7521e-03,  3.7461e-02,\n",
+      "        -1.8750e-06, -1.0218e-02, -4.1230e-02, -4.2377e-03, -4.2145e-02,\n",
+      "        -6.0218e-02,  3.6873e-02,  1.4680e-03,  2.8768e-02, -9.4124e-07,\n",
+      "         4.2859e-03, -1.5244e-02,  1.4775e-01, -2.3495e-07,  2.9173e-03,\n",
+      "        -3.4779e-02,  8.7643e-03, -4.1073e-02, -1.3386e-02, -6.6003e-03,\n",
+      "        -1.6743e-02, -4.7242e-02,  1.6029e-02, -2.8244e-02,  1.6250e-02,\n",
+      "        -3.2907e-02, -1.8808e-06,  6.1997e-03, -3.7102e-03, -2.4955e-03,\n",
+      "        -8.5595e-06,  4.2637e-02,  9.5459e-02, -7.8317e-06, -1.3040e-01,\n",
+      "        -1.6501e-02, -4.4692e-02, -5.7310e-02, -1.6812e-02, -6.1870e-03,\n",
+      "         2.5548e-02,  1.2538e-01, -6.5666e-02,  1.9255e-01,  6.5002e-02,\n",
+      "        -4.9470e-02, -2.2992e-06, -1.2185e-02,  1.8046e-03, -1.6454e-04,\n",
+      "        -4.1050e-02, -2.2847e-06, -4.5980e-07,  2.6041e-02, -4.3323e-03,\n",
+      "         2.0076e-02,  6.8514e-02, -3.4616e-02,  1.5082e-01,  8.6685e-02,\n",
+      "        -1.8361e-02,  4.5760e-02, -1.8631e-02,  5.3029e-02,  2.0477e-01,\n",
+      "        -1.0698e-02, -2.7648e-02, -3.7166e-07,  4.1970e-02, -3.0784e-02,\n",
+      "        -3.5303e-02,  1.6532e-01, -1.0183e-07,  9.6517e-02,  6.4394e-02,\n",
+      "         8.3244e-03,  8.1777e-02,  3.5471e-03,  1.3154e-02, -6.5233e-02,\n",
+      "        -5.3267e-03, -8.3223e-03,  4.2116e-02, -4.2961e-02, -2.2934e-02,\n",
+      "        -9.7483e-03, -1.6165e-05,  3.5856e-02,  6.9786e-02, -2.6884e-02,\n",
+      "        -2.0144e-02, -3.9733e-02,  5.9605e-02,  4.3758e-02,  1.2512e-01,\n",
+      "        -3.3471e-02, -1.8332e-02, -6.2678e-02, -5.8601e-08, -2.3637e-02,\n",
+      "         9.1848e-02, -9.9164e-02, -2.0208e-02,  7.6334e-03,  1.9571e-02,\n",
+      "         5.3493e-02,  4.0363e-02, -1.4143e-02, -3.7347e-02, -8.5167e-07,\n",
+      "         7.7024e-02,  1.4073e-01])), ('pretrained_model.layer2.0.downsample.1.running_mean', tensor([-2.1013e-02, -3.0009e-02, -6.5477e-03,  4.6756e-02,  6.9932e-02,\n",
+      "        -1.1758e-05, -1.4862e-01, -4.5270e-02,  1.7768e-01, -3.8375e-02,\n",
+      "        -2.4598e-02, -2.8597e-02, -1.2061e-01, -1.6511e-01, -5.7140e-06,\n",
+      "        -1.3034e-01,  1.7561e-01,  1.4938e-02, -5.3667e-02,  3.0510e-02,\n",
+      "         1.5231e-02,  4.7097e-02, -1.2996e-01, -4.5785e-07, -1.3351e-04,\n",
+      "        -7.6255e-02, -7.8924e-02, -2.9380e-02,  1.8635e-05, -9.4402e-02,\n",
+      "         2.7599e-02, -2.2603e-01,  5.7585e-02, -2.0670e-01,  6.9171e-02,\n",
+      "         1.1754e-01, -1.9799e-01, -5.9026e-02, -7.7243e-03, -3.6349e-03,\n",
+      "        -1.8423e-02, -2.3096e-02, -1.5448e-01, -7.9666e-02,  1.1897e-01,\n",
+      "        -5.6140e-02,  4.0665e-01, -6.2161e-02,  4.3632e-02,  1.6458e-02,\n",
+      "         4.1758e-02,  1.3159e-03,  7.0264e-03, -1.5051e-01,  1.8898e-03,\n",
+      "         3.2633e-02, -3.2151e-02,  7.9721e-03, -1.9303e-01,  4.0420e-06,\n",
+      "         1.8405e-01,  6.2025e-02,  3.5532e-02,  3.5298e-01,  6.0816e-02,\n",
+      "        -2.2784e-02,  2.8476e-03, -7.7678e-02,  1.2816e-05, -8.2666e-03,\n",
+      "        -5.8594e-02, -4.2965e-02, -1.3259e-01, -4.8276e-02, -2.7128e-02,\n",
+      "        -4.6876e-01, -3.5667e-03, -2.5225e-02, -9.7772e-02,  2.1185e-02,\n",
+      "         1.2728e-01,  4.6725e-02, -4.0375e-02,  5.4235e-02, -1.5770e-01,\n",
+      "        -7.7549e-02, -1.2009e-02,  3.0058e-03,  8.2061e-02,  5.5856e-06,\n",
+      "        -9.7256e-06,  1.0649e-02, -3.3211e-02,  1.6813e-01,  1.6512e-07,\n",
+      "        -6.4085e-02,  2.4066e-01,  3.0409e-01,  2.9558e-01,  2.5964e-01,\n",
+      "         1.6701e-01, -3.9737e-02,  1.8042e-01,  9.7847e-02, -5.6361e-02,\n",
+      "        -5.3578e-04,  1.1247e-01, -7.7179e-02,  1.3287e-01,  5.1525e-02,\n",
+      "        -3.6422e-01,  9.8686e-02, -2.2984e-06, -4.3000e-02, -1.5551e-02,\n",
+      "         1.5686e-01,  1.2740e-01, -2.3531e-01, -1.2709e-01, -1.0103e-01,\n",
+      "        -8.6333e-02, -4.7438e-02,  2.4127e-02, -1.0774e-03, -6.9126e-02,\n",
+      "        -1.8330e-01, -1.9113e-01, -1.4033e-01, -7.1034e-02, -8.9995e-02,\n",
+      "        -1.1391e-01,  1.5776e-02,  8.5794e-02,  1.9448e-06, -2.7707e-01,\n",
+      "        -1.1329e-01, -3.5237e-02, -7.0024e-02,  2.0621e-06,  1.0590e-02,\n",
+      "        -9.5172e-02, -3.8114e-02, -1.0228e-02, -2.1536e-05, -3.0030e-02,\n",
+      "        -2.9181e-01, -4.1123e-02, -3.5923e-02,  2.0064e-03, -1.5527e-01,\n",
+      "         1.6107e-02, -8.6564e-02,  8.8158e-03,  6.5151e-05,  2.2760e-02,\n",
+      "        -1.0479e-01,  8.7142e-02, -3.6546e-06,  1.0357e-01,  1.3535e-02,\n",
+      "         1.1708e-01, -3.4290e-01, -8.7613e-02, -6.3117e-03, -7.0645e-02,\n",
+      "         2.0659e-03,  2.0888e-03, -3.6187e-02,  7.0406e-02,  1.2829e-02,\n",
+      "         5.2832e-07, -5.2468e-02, -7.0229e-02, -4.7304e-02, -1.3443e-05,\n",
+      "         2.4147e-02, -1.2230e-01, -1.8318e-02,  1.8174e-01, -2.7392e-02,\n",
+      "         1.6117e-01, -8.8474e-02, -5.4855e-03,  1.9781e-01, -5.0063e-02,\n",
+      "        -1.6943e-01, -3.4640e-06, -2.7607e-03,  7.4105e-02,  2.6152e-01,\n",
+      "        -1.4848e-01,  7.2226e-02,  1.0513e-01, -1.8098e-01,  3.5896e-02,\n",
+      "        -5.1798e-02,  3.9187e-08, -2.8669e-02, -7.7335e-02,  2.1876e-01,\n",
+      "         3.3855e-06,  1.7614e-02,  3.3249e-03, -1.1171e-01, -1.0095e-06,\n",
+      "        -3.7124e-02, -3.5223e-02, -1.2900e-01, -1.6130e-01, -1.7708e-02,\n",
+      "         2.1636e-02,  1.0367e-03, -2.4096e-01, -9.1966e-06, -3.4520e-02,\n",
+      "         2.9577e-02, -1.1654e-01, -8.0706e-02,  4.1767e-02, -8.4773e-02,\n",
+      "        -5.5923e-02, -3.5569e-02, -2.3102e-07, -2.6017e-02, -3.0121e-03,\n",
+      "        -3.2467e-02,  7.0289e-02, -1.2156e-01,  6.0933e-02, -1.8731e-01,\n",
+      "         2.5705e-02,  5.4122e-02, -9.0224e-02, -3.8908e-02, -1.2057e-07,\n",
+      "         9.4794e-02, -4.1568e-05, -6.8551e-02, -6.0003e-02, -1.8814e-01,\n",
+      "        -4.2904e-05, -3.1238e-01,  8.3840e-02, -1.5510e-01, -2.8716e-02,\n",
+      "        -7.4701e-02,  1.8135e-01, -8.5262e-02, -7.4562e-02,  3.3567e-02,\n",
+      "        -1.9684e-03, -3.5912e-01, -3.4059e-02, -1.2811e-01, -4.0598e-02,\n",
+      "         1.2252e-01,  6.9332e-02, -2.9385e-02,  1.0392e-01, -1.6502e-01,\n",
+      "        -1.8211e-02,  9.3384e-02, -2.3950e-02, -2.8537e-01, -3.4736e-03,\n",
+      "        -1.4876e-01, -3.9290e-02, -1.6926e-01,  9.5066e-02,  1.8272e-02,\n",
+      "         2.6183e-04, -4.9630e-02,  1.4971e-06,  5.2276e-02, -4.7491e-02,\n",
+      "        -2.0137e-01, -4.7550e-02, -4.2816e-02, -9.0191e-02, -2.5231e-03,\n",
+      "        -3.6475e-02, -9.7801e-02,  2.9106e-02,  1.6801e-01, -2.8932e-02,\n",
+      "         1.4902e-01, -3.6119e-03,  2.5901e-02, -7.4511e-02, -6.9678e-02,\n",
+      "         1.6748e-01, -1.5660e-03, -1.2786e-02,  7.0046e-02, -3.1009e-02,\n",
+      "        -1.9232e-02,  7.1821e-02,  2.1053e-05,  8.3987e-02,  3.4098e-04,\n",
+      "         4.5730e-02, -1.4673e-01, -3.7969e-02, -1.1307e-01, -2.2561e-01,\n",
+      "        -2.1690e-01,  3.2605e-02, -7.7254e-02,  2.7837e-02,  1.7684e-01,\n",
+      "        -1.0243e-01, -6.2126e-06, -1.9896e-07,  1.4607e-06, -2.1577e-03,\n",
+      "         9.2023e-02, -6.0821e-02, -1.6726e-01, -7.4368e-08,  1.2260e-01,\n",
+      "        -5.2787e-02,  6.7948e-02,  1.2293e-01, -4.3308e-02, -1.4633e-01,\n",
+      "         1.3779e-07, -1.5872e-01, -9.2029e-03,  3.3792e-02, -7.9807e-02,\n",
+      "        -1.3726e-01,  1.0065e-01, -2.5495e-06, -1.4387e-02, -1.7349e-01,\n",
+      "        -5.4601e-02,  1.1172e-01,  2.7960e-02,  5.5682e-02,  8.1885e-02,\n",
+      "        -1.8351e-02,  1.6946e-01, -5.2987e-01, -9.1779e-03,  1.6884e-01,\n",
+      "         5.7887e-02, -5.0837e-08, -2.7578e-01, -3.9066e-02,  7.8022e-02,\n",
+      "         6.8825e-03, -1.5921e-02, -7.9338e-02, -1.5468e-02, -1.6015e-01,\n",
+      "        -1.2916e-01,  7.3250e-02, -2.0500e-01,  2.6799e-02, -5.2530e-03,\n",
+      "        -1.3585e-01, -2.0237e-01, -1.0371e-01,  9.6396e-02, -1.3513e-04,\n",
+      "        -3.8188e-02, -8.0088e-02,  2.2310e-02, -1.9221e-02, -1.8679e-01,\n",
+      "         1.8615e-06, -3.4000e-01,  2.5360e-02,  1.4184e-01,  7.1178e-02,\n",
+      "         1.8908e-01,  9.8083e-02, -7.2241e-02, -2.0245e-02, -8.7134e-02,\n",
+      "         4.9598e-02, -5.7670e-02, -2.6825e-01,  1.0361e-01, -4.7649e-02,\n",
+      "         3.2277e-02, -3.4183e-05,  8.3365e-02, -3.1829e-01, -1.5340e-01,\n",
+      "         3.0699e-02, -9.1864e-02,  1.5878e-01,  7.0420e-02, -1.2947e-01,\n",
+      "        -6.4747e-02, -2.2137e-01,  8.3180e-02, -9.4028e-02, -2.2172e-02,\n",
+      "         8.5766e-07,  4.5710e-03,  3.5335e-02, -9.6208e-02, -6.1933e-02,\n",
+      "        -5.5985e-02, -1.6708e-01, -1.3205e-02, -5.6504e-03,  2.5836e-06,\n",
+      "        -1.4969e-01, -1.9294e-01, -1.0973e-01, -2.0468e-07,  5.2797e-02,\n",
+      "        -1.3486e-02, -4.9456e-02,  2.8017e-02, -1.1716e-01, -2.8172e-02,\n",
+      "         2.6728e-02, -6.3363e-02, -3.7736e-02, -1.4640e-01, -5.1425e-02,\n",
+      "        -1.4274e-02, -1.0917e-06, -1.3263e-02,  1.5488e-02, -1.3891e-01,\n",
+      "        -6.0567e-06, -8.0983e-02, -7.0318e-02, -2.6240e-06,  1.4964e-01,\n",
+      "        -1.7952e-02, -3.7864e-03,  1.3439e-02,  6.2107e-03, -3.7817e-02,\n",
+      "        -4.5444e-02, -2.1872e-02,  5.6893e-02, -7.8215e-02, -7.3959e-03,\n",
+      "        -8.7905e-02, -1.2239e-06,  3.6003e-02, -1.3108e-01,  3.0469e-05,\n",
+      "         8.5869e-02,  1.0557e-06,  1.5487e-07, -8.9474e-03, -5.0894e-03,\n",
+      "        -2.1999e-02, -1.2691e-02,  1.6420e-02,  3.8440e-01, -4.5873e-01,\n",
+      "        -1.1008e-02, -1.1959e-02, -4.6046e-02, -7.6372e-02, -5.4254e-02,\n",
+      "        -6.2060e-02,  2.2528e-02, -2.6497e-08, -1.4962e-01,  4.2154e-02,\n",
+      "        -2.0233e-02, -5.8425e-02,  7.3439e-08,  1.9902e-01, -1.8018e-01,\n",
+      "        -7.1787e-02, -1.9790e-01, -2.6988e-02,  1.2584e-01,  4.8306e-02,\n",
+      "         1.5329e-01, -1.9867e-01,  1.6337e-01, -7.1005e-02, -1.4927e-01,\n",
+      "         1.1050e-01, -1.3321e-05, -1.3504e-01, -3.0588e-01, -3.6632e-01,\n",
+      "         6.9840e-02,  1.2553e-01, -2.9251e-02,  6.3894e-02, -2.8286e-01,\n",
+      "        -1.1343e-01, -7.3595e-02,  7.5146e-02,  1.2053e-08, -2.2408e-01,\n",
+      "        -7.3774e-02, -7.6733e-02,  5.3788e-02,  7.2703e-03,  1.5460e-02,\n",
+      "        -8.1302e-02,  1.2621e-01, -1.0408e-01,  7.1825e-02, -5.6080e-07,\n",
+      "         3.3785e-02, -2.7846e-01])), ('pretrained_model.layer2.0.downsample.1.running_var', tensor([4.1822e-02, 6.2186e-03, 6.6447e-05, 6.8577e-03, 1.8817e-02, 7.7347e-11,\n",
+      "        1.1481e-02, 5.5722e-02, 1.7680e-02, 2.0392e-03, 4.2828e-03, 1.2116e-02,\n",
+      "        1.6566e-02, 2.4478e-02, 3.1998e-11, 6.3450e-03, 9.3210e-03, 1.1364e-02,\n",
+      "        6.2535e-03, 1.1784e-02, 7.4726e-03, 2.3264e-02, 1.6399e-02, 1.4724e-12,\n",
+      "        2.1534e-02, 7.2711e-03, 6.1240e-03, 7.6579e-03, 1.7876e-10, 5.3201e-03,\n",
+      "        1.2262e-02, 3.8722e-02, 1.2992e-02, 8.2194e-03, 1.5168e-02, 1.1648e-02,\n",
+      "        7.7282e-02, 1.8683e-02, 1.7936e-05, 3.8452e-02, 6.1504e-03, 2.4673e-03,\n",
+      "        4.0986e-03, 2.2264e-02, 4.4241e-03, 3.9730e-03, 3.3154e-02, 7.0138e-03,\n",
+      "        2.3041e-03, 5.7770e-03, 2.7284e-02, 2.1024e-06, 3.0156e-03, 1.9390e-02,\n",
+      "        2.8662e-02, 1.9410e-03, 7.8156e-03, 2.8992e-03, 1.3497e-02, 2.2898e-11,\n",
+      "        1.8302e-02, 1.1552e-02, 2.8508e-03, 2.5269e-02, 1.7132e-03, 6.9874e-03,\n",
+      "        1.2260e-02, 4.8290e-03, 1.0044e-10, 2.6183e-03, 1.0438e-03, 1.3815e-02,\n",
+      "        5.0383e-03, 4.8017e-03, 1.6213e-03, 1.4393e-02, 2.3745e-03, 3.1393e-02,\n",
+      "        1.9880e-02, 3.4100e-03, 5.9557e-03, 6.5492e-03, 1.6687e-03, 5.5087e-03,\n",
+      "        9.5173e-03, 1.3613e-02, 1.2089e-02, 7.4144e-03, 6.9130e-02, 1.6991e-11,\n",
+      "        4.9323e-11, 5.6592e-03, 2.4981e-03, 2.3826e-02, 8.0134e-15, 1.8272e-03,\n",
+      "        2.0554e-02, 2.5356e-02, 1.7891e-02, 8.8617e-02, 1.8588e-02, 1.5790e-03,\n",
+      "        6.2110e-02, 6.2549e-03, 3.8812e-02, 1.3347e-06, 7.1734e-03, 3.4705e-03,\n",
+      "        2.0409e-02, 1.2553e-02, 2.8859e-02, 1.0904e-02, 3.2662e-12, 5.9870e-03,\n",
+      "        2.2441e-02, 4.1545e-02, 5.4045e-03, 2.0175e-02, 1.0278e-02, 1.6429e-02,\n",
+      "        5.1264e-03, 1.2942e-02, 2.1725e-02, 1.8655e-02, 5.8970e-03, 8.1171e-02,\n",
+      "        1.0152e-02, 2.5279e-02, 7.2812e-03, 7.2262e-03, 1.0367e-02, 4.5737e-03,\n",
+      "        1.1778e-02, 2.1999e-10, 3.9318e-02, 5.9839e-03, 1.2101e-02, 1.6231e-02,\n",
+      "        5.9263e-13, 4.7306e-03, 1.8805e-02, 5.6357e-03, 5.9839e-03, 5.1183e-08,\n",
+      "        3.3848e-03, 2.2822e-02, 1.6359e-02, 9.2064e-03, 4.5458e-03, 1.2672e-02,\n",
+      "        1.1149e-02, 5.9514e-03, 2.8844e-02, 2.8304e-09, 4.1365e-02, 2.7554e-02,\n",
+      "        4.4016e-02, 4.6264e-11, 2.7243e-02, 7.2445e-03, 4.6484e-03, 6.3199e-02,\n",
+      "        9.5294e-03, 2.4812e-02, 3.8962e-03, 2.9490e-06, 2.5278e-02, 5.6772e-03,\n",
+      "        2.0913e-03, 3.2377e-03, 1.8452e-12, 3.9903e-02, 3.3834e-03, 4.5751e-02,\n",
+      "        9.5490e-10, 6.6199e-04, 1.3851e-02, 1.3042e-02, 1.9004e-02, 1.2540e-02,\n",
+      "        5.7346e-03, 1.1946e-02, 6.0842e-03, 5.3970e-02, 1.2405e-02, 3.4714e-02,\n",
+      "        2.3039e-11, 1.8509e-02, 3.0814e-02, 9.4595e-03, 2.5243e-02, 1.1949e-02,\n",
+      "        1.8946e-02, 5.4205e-02, 1.1168e-01, 7.5277e-03, 3.2946e-15, 1.7975e-03,\n",
+      "        6.4436e-03, 4.6561e-02, 3.8848e-12, 4.9638e-03, 1.2382e-02, 1.0085e-02,\n",
+      "        1.5732e-12, 1.8229e-03, 3.2266e-03, 1.1823e-02, 8.3510e-02, 5.6469e-05,\n",
+      "        1.6440e-02, 1.7280e-02, 4.5774e-02, 7.5447e-11, 3.3974e-03, 5.0902e-03,\n",
+      "        1.1233e-02, 6.5397e-02, 5.0343e-03, 5.0704e-03, 1.7606e-02, 4.1029e-03,\n",
+      "        9.0547e-15, 1.5621e-03, 2.3957e-02, 4.3697e-03, 8.8087e-03, 9.2749e-02,\n",
+      "        8.2906e-03, 7.8802e-03, 2.2294e-03, 1.9874e-02, 2.0229e-03, 9.4732e-04,\n",
+      "        9.2757e-15, 6.1016e-03, 2.5429e-09, 5.6793e-03, 4.8598e-03, 1.0519e-02,\n",
+      "        2.0219e-08, 1.0389e-01, 3.7941e-03, 2.4472e-02, 2.2769e-03, 9.3616e-03,\n",
+      "        1.7803e-02, 1.1362e-02, 2.9835e-03, 2.1937e-02, 2.3492e-03, 6.5271e-02,\n",
+      "        5.5810e-03, 1.0701e-02, 2.6370e-03, 2.3395e-02, 2.9945e-03, 1.1576e-02,\n",
+      "        4.1756e-03, 1.7599e-02, 3.6751e-03, 5.1871e-03, 3.8622e-03, 3.5719e-02,\n",
+      "        5.9347e-03, 4.2924e-02, 3.1712e-03, 1.7826e-02, 3.6449e-02, 1.8009e-02,\n",
+      "        2.4852e-08, 4.0912e-03, 1.1887e-11, 2.1470e-02, 3.8997e-03, 4.0756e-02,\n",
+      "        1.2037e-02, 6.8649e-03, 4.7199e-03, 1.0769e-02, 1.1227e-02, 1.8999e-02,\n",
+      "        4.9189e-03, 2.2274e-02, 3.5243e-02, 4.7169e-02, 2.1280e-03, 9.0279e-03,\n",
+      "        7.2848e-03, 3.8969e-03, 3.8209e-02, 7.2943e-07, 2.2510e-03, 3.7601e-03,\n",
+      "        5.9283e-03, 1.0800e-02, 5.4541e-03, 9.2637e-09, 1.6389e-02, 7.4032e-07,\n",
+      "        8.2289e-03, 6.1785e-03, 1.8628e-03, 8.5457e-03, 8.2097e-03, 9.6766e-03,\n",
+      "        1.6587e-03, 1.2157e-02, 1.2265e-02, 2.6985e-02, 2.9485e-03, 1.2443e-10,\n",
+      "        2.1008e-13, 4.0311e-13, 5.1904e-02, 9.3633e-03, 3.7455e-03, 7.5339e-02,\n",
+      "        4.9423e-13, 1.9298e-02, 3.4085e-03, 2.3946e-02, 8.2455e-03, 4.3662e-03,\n",
+      "        2.1223e-02, 2.6971e-15, 4.6709e-03, 1.9288e-02, 1.6391e-02, 1.6151e-02,\n",
+      "        1.4139e-02, 5.4154e-03, 7.6701e-13, 2.3271e-02, 3.9448e-03, 1.0224e-02,\n",
+      "        5.8621e-03, 2.8253e-02, 3.2161e-03, 1.1005e-02, 4.3166e-02, 9.8587e-03,\n",
+      "        2.9367e-02, 1.5951e-03, 6.3787e-02, 2.5463e-02, 8.0440e-15, 2.6159e-02,\n",
+      "        4.7802e-03, 6.3117e-02, 3.0752e-02, 1.1961e-02, 1.5267e-02, 2.4560e-02,\n",
+      "        5.6894e-02, 8.7929e-03, 1.1716e-02, 4.0046e-02, 2.1101e-02, 3.1779e-03,\n",
+      "        1.4316e-02, 2.1764e-02, 6.0887e-03, 2.4875e-02, 1.8074e-09, 1.8814e-02,\n",
+      "        6.5870e-03, 3.7164e-03, 2.5845e-02, 9.0133e-03, 2.4182e-11, 3.0449e-02,\n",
+      "        1.9178e-02, 2.0036e-02, 3.1587e-03, 6.9424e-03, 6.1379e-03, 8.2803e-03,\n",
+      "        1.5027e-03, 3.5062e-02, 8.2980e-04, 8.7909e-03, 2.3093e-02, 1.2864e-02,\n",
+      "        6.4165e-03, 4.0773e-03, 5.9651e-09, 3.5740e-02, 2.9187e-02, 6.1471e-03,\n",
+      "        3.6858e-03, 2.0187e-03, 2.1581e-02, 3.2814e-03, 1.3758e-02, 1.1130e-01,\n",
+      "        3.3656e-02, 7.9441e-03, 1.4216e-02, 7.8215e-03, 1.7148e-12, 5.2576e-02,\n",
+      "        1.1163e-03, 1.2549e-02, 1.2127e-02, 1.1008e-02, 2.2332e-02, 9.3365e-03,\n",
+      "        6.6765e-03, 8.5498e-13, 1.0142e-02, 5.4033e-03, 3.1212e-02, 1.5023e-14,\n",
+      "        1.0722e-02, 1.4755e-03, 4.4161e-03, 8.1449e-04, 3.2917e-02, 2.6079e-02,\n",
+      "        6.3005e-03, 2.2836e-03, 4.9997e-03, 1.8316e-02, 1.3951e-02, 2.7197e-03,\n",
+      "        2.1078e-12, 6.6819e-03, 1.7722e-02, 6.9770e-03, 5.4519e-11, 4.4243e-03,\n",
+      "        5.7305e-03, 3.4335e-11, 3.2201e-02, 2.6699e-03, 1.5222e-03, 1.0615e-02,\n",
+      "        8.3535e-03, 4.1603e-03, 3.8861e-03, 3.8528e-02, 1.3151e-02, 1.1787e-01,\n",
+      "        1.1382e-02, 7.0923e-03, 2.8238e-12, 8.5224e-03, 2.5263e-02, 2.9074e-08,\n",
+      "        5.1874e-03, 4.0716e-12, 6.2590e-14, 5.0498e-03, 1.1355e-05, 2.9121e-02,\n",
+      "        5.4166e-03, 4.6101e-03, 9.9350e-02, 4.9771e-02, 1.9968e-03, 3.5508e-03,\n",
+      "        9.6845e-04, 2.4151e-02, 8.4388e-02, 8.6185e-03, 5.2696e-04, 9.0804e-14,\n",
+      "        2.0591e-02, 3.6862e-03, 5.2895e-03, 1.0225e-01, 1.1539e-14, 2.1570e-02,\n",
+      "        1.5892e-02, 1.0181e-02, 1.8033e-02, 3.5699e-03, 1.3191e-02, 1.6167e-03,\n",
+      "        7.2625e-03, 1.0333e-02, 1.1010e-02, 1.1591e-02, 5.3691e-03, 7.0129e-03,\n",
+      "        1.2017e-10, 1.6976e-02, 2.9594e-02, 1.8293e-02, 2.2744e-03, 5.4225e-03,\n",
+      "        1.3802e-02, 1.0608e-02, 3.0979e-02, 9.8695e-03, 9.9159e-03, 1.0970e-02,\n",
+      "        1.3318e-15, 1.0679e-02, 1.1143e-02, 6.9891e-03, 2.5864e-03, 9.4331e-03,\n",
+      "        5.1045e-03, 1.8799e-02, 2.9581e-02, 1.0608e-02, 1.2182e-02, 1.3758e-13,\n",
+      "        1.1366e-02, 4.2248e-02])), ('pretrained_model.layer2.0.downsample.1.num_batches_tracked', tensor(0)), ('pretrained_model.layer2.1.conv1.weight', tensor([[[[ 2.7568e-02]],\n",
+      "\n",
+      "         [[ 8.2326e-03]],\n",
+      "\n",
+      "         [[-7.6458e-04]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-4.8646e-09]],\n",
+      "\n",
+      "         [[-7.9819e-03]],\n",
+      "\n",
+      "         [[ 5.2015e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-4.3728e-03]],\n",
+      "\n",
+      "         [[-5.2689e-03]],\n",
+      "\n",
+      "         [[-4.5024e-04]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 3.5747e-09]],\n",
+      "\n",
+      "         [[ 2.8592e-03]],\n",
+      "\n",
+      "         [[-7.9889e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-4.9924e-02]],\n",
+      "\n",
+      "         [[ 2.6025e-03]],\n",
+      "\n",
+      "         [[ 2.9023e-04]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.6641e-08]],\n",
+      "\n",
+      "         [[ 5.7337e-04]],\n",
+      "\n",
+      "         [[-3.5337e-02]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 3.3383e-02]],\n",
+      "\n",
+      "         [[-2.1195e-03]],\n",
+      "\n",
+      "         [[ 1.5135e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 5.3245e-08]],\n",
+      "\n",
+      "         [[ 5.0953e-03]],\n",
+      "\n",
+      "         [[ 2.1637e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-5.0384e-02]],\n",
+      "\n",
+      "         [[-3.1290e-04]],\n",
+      "\n",
+      "         [[-3.8837e-04]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 3.7962e-09]],\n",
+      "\n",
+      "         [[ 3.7176e-03]],\n",
+      "\n",
+      "         [[ 1.9409e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 3.7971e-03]],\n",
+      "\n",
+      "         [[ 2.1467e-02]],\n",
+      "\n",
+      "         [[ 2.2705e-04]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 2.4944e-08]],\n",
+      "\n",
+      "         [[ 2.4584e-03]],\n",
+      "\n",
+      "         [[ 2.6018e-02]]]])), ('pretrained_model.layer2.1.bn1.weight', tensor([0.1037, 0.0582, 0.0834, 0.1282, 0.1341, 0.1115, 0.1067, 0.1030, 0.1499,\n",
+      "        0.0973, 0.1001, 0.1389, 0.1174, 0.1405, 0.0628, 0.0994, 0.0935, 0.0825,\n",
+      "        0.0765, 0.0880, 0.1615, 0.1136, 0.1156, 0.1177, 0.1785, 0.0971, 0.1224,\n",
+      "        0.1815, 0.1018, 0.2093, 0.0874, 0.1232, 0.0860, 0.1270, 0.1427, 0.1245,\n",
+      "        0.1423, 0.1745, 0.1963, 0.1477, 0.0911, 0.1112, 0.1266, 0.1361, 0.1634,\n",
+      "        0.1950, 0.0980, 0.0886, 0.1496, 0.1623, 0.1263, 0.0859, 0.2004, 0.1199,\n",
+      "        0.1071, 0.1089, 0.1462, 0.0894, 0.1114, 0.1220, 0.0921, 0.1522, 0.1410,\n",
+      "        0.0931, 0.1099, 0.0589, 0.0696, 0.1143, 0.1102, 0.0791, 0.0981, 0.0769,\n",
+      "        0.1311, 0.0992, 0.0903, 0.1315, 0.1694, 0.1093, 0.0871, 0.1170, 0.1166,\n",
+      "        0.1199, 0.0811, 0.0849, 0.0543, 0.1455, 0.1253, 0.1684, 0.0864, 0.1095,\n",
+      "        0.1461, 0.1051, 0.1776, 0.1305, 0.1157, 0.1031, 0.0863, 0.1626, 0.1147,\n",
+      "        0.1501, 0.1487, 0.1250, 0.1264, 0.1355, 0.1191, 0.1081, 0.0983, 0.1695,\n",
+      "        0.0808, 0.1118, 0.1441, 0.0804, 0.1080, 0.1002, 0.0893, 0.0924, 0.0850,\n",
+      "        0.1129, 0.1612, 0.1322, 0.0965, 0.0750, 0.1602, 0.0590, 0.1575, 0.1120,\n",
+      "        0.1509, 0.1336])), ('pretrained_model.layer2.1.bn1.bias', tensor([ 0.0306,  0.1773,  0.0608,  0.0404, -0.0483,  0.0520,  0.0759, -0.0157,\n",
+      "        -0.0540,  0.2188,  0.2402,  0.3498,  0.0411, -0.0579,  0.1227,  0.0053,\n",
+      "         0.0466,  0.0900,  0.0801,  0.0648, -0.0106,  0.1493,  0.0452, -0.0650,\n",
+      "        -0.0023,  0.2063, -0.0708, -0.0296, -0.0026, -0.1515, -0.0049,  0.0340,\n",
+      "         0.1981,  0.0481, -0.0578,  0.2698, -0.0184, -0.0963, -0.1086, -0.0087,\n",
+      "         0.0360,  0.0305,  0.0162, -0.0530, -0.0083, -0.1720,  0.2001,  0.1947,\n",
+      "        -0.0764, -0.0271, -0.0407,  0.2030, -0.0638,  0.0119, -0.0471,  0.0455,\n",
+      "        -0.0445,  0.1915, -0.0627, -0.0067,  0.0289, -0.0283, -0.1131,  0.0308,\n",
+      "         0.1476,  0.0596,  0.1490, -0.0398,  0.2658,  0.0540,  0.0420,  0.0100,\n",
+      "        -0.0018,  0.0578, -0.0405,  0.0406,  0.1421,  0.0188,  0.0755,  0.0368,\n",
+      "         0.0264, -0.0198,  0.0256,  0.0502,  0.0981, -0.0447,  0.0800, -0.0566,\n",
+      "         0.1145,  0.2022, -0.0602, -0.0004,  0.4112,  0.1155,  0.0447,  0.2147,\n",
+      "         0.0137, -0.0038,  0.0599, -0.0405, -0.0354,  0.0625, -0.0480, -0.0867,\n",
+      "         0.3850, -0.0102,  0.0667, -0.0623,  0.0418,  0.0168, -0.0397,  0.0612,\n",
+      "         0.2005,  0.0718,  0.0442, -0.0569,  0.0434,  0.0693, -0.0771,  0.0521,\n",
+      "         0.0447,  0.0648, -0.0476,  0.0572, -0.0214,  0.2378,  0.2476, -0.1109])), ('pretrained_model.layer2.1.bn1.running_mean', tensor([ 0.1866, -0.0319, -0.0398, -0.1403, -0.1158, -0.1365,  0.1520,  0.0775,\n",
+      "        -0.0966,  0.0921, -0.1121, -0.1829,  0.0938,  0.0620, -0.0705, -0.0655,\n",
+      "         0.1074, -0.1735,  0.0365,  0.1177,  0.0438,  0.0156,  0.0513, -0.0805,\n",
+      "        -0.1433,  0.0548, -0.0292, -0.0496, -0.1406, -0.0649,  0.0630, -0.0370,\n",
+      "         0.1315,  0.1117,  0.0362,  0.2257, -0.1039,  0.1732, -0.0131, -0.1577,\n",
+      "         0.0042,  0.0173,  0.0706,  0.0381,  0.0945, -0.1676, -0.0362, -0.0698,\n",
+      "         0.0536,  0.0316,  0.0363, -0.0678, -0.0657, -0.0229, -0.0137,  0.0171,\n",
+      "        -0.1060,  0.1346, -0.1570,  0.0745, -0.0867, -0.1627,  0.0570, -0.0012,\n",
+      "         0.1293,  0.0034,  0.1653,  0.0329, -0.0915, -0.0378,  0.1109, -0.0154,\n",
+      "         0.0133,  0.2144, -0.0391,  0.0019,  0.1245, -0.0159, -0.0380, -0.1060,\n",
+      "         0.0192, -0.0997, -0.0929, -0.1067,  0.0318, -0.0951, -0.0008, -0.0296,\n",
+      "        -0.0225,  0.0299,  0.0221,  0.1618,  0.3582, -0.0221,  0.0981, -0.0578,\n",
+      "         0.0943,  0.0386,  0.2686,  0.0232,  0.0622, -0.0027, -0.0371,  0.0287,\n",
+      "        -0.3368,  0.0483,  0.0400, -0.0587,  0.0751, -0.1527, -0.2142, -0.0819,\n",
+      "        -0.2985,  0.0207,  0.0051,  0.1810, -0.0470,  0.0070,  0.1845,  0.0510,\n",
+      "        -0.0488,  0.0121,  0.0105, -0.0304, -0.0096, -0.1644,  0.1559,  0.0274])), ('pretrained_model.layer2.1.bn1.running_var', tensor([0.0971, 0.0370, 0.0701, 0.0200, 0.0143, 0.0457, 0.0702, 0.0390, 0.0103,\n",
+      "        0.0587, 0.0392, 0.1898, 0.0700, 0.0357, 0.0232, 0.0136, 0.0238, 0.0196,\n",
+      "        0.0119, 0.0288, 0.0190, 0.0646, 0.0192, 0.0100, 0.0867, 0.1116, 0.0105,\n",
+      "        0.0065, 0.0270, 0.0304, 0.0132, 0.0385, 0.0982, 0.0775, 0.0217, 0.2220,\n",
+      "        0.0164, 0.0230, 0.0330, 0.0279, 0.0376, 0.0212, 0.0097, 0.0161, 0.0208,\n",
+      "        0.0211, 0.0692, 0.0479, 0.0116, 0.0301, 0.0187, 0.0444, 0.0234, 0.0081,\n",
+      "        0.0118, 0.0432, 0.0349, 0.1017, 0.0192, 0.0278, 0.0202, 0.0279, 0.0216,\n",
+      "        0.0118, 0.0329, 0.0167, 0.0926, 0.0157, 0.1246, 0.0132, 0.0590, 0.0192,\n",
+      "        0.0228, 0.0422, 0.0094, 0.0270, 0.0364, 0.0436, 0.0212, 0.0540, 0.0323,\n",
+      "        0.0494, 0.0177, 0.0199, 0.0208, 0.0197, 0.0224, 0.0165, 0.0313, 0.0861,\n",
+      "        0.0115, 0.0204, 0.4111, 0.0232, 0.0510, 0.0979, 0.0210, 0.0305, 0.0573,\n",
+      "        0.0040, 0.0149, 0.0312, 0.0259, 0.0239, 0.2876, 0.0113, 0.0595, 0.0164,\n",
+      "        0.0189, 0.0274, 0.0191, 0.0216, 0.0431, 0.0899, 0.0301, 0.0087, 0.0343,\n",
+      "        0.0147, 0.0280, 0.0281, 0.0152, 0.0179, 0.0152, 0.0417, 0.0188, 0.1032,\n",
+      "        0.1546, 0.0113])), ('pretrained_model.layer2.1.bn1.num_batches_tracked', tensor(0)), ('pretrained_model.layer2.1.conv2.weight', tensor([[[[-3.3109e-02, -4.3156e-02, -2.2208e-02],\n",
+      "          [-3.8509e-02, -1.4300e-02, -3.1263e-02],\n",
+      "          [-2.9988e-02, -3.7569e-02, -2.8439e-02]],\n",
+      "\n",
+      "         [[-2.4742e-03,  1.6384e-03, -7.8249e-03],\n",
+      "          [-8.5106e-03,  4.3050e-03, -8.3563e-03],\n",
+      "          [-6.4919e-03, -1.6149e-03,  3.8878e-04]],\n",
+      "\n",
+      "         [[ 5.3755e-03,  1.4748e-02,  1.4173e-02],\n",
+      "          [ 2.5459e-02, -3.8293e-02,  2.3490e-02],\n",
+      "          [ 1.5337e-02,  2.3323e-02,  1.8911e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 7.9537e-04, -3.0986e-03, -2.9368e-03],\n",
+      "          [ 9.1502e-04, -2.1124e-02, -2.6841e-03],\n",
+      "          [ 3.7992e-03,  3.2945e-03, -7.0521e-03]],\n",
+      "\n",
+      "         [[ 3.5398e-04,  1.5672e-02,  2.7992e-03],\n",
+      "          [ 6.1761e-03,  2.8117e-03,  5.8334e-03],\n",
+      "          [ 5.6265e-03,  1.8433e-02,  1.3294e-02]],\n",
+      "\n",
+      "         [[ 1.3480e-02,  5.8090e-03,  9.4735e-03],\n",
+      "          [ 2.2581e-04, -3.6752e-02, -2.0443e-03],\n",
+      "          [ 1.0575e-02,  8.3118e-03,  4.8726e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.0554e-02,  9.7902e-03,  5.4321e-03],\n",
+      "          [ 1.5964e-02, -4.3557e-02,  1.1959e-02],\n",
+      "          [ 7.0774e-03,  1.3915e-02,  1.6931e-02]],\n",
+      "\n",
+      "         [[-2.0492e-03, -2.1786e-05, -2.7439e-03],\n",
+      "          [ 2.8531e-03,  7.0760e-03, -6.2682e-03],\n",
+      "          [-6.2534e-03, -1.2625e-02, -7.7547e-03]],\n",
+      "\n",
+      "         [[-6.1020e-03, -1.6589e-03,  1.9285e-04],\n",
+      "          [-9.3596e-03, -4.9363e-03, -8.5554e-03],\n",
+      "          [-9.2895e-03, -7.1002e-03, -8.8465e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.2238e-03,  5.1209e-03,  1.3053e-03],\n",
+      "          [ 1.5727e-02, -1.6572e-02,  1.7446e-02],\n",
+      "          [ 9.3833e-04,  2.1440e-02,  7.1899e-03]],\n",
+      "\n",
+      "         [[-6.4527e-03, -8.1764e-03, -7.9583e-03],\n",
+      "          [-3.0283e-02,  4.8342e-02, -3.8167e-02],\n",
+      "          [-2.2281e-02, -3.8482e-02, -3.2650e-02]],\n",
+      "\n",
+      "         [[ 1.3685e-02,  1.7429e-02,  8.9191e-03],\n",
+      "          [ 7.0064e-03, -4.3971e-02,  5.3436e-03],\n",
+      "          [ 3.5189e-03,  1.9541e-02,  3.1957e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-6.7273e-04, -2.2169e-02, -1.0675e-02],\n",
+      "          [-7.2417e-03, -1.1052e-03, -8.4081e-03],\n",
+      "          [ 1.5527e-02,  3.6723e-02,  1.7947e-02]],\n",
+      "\n",
+      "         [[ 4.9109e-03,  2.5157e-02,  1.8256e-02],\n",
+      "          [-1.5242e-02, -9.8861e-03, -8.8501e-03],\n",
+      "          [ 3.3709e-03,  1.0596e-02,  1.0703e-02]],\n",
+      "\n",
+      "         [[ 1.7498e-02,  2.0736e-02,  1.3348e-02],\n",
+      "          [ 5.8919e-03, -2.2848e-03, -1.5953e-03],\n",
+      "          [-7.5174e-03, -9.9003e-03, -7.0246e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-4.0295e-02, -1.1522e-01, -6.1854e-02],\n",
+      "          [-2.7529e-02,  7.4704e-03, -2.2803e-02],\n",
+      "          [ 5.1912e-02,  1.4719e-01,  9.0742e-02]],\n",
+      "\n",
+      "         [[ 8.6702e-02,  2.2447e-01,  1.2316e-01],\n",
+      "          [ 8.6658e-03, -2.1553e-02, -6.9477e-03],\n",
+      "          [-5.0152e-02, -1.7275e-01, -1.1096e-01]],\n",
+      "\n",
+      "         [[-3.0964e-02, -5.0322e-02, -3.2278e-02],\n",
+      "          [-1.7917e-02,  6.8674e-03, -1.1439e-02],\n",
+      "          [ 1.9868e-02,  6.0558e-02,  3.7730e-02]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-1.5831e-02, -4.6883e-02, -1.7751e-02],\n",
+      "          [-1.2806e-02,  4.7512e-02, -6.0551e-03],\n",
+      "          [-3.1099e-03,  2.0733e-02, -4.2485e-03]],\n",
+      "\n",
+      "         [[ 3.3597e-03,  6.4300e-03,  3.3034e-03],\n",
+      "          [-1.2102e-02,  2.0541e-02, -9.0348e-03],\n",
+      "          [-2.4374e-02, -2.4391e-03, -1.6332e-02]],\n",
+      "\n",
+      "         [[ 2.2578e-02,  7.2979e-02,  4.6864e-02],\n",
+      "          [-1.1935e-02, -6.1171e-02, -2.1506e-03],\n",
+      "          [-1.6803e-02, -4.7856e-02, -1.1488e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 3.6213e-02,  8.5714e-02,  4.2132e-02],\n",
+      "          [-1.1559e-02, -6.7067e-02, -8.6195e-03],\n",
+      "          [-2.1642e-02, -4.3510e-02, -1.9737e-02]],\n",
+      "\n",
+      "         [[ 2.6025e-02,  4.2310e-02,  3.3983e-02],\n",
+      "          [ 5.4171e-03,  4.0950e-02,  1.8491e-03],\n",
+      "          [-8.8724e-03,  1.8717e-02, -2.1330e-04]],\n",
+      "\n",
+      "         [[ 1.1742e-02,  1.2778e-02,  1.5396e-02],\n",
+      "          [-3.5547e-03, -4.0626e-02,  5.0420e-03],\n",
+      "          [-7.5569e-03, -7.1522e-03,  1.6945e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.3390e-02, -1.3767e-02, -1.1739e-02],\n",
+      "          [-1.8838e-02,  1.6960e-02, -3.8452e-03],\n",
+      "          [-1.7573e-02, -8.9541e-03, -1.0621e-02]],\n",
+      "\n",
+      "         [[-7.7062e-03, -1.0574e-02, -1.3144e-02],\n",
+      "          [ 2.7488e-03,  2.7573e-03, -3.1250e-03],\n",
+      "          [ 7.5864e-05,  7.7612e-04, -1.1345e-02]],\n",
+      "\n",
+      "         [[-2.8002e-03, -3.4865e-03, -2.1360e-03],\n",
+      "          [ 2.6397e-03, -1.5317e-02, -8.0613e-03],\n",
+      "          [-2.5903e-03, -7.5298e-03, -6.8916e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.6435e-03,  9.3117e-03, -2.6434e-03],\n",
+      "          [ 1.0492e-02, -2.5190e-02,  1.0352e-03],\n",
+      "          [ 1.7751e-03,  4.2726e-03,  1.2671e-03]],\n",
+      "\n",
+      "         [[ 1.2501e-02,  8.9793e-03,  1.5149e-03],\n",
+      "          [ 5.3875e-03,  1.8262e-02, -1.1041e-02],\n",
+      "          [-7.9033e-04, -1.2998e-02, -2.0365e-02]],\n",
+      "\n",
+      "         [[-1.7022e-03,  5.5113e-03,  2.1456e-03],\n",
+      "          [-6.5041e-04, -5.9394e-03,  2.5968e-03],\n",
+      "          [-7.7948e-04,  7.6120e-03,  3.7228e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.3266e-02,  6.7129e-03, -1.1488e-02],\n",
+      "          [ 1.0912e-02, -4.2128e-03, -2.1498e-02],\n",
+      "          [ 1.5048e-02, -5.4604e-04, -1.4367e-02]],\n",
+      "\n",
+      "         [[ 6.3565e-03, -1.3530e-02, -5.4779e-03],\n",
+      "          [-5.6627e-04,  5.7274e-03, -1.0921e-02],\n",
+      "          [ 3.1351e-03, -1.3363e-02, -8.9546e-03]],\n",
+      "\n",
+      "         [[-1.5471e-03, -7.8819e-03, -3.5492e-03],\n",
+      "          [ 2.0187e-02,  4.1672e-03, -9.7870e-03],\n",
+      "          [ 3.9362e-03,  2.1492e-03, -6.2864e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-6.5902e-03, -1.9143e-02,  9.9275e-03],\n",
+      "          [ 9.5374e-03, -9.9955e-03,  2.1811e-02],\n",
+      "          [-1.2876e-02, -1.8025e-02,  1.2062e-02]],\n",
+      "\n",
+      "         [[-4.8183e-04, -1.4575e-02,  8.9895e-03],\n",
+      "          [ 1.0216e-02,  4.9876e-03,  2.8154e-02],\n",
+      "          [ 4.0765e-03, -5.9605e-03,  1.4637e-02]],\n",
+      "\n",
+      "         [[ 6.1085e-03,  1.1858e-02, -4.0875e-03],\n",
+      "          [ 5.7008e-03, -5.3541e-05, -2.1263e-02],\n",
+      "          [ 1.9155e-03,  4.1227e-03, -1.0782e-02]]]])), ('pretrained_model.layer2.1.bn2.weight', tensor([0.1907, 0.1371, 0.2105, 0.2046, 0.1762, 0.1183, 0.1496, 0.1292, 0.0874,\n",
+      "        0.1981, 0.1640, 0.1677, 0.1569, 0.1279, 0.1249, 0.2012, 0.1366, 0.1401,\n",
+      "        0.1377, 0.2134, 0.1199, 0.1714, 0.2150, 0.1153, 0.1758, 0.1986, 0.1450,\n",
+      "        0.1258, 0.1685, 0.2012, 0.1988, 0.2030, 0.1088, 0.2138, 0.1537, 0.2038,\n",
+      "        0.1582, 0.2033, 0.0920, 0.1534, 0.1478, 0.1903, 0.1636, 0.1379, 0.1604,\n",
+      "        0.1694, 0.1475, 0.2110, 0.1784, 0.1632, 0.1889, 0.1756, 0.1594, 0.1752,\n",
+      "        0.1312, 0.1301, 0.1145, 0.1614, 0.1315, 0.1338, 0.1830, 0.2412, 0.1889,\n",
+      "        0.1882, 0.1554, 0.1819, 0.3077, 0.1279, 0.2825, 0.1619, 0.2048, 0.1396,\n",
+      "        0.1166, 0.1483, 0.1411, 0.1689, 0.1415, 0.1012, 0.1836, 0.1785, 0.1723,\n",
+      "        0.1503, 0.1304, 0.1428, 0.1080, 0.1076, 0.1633, 0.1793, 0.1032, 0.1268,\n",
+      "        0.1417, 0.1383, 0.1817, 0.2166, 0.1769, 0.1913, 0.1267, 0.1751, 0.1787,\n",
+      "        0.1117, 0.1237, 0.1653, 0.2194, 0.1781, 0.1888, 0.2201, 0.1523, 0.0793,\n",
+      "        0.1470, 0.1181, 0.1612, 0.1621, 0.1613, 0.2077, 0.1619, 0.1952, 0.1981,\n",
+      "        0.1503, 0.1956, 0.1655, 0.1567, 0.2327, 0.1521, 0.2156, 0.1647, 0.1612,\n",
+      "        0.1104, 0.2259])), ('pretrained_model.layer2.1.bn2.bias', tensor([ 0.0046,  0.0767,  0.0931,  0.1088,  0.0115,  0.0555,  0.0464,  0.0682,\n",
+      "         0.0583, -0.1408, -0.0668, -0.0163,  0.1238,  0.0451,  0.0166,  0.0574,\n",
+      "         0.0546, -0.1205, -0.0804,  0.0985, -0.1041,  0.1843,  0.1039, -0.0048,\n",
+      "         0.0906,  0.0355, -0.0532, -0.0116,  0.0208, -0.1407, -0.2119,  0.0774,\n",
+      "         0.1213,  0.0914, -0.0394,  0.0298, -0.0181,  0.0927, -0.0309,  0.0396,\n",
+      "         0.0693,  0.1317, -0.0518,  0.1461, -0.0543,  0.0806, -0.1114, -0.0486,\n",
+      "        -0.1384,  0.1634, -0.1880,  0.1747,  0.0610,  0.0825,  0.0233, -0.0638,\n",
+      "         0.0218,  0.0077,  0.0525, -0.0367,  0.0687, -0.1282, -0.1199, -0.0240,\n",
+      "         0.0657,  0.0733, -0.1889,  0.0570, -0.1661,  0.0815, -0.1173,  0.0424,\n",
+      "         0.0329,  0.0563,  0.0821,  0.0262, -0.0569,  0.0730,  0.0661,  0.0746,\n",
+      "         0.1010,  0.0150,  0.0453,  0.0315, -0.0435, -0.1270, -0.0091,  0.0935,\n",
+      "         0.0715,  0.0915, -0.0355, -0.0145,  0.1146, -0.1104, -0.0318,  0.0839,\n",
+      "         0.0346,  0.1008, -0.0411, -0.0384,  0.0202, -0.0127, -0.0637,  0.1801,\n",
+      "         0.1402, -0.1541,  0.0698,  0.0685,  0.0324, -0.0314,  0.1629, -0.0028,\n",
+      "        -0.0913, -0.1107, -0.0825, -0.0151,  0.1859, -0.0596,  0.0986, -0.1012,\n",
+      "        -0.1020, -0.1371, -0.0090, -0.0675,  0.0718,  0.0675, -0.0064, -0.0386])), ('pretrained_model.layer2.1.bn2.running_mean', tensor([-0.0562, -0.1316,  0.1854,  0.2617, -0.3076,  0.0424,  0.0635,  0.0375,\n",
+      "        -0.1181, -0.1203, -0.0991, -0.0130,  0.0592,  0.0839, -0.0515,  0.1086,\n",
+      "        -0.0535, -0.0772, -0.1863,  0.2216,  0.0357,  0.3349,  0.2523, -0.0556,\n",
+      "         0.3004,  0.1477, -0.1364, -0.1790,  0.0718, -0.1829, -0.1962,  0.2656,\n",
+      "        -0.1296,  0.2688, -0.2291, -0.3184,  0.0892,  0.1486, -0.1466, -0.1607,\n",
+      "         0.0749,  0.3558, -0.1508,  0.2339, -0.0523,  0.1827, -0.1131, -0.1103,\n",
+      "        -0.0675,  0.2717, -0.1535,  0.1058,  0.1225,  0.3325, -0.0488, -0.1097,\n",
+      "        -0.0520,  0.0462,  0.1744, -0.0240,  0.0990, -0.2447, -0.1972,  0.0431,\n",
+      "        -0.0324,  0.0667, -0.6786,  0.1930, -0.7843,  0.2154, -0.0194, -0.0908,\n",
+      "         0.0056,  0.0420,  0.2587, -0.0139, -0.0353,  0.0378,  0.1110,  0.2736,\n",
+      "         0.2873,  0.0923, -0.0331,  0.0416, -0.0348,  0.0569, -0.1812,  0.2022,\n",
+      "        -0.0039,  0.1522, -0.0947, -0.0970,  0.2801, -0.1027, -0.1295,  0.3695,\n",
+      "         0.0093,  0.1357,  0.0182, -0.0147, -0.1079, -0.1353, -0.1675,  0.4218,\n",
+      "         0.3422, -0.1815,  0.0836, -0.1182,  0.0827, -0.0097,  0.2075, -0.1981,\n",
+      "        -0.0969, -0.4130, -0.2638,  0.0233,  0.5475, -0.0506,  0.2994, -0.0513,\n",
+      "        -0.1414, -0.1552, -0.1027, -0.0444,  0.1705,  0.1169, -0.1150,  0.0103])), ('pretrained_model.layer2.1.bn2.running_var', tensor([0.0317, 0.0320, 0.0545, 0.0413, 0.0205, 0.0166, 0.0209, 0.0181, 0.0167,\n",
+      "        0.0327, 0.0100, 0.0156, 0.0228, 0.0138, 0.0218, 0.0436, 0.0266, 0.0094,\n",
+      "        0.0101, 0.0581, 0.0100, 0.0206, 0.0522, 0.0116, 0.0442, 0.0342, 0.0183,\n",
+      "        0.0399, 0.0132, 0.0217, 0.0570, 0.0727, 0.0127, 0.0555, 0.0195, 0.0297,\n",
+      "        0.0074, 0.0486, 0.0042, 0.0115, 0.0124, 0.0262, 0.0155, 0.0186, 0.0059,\n",
+      "        0.0275, 0.0173, 0.0172, 0.0189, 0.0194, 0.0076, 0.0222, 0.0303, 0.0463,\n",
+      "        0.0116, 0.0164, 0.0134, 0.0227, 0.0209, 0.0228, 0.0533, 0.0151, 0.0106,\n",
+      "        0.0086, 0.0265, 0.0494, 0.0209, 0.0212, 0.0227, 0.0371, 0.0292, 0.0088,\n",
+      "        0.0183, 0.0346, 0.0295, 0.0132, 0.0185, 0.0141, 0.0385, 0.0524, 0.0627,\n",
+      "        0.0120, 0.0178, 0.0201, 0.0035, 0.0098, 0.0203, 0.0525, 0.0158, 0.0389,\n",
+      "        0.0118, 0.0126, 0.0553, 0.0436, 0.0136, 0.0650, 0.0363, 0.0159, 0.0103,\n",
+      "        0.0099, 0.0495, 0.0155, 0.0138, 0.0239, 0.0310, 0.0227, 0.0340, 0.0124,\n",
+      "        0.0121, 0.0121, 0.0217, 0.0088, 0.0097, 0.0109, 0.0102, 0.0143, 0.0253,\n",
+      "        0.0086, 0.0521, 0.0441, 0.0086, 0.0435, 0.0276, 0.0143, 0.0298, 0.0338,\n",
+      "        0.0139, 0.0146])), ('pretrained_model.layer2.1.bn2.num_batches_tracked', tensor(0)), ('pretrained_model.layer2.1.conv3.weight', tensor([[[[-0.0137]],\n",
+      "\n",
+      "         [[ 0.0173]],\n",
+      "\n",
+      "         [[-0.0071]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0132]],\n",
+      "\n",
+      "         [[-0.0012]],\n",
+      "\n",
+      "         [[ 0.0096]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0028]],\n",
+      "\n",
+      "         [[-0.0003]],\n",
+      "\n",
+      "         [[ 0.0037]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0015]],\n",
+      "\n",
+      "         [[ 0.0035]],\n",
+      "\n",
+      "         [[-0.0067]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0103]],\n",
+      "\n",
+      "         [[-0.0031]],\n",
+      "\n",
+      "         [[-0.1777]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0008]],\n",
+      "\n",
+      "         [[-0.0037]],\n",
+      "\n",
+      "         [[ 0.0176]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-0.0111]],\n",
+      "\n",
+      "         [[-0.0373]],\n",
+      "\n",
+      "         [[-0.0224]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0372]],\n",
+      "\n",
+      "         [[ 0.0391]],\n",
+      "\n",
+      "         [[ 0.0894]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0026]],\n",
+      "\n",
+      "         [[ 0.0003]],\n",
+      "\n",
+      "         [[-0.0099]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0105]],\n",
+      "\n",
+      "         [[ 0.0009]],\n",
+      "\n",
+      "         [[ 0.0150]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0603]],\n",
+      "\n",
+      "         [[-0.0209]],\n",
+      "\n",
+      "         [[ 0.0030]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0165]],\n",
+      "\n",
+      "         [[ 0.0406]],\n",
+      "\n",
+      "         [[ 0.0055]]]])), ('pretrained_model.layer2.1.bn3.weight', tensor([ 1.1841e-01,  2.7006e-02,  2.3651e-01,  1.3327e-02,  1.6727e-01,\n",
+      "         1.8991e-01,  1.5013e-02,  2.6995e-01,  1.2044e-01,  1.9834e-01,\n",
+      "         2.2986e-01,  2.7651e-02,  1.1345e-01,  1.3359e-01,  2.3517e-01,\n",
+      "         1.6355e-02, -4.8807e-03,  9.1942e-02,  9.2485e-02,  2.9228e-02,\n",
+      "        -1.8057e-03,  2.1347e-02, -1.0101e-03,  2.7761e-01,  2.4020e-02,\n",
+      "         1.7351e-01,  2.0888e-01,  1.5043e-03,  2.3079e-01, -6.5113e-03,\n",
+      "         1.3793e-02, -1.1732e-04,  2.5188e-01,  5.4887e-02,  6.5655e-02,\n",
+      "        -1.8350e-04,  5.9856e-03,  1.1250e-02, -5.0307e-04,  3.9647e-03,\n",
+      "         1.0867e-02, -5.3677e-05,  2.0888e-01,  1.0520e-01,  2.4713e-01,\n",
+      "         1.3703e-02,  1.8231e-01,  2.6122e-02, -6.7965e-03,  4.2831e-02,\n",
+      "         2.4109e-01,  8.0912e-05, -1.8884e-03, -3.6069e-03,  1.8119e-01,\n",
+      "         7.4865e-03,  1.8800e-02,  5.3150e-02,  2.4399e-03,  9.7569e-02,\n",
+      "         2.2814e-01,  3.2164e-02, -2.1363e-03,  6.2277e-03,  3.6226e-02,\n",
+      "         1.8363e-02,  6.8340e-02, -7.8931e-05,  3.2373e-05,  2.7623e-03,\n",
+      "         3.1748e-02,  1.0830e-02,  5.3904e-02,  2.1286e-02, -1.4088e-02,\n",
+      "         6.5184e-02, -2.3695e-02,  4.0361e-03,  8.2627e-02,  2.3556e-02,\n",
+      "         1.0330e-02,  2.0071e-02,  2.6840e-01, -7.4241e-03,  1.4335e-03,\n",
+      "         3.4168e-03,  2.0483e-02,  2.2404e-01,  2.0332e-01,  1.7956e-01,\n",
+      "         2.4988e-01,  2.1676e-02,  1.9237e-02,  1.2670e-01,  2.7482e-01,\n",
+      "         1.3745e-02, -8.7731e-03,  6.4821e-02,  2.9015e-02,  2.2112e-01,\n",
+      "         9.3375e-02,  2.1569e-02,  1.7846e-01, -1.0844e-02,  1.6793e-01,\n",
+      "         1.9225e-01, -4.9472e-04,  2.0089e-02, -2.5600e-04,  1.2142e-01,\n",
+      "        -1.0290e-02,  1.7798e-02,  1.3614e-01,  4.3773e-02,  9.9774e-02,\n",
+      "        -2.8969e-03, -1.5582e-02,  1.6837e-03, -2.7075e-04,  7.5813e-02,\n",
+      "         6.0342e-02,  4.8160e-02,  1.0709e-01,  1.1085e-02,  1.2335e-02,\n",
+      "         2.6955e-01, -7.0730e-03, -4.7895e-03,  9.9475e-02,  2.0335e-02,\n",
+      "         4.1239e-03, -2.2550e-02,  3.3283e-02,  1.2420e-01,  3.0105e-02,\n",
+      "         9.3732e-02,  5.1745e-03,  3.9469e-03,  2.7181e-01,  4.6578e-02,\n",
+      "        -2.9646e-02,  1.7329e-01, -3.0174e-03,  2.6275e-01,  1.4877e-01,\n",
+      "         1.0260e-01,  1.0669e-01,  1.5026e-02,  6.3506e-03,  5.4154e-02,\n",
+      "        -1.5888e-03,  1.6842e-01, -5.6991e-03,  2.9566e-01,  1.3456e-01,\n",
+      "        -8.0260e-04,  1.2851e-01,  2.6969e-01,  7.8488e-03,  1.4878e-01,\n",
+      "         6.3915e-03,  3.1433e-02,  9.0984e-03,  2.4363e-02,  8.1403e-03,\n",
+      "         1.2757e-01,  3.8652e-02,  7.5396e-02,  1.1687e-02,  1.0618e-01,\n",
+      "         2.1828e-01, -4.3852e-03,  9.2485e-04, -6.6292e-03,  1.2100e-01,\n",
+      "        -6.1220e-03,  1.6164e-01, -8.7489e-05,  1.4110e-01,  5.2840e-02,\n",
+      "        -6.5125e-02,  4.8095e-03, -1.2086e-02,  2.3396e-01,  2.9746e-02,\n",
+      "         1.4384e-01,  2.7516e-01,  5.8530e-02,  1.8412e-01,  1.0077e-01,\n",
+      "         2.7106e-02,  3.1253e-02,  9.2899e-02, -1.7495e-02,  2.6177e-01,\n",
+      "         8.4533e-03,  2.4492e-01, -1.0729e-02,  2.5631e-01,  1.7845e-01,\n",
+      "         1.7104e-06,  3.3377e-03,  2.1142e-02,  1.4569e-01,  2.9429e-01,\n",
+      "         2.0439e-02,  1.0922e-01,  1.2586e-02,  7.7817e-03, -4.2578e-03,\n",
+      "         4.2912e-02,  7.1064e-03,  7.7821e-03,  3.0269e-01,  2.3137e-01,\n",
+      "         2.1528e-02,  1.2793e-02, -1.8261e-02,  2.8676e-01, -2.1300e-02,\n",
+      "         1.6314e-01,  2.7939e-02,  2.7742e-01,  4.5867e-02, -1.5947e-03,\n",
+      "         1.7453e-02,  3.9874e-03,  2.6701e-01,  3.6497e-04, -3.0787e-02,\n",
+      "         1.2516e-02, -3.0644e-02,  2.5661e-01,  1.4451e-01,  2.8432e-01,\n",
+      "         6.2380e-03,  3.0020e-01,  7.0311e-03,  7.7335e-04,  4.1427e-04,\n",
+      "         2.4418e-01,  3.3420e-01,  9.7569e-03,  3.9999e-02,  2.6705e-03,\n",
+      "        -9.9735e-04,  1.0898e-01,  1.5833e-02,  2.7634e-03,  1.5725e-01,\n",
+      "        -1.0974e-02,  5.0290e-02, -3.8951e-03, -1.5478e-02, -8.6362e-03,\n",
+      "         1.5601e-01, -1.5056e-02,  4.1276e-02, -3.0576e-03,  9.6184e-03,\n",
+      "         6.7117e-02, -9.4209e-03,  1.2612e-02,  1.4656e-01,  9.7324e-03,\n",
+      "         2.5489e-02, -1.2872e-02,  5.0436e-02,  3.8423e-02,  3.0147e-02,\n",
+      "         1.7526e-01,  4.6949e-02,  2.0986e-01,  1.5359e-01,  6.3596e-03,\n",
+      "         1.8212e-01,  1.2218e-01,  1.1485e-01,  1.2409e-02,  4.7097e-03,\n",
+      "         5.2822e-03,  1.5740e-01,  3.3874e-04,  1.6322e-01,  2.2548e-01,\n",
+      "         9.8002e-02,  3.6216e-02, -3.5865e-02,  2.9960e-02, -6.0172e-02,\n",
+      "         1.0178e-01,  1.1749e-01,  8.7195e-03,  3.6885e-03, -1.1484e-02,\n",
+      "         2.0210e-02, -9.9628e-03,  2.5302e-01,  2.0953e-01,  2.5193e-05,\n",
+      "        -1.1970e-02, -1.2009e-03,  1.2384e-01,  2.2542e-02, -3.2150e-03,\n",
+      "        -4.3584e-03,  2.9916e-02,  1.1471e-01,  1.0006e-02,  7.3391e-02,\n",
+      "        -1.1425e-02,  1.8770e-01,  2.9497e-01,  1.7850e-01,  2.6686e-01,\n",
+      "         2.9569e-01, -4.7842e-04,  1.5667e-01,  2.9372e-01,  1.5707e-01,\n",
+      "         1.7150e-02, -2.5544e-02,  2.2255e-02,  8.5325e-02, -8.2760e-03,\n",
+      "         3.3928e-01,  6.3660e-02,  6.8563e-04,  1.1114e-02,  2.8596e-01,\n",
+      "        -3.8634e-03,  9.0105e-03,  3.5753e-01,  8.9238e-02,  1.7812e-02,\n",
+      "         1.0307e-01, -1.1294e-04,  5.3213e-02,  2.2388e-02,  4.5143e-02,\n",
+      "         1.6392e-01,  1.6037e-02,  2.0196e-01, -4.6824e-04,  2.4072e-01,\n",
+      "         2.3745e-02,  2.5319e-01,  2.6355e-02,  1.1459e-02, -2.5611e-02,\n",
+      "        -1.2875e-03,  1.1054e-01,  1.1711e-02,  1.1824e-01,  2.4672e-01,\n",
+      "         1.3200e-02,  2.2205e-02,  6.0584e-02,  2.3012e-02, -1.1590e-03,\n",
+      "         1.2496e-01, -2.2854e-02,  1.0931e-01,  5.9857e-02,  2.2591e-01,\n",
+      "         2.9493e-03,  2.5091e-02, -1.1639e-02,  2.4967e-02, -1.8080e-02,\n",
+      "         2.7142e-01,  4.0052e-03,  4.6823e-03, -6.1603e-04, -1.4309e-03,\n",
+      "         1.0227e-02,  3.0549e-02,  2.2491e-04,  5.0297e-02,  1.1615e-01,\n",
+      "         1.1647e-02, -1.0980e-02,  1.2556e-01, -6.9480e-03,  1.4431e-02,\n",
+      "         1.0035e-02,  2.6181e-01,  1.4103e-01,  1.3239e-01,  2.5830e-03,\n",
+      "        -4.7919e-03, -1.0578e-02,  7.2313e-02,  6.1447e-02,  5.6708e-02,\n",
+      "         2.6973e-01,  1.5931e-01,  1.0355e-01,  1.1585e-02,  2.1806e-01,\n",
+      "         3.3709e-01,  1.7264e-01,  1.5675e-02, -2.5635e-03,  1.1189e-01,\n",
+      "         3.6329e-02, -3.9639e-02,  1.6928e-02,  9.7026e-02,  1.8552e-01,\n",
+      "         9.0672e-03, -1.4714e-02,  5.4072e-03,  1.3109e-01,  2.4498e-01,\n",
+      "        -4.1341e-04,  8.3006e-02,  4.4504e-03, -4.7994e-02,  1.1979e-01,\n",
+      "         2.9931e-02,  3.4062e-01,  2.9959e-02,  2.6671e-03,  8.5735e-02,\n",
+      "         5.6751e-02,  2.9578e-01,  2.8117e-01,  3.4916e-02,  1.6987e-02,\n",
+      "         2.9027e-01,  1.2158e-02,  7.4778e-03,  2.6437e-01, -6.5599e-02,\n",
+      "        -1.8858e-02, -3.3097e-03, -5.0815e-03,  8.6243e-03,  1.9826e-03,\n",
+      "        -1.7919e-02,  1.0434e-01,  9.1943e-02,  2.5812e-01,  4.0385e-02,\n",
+      "        -7.2144e-04,  2.5870e-01, -6.5857e-04,  6.1612e-03,  1.7806e-01,\n",
+      "         4.5459e-01, -2.4974e-06,  2.4041e-01, -2.4107e-03,  2.5401e-01,\n",
+      "         5.2982e-02, -5.1123e-03,  1.2370e-02,  2.3701e-01,  3.5678e-02,\n",
+      "         2.1231e-02,  8.7856e-03,  4.4879e-02, -1.3837e-02,  2.0271e-01,\n",
+      "         5.1440e-03,  3.3954e-02,  2.5754e-01,  5.0565e-02, -8.3468e-03,\n",
+      "         1.1571e-02,  2.8321e-01,  2.9575e-01,  1.9805e-01,  9.4501e-03,\n",
+      "        -7.5329e-03, -2.0049e-02,  1.0393e-01,  4.4647e-03, -1.6695e-02,\n",
+      "         3.3826e-02,  7.5605e-03,  1.2088e-01, -3.0789e-03,  3.5180e-03,\n",
+      "         1.3893e-01,  3.1110e-01,  2.7507e-03,  1.7998e-01, -3.7103e-02,\n",
+      "         3.5902e-03,  5.8086e-02,  1.8034e-01,  3.1596e-02,  1.1377e-01,\n",
+      "         1.5909e-01,  7.3050e-03,  9.6964e-02,  2.3395e-01, -5.0306e-03,\n",
+      "         1.5624e-01,  1.1187e-01,  7.8302e-03,  1.5057e-01, -1.0868e-03,\n",
+      "         5.2291e-02,  1.5992e-02,  3.8476e-02, -1.2254e-02,  1.7839e-01,\n",
+      "        -1.0944e-02,  2.0340e-01])), ('pretrained_model.layer2.1.bn3.bias', tensor([-1.3694e-01, -5.2661e-02,  1.3078e-01, -1.7322e-03, -7.2339e-02,\n",
+      "         1.8839e-02,  8.4920e-03, -1.0519e-01, -9.7386e-02,  8.2745e-02,\n",
+      "        -6.0149e-02, -2.9745e-02, -4.9812e-02, -8.8166e-02,  1.8604e-02,\n",
+      "        -1.2492e-02,  3.2442e-03, -8.8244e-03, -8.7895e-03, -4.2690e-02,\n",
+      "         6.4383e-03, -1.8960e-02, -8.5042e-03,  6.8692e-02, -6.8937e-04,\n",
+      "        -2.2683e-02, -9.4902e-02,  6.2234e-02,  2.4363e-02, -3.8138e-03,\n",
+      "        -3.4135e-02, -7.9997e-02,  2.0689e-03, -2.0829e-02, -9.1389e-02,\n",
+      "        -2.2595e-02, -2.2411e-03,  4.8898e-03, -7.3374e-03,  1.4986e-02,\n",
+      "        -1.3157e-02, -6.2110e-03, -3.7360e-02, -1.0154e-01, -4.1189e-02,\n",
+      "        -3.7365e-02, -1.3627e-01, -2.2423e-02,  2.7632e-04,  5.4315e-03,\n",
+      "        -5.4004e-02, -2.9385e-03,  4.4356e-02, -2.0941e-02, -2.0880e-01,\n",
+      "        -3.3273e-02,  3.2049e-02, -5.3802e-02, -1.4848e-03,  6.0804e-02,\n",
+      "        -7.5883e-02, -1.5632e-02, -1.1130e-02, -1.2486e-01, -1.3717e-02,\n",
+      "        -2.0210e-02, -1.5339e-01,  3.2272e-02, -3.6661e-04, -1.1841e-02,\n",
+      "        -7.0650e-03,  1.1458e-02, -4.1662e-02, -3.2859e-02, -2.8417e-02,\n",
+      "        -4.5791e-02, -3.3890e-02, -3.5152e-02, -9.3747e-02, -5.1950e-02,\n",
+      "        -2.7425e-02, -1.0928e-02, -3.9326e-02,  2.3007e-03, -1.6968e-02,\n",
+      "        -1.2545e-02,  1.4022e-02,  2.8120e-02, -4.0154e-02, -1.8882e-02,\n",
+      "         3.4386e-02, -1.7244e-02, -2.7186e-02, -8.8198e-02,  5.3847e-02,\n",
+      "        -1.8355e-02,  1.6546e-02, -8.4766e-02,  1.5543e-02,  1.1596e-01,\n",
+      "        -1.0227e-01, -4.5509e-02, -5.7304e-02,  1.2420e-03, -8.3725e-02,\n",
+      "         1.4072e-01,  5.8912e-03, -2.3244e-02,  1.0858e-02,  4.9121e-02,\n",
+      "         1.1936e-02, -9.2753e-04,  2.6755e-02, -5.5238e-02, -1.0593e-01,\n",
+      "         4.5801e-03, -7.3256e-03, -1.3305e-02,  1.6075e-03, -3.5735e-02,\n",
+      "         3.4769e-03, -3.6429e-02, -9.1571e-02, -1.5344e-02, -4.7379e-02,\n",
+      "        -1.7523e-01, -6.4602e-03, -7.6705e-02, -8.8245e-05, -1.6998e-02,\n",
+      "        -2.6788e-02, -6.4220e-03, -2.4527e-02,  1.3122e-01, -1.7971e-02,\n",
+      "        -1.7915e-02,  7.9205e-03,  4.3337e-03,  2.1491e-02, -1.9415e-02,\n",
+      "        -6.5664e-03,  1.4552e-02, -3.5895e-03, -8.4011e-03,  6.1842e-02,\n",
+      "        -1.3359e-01, -1.5918e-01, -2.0247e-02,  3.2178e-02, -3.5556e-02,\n",
+      "        -1.0456e-02,  2.6166e-03,  3.4749e-03,  8.2788e-03, -9.2923e-02,\n",
+      "        -1.4278e-02, -1.8647e-01, -2.4565e-02,  1.4312e-02, -2.7753e-02,\n",
+      "         2.8113e-02, -3.7044e-02, -1.2758e-02, -2.1453e-02,  1.5095e-02,\n",
+      "         8.7033e-02, -5.5295e-02, -4.4608e-02, -2.0673e-02,  3.6328e-03,\n",
+      "         2.6962e-02,  3.8630e-03,  1.2401e-02,  5.7511e-04,  8.6880e-02,\n",
+      "        -1.5197e-02, -9.2863e-02, -4.4592e-03, -1.9112e-02, -3.5090e-02,\n",
+      "        -2.0730e-02, -2.0676e-02, -9.8535e-03,  1.3690e-02, -5.2798e-03,\n",
+      "        -2.0509e-01,  6.7093e-02, -1.1245e-02, -1.2122e-01,  1.6323e-01,\n",
+      "        -4.8642e-02, -1.7880e-02, -6.3543e-02, -3.5214e-02, -5.0330e-02,\n",
+      "         2.9407e-03,  8.4110e-03, -8.2865e-03, -3.9634e-02,  9.2993e-02,\n",
+      "        -8.6639e-06, -1.1031e-02, -6.1750e-03, -5.6684e-02,  1.0209e-01,\n",
+      "        -4.2692e-02,  2.7837e-02,  8.2214e-03,  3.6033e-03, -1.5719e-02,\n",
+      "        -2.7217e-02,  2.4638e-02,  1.0519e-02,  8.3995e-02,  2.5039e-02,\n",
+      "         5.6038e-03, -4.3406e-02, -6.3833e-02,  5.0971e-02, -4.9061e-03,\n",
+      "        -5.4615e-02, -2.4413e-02,  3.7337e-02, -2.2905e-02,  2.6233e-03,\n",
+      "        -1.0560e-02,  8.1925e-03, -1.1499e-01,  6.3011e-03, -2.5388e-02,\n",
+      "        -6.4852e-03, -2.2837e-02,  1.0408e-01,  1.3341e-02,  7.6901e-02,\n",
+      "         2.0704e-02,  1.5759e-02,  1.0080e-02, -6.4783e-03, -3.2083e-02,\n",
+      "         8.8107e-02, -1.4268e-01, -1.3256e-02, -5.9439e-02, -6.4844e-03,\n",
+      "        -3.3494e-02, -1.0104e-01, -5.6031e-03, -1.5419e-02,  7.2855e-02,\n",
+      "         4.1468e-03, -1.2638e-01, -7.2199e-03, -3.0874e-03, -1.5836e-02,\n",
+      "        -1.4034e-01,  7.1508e-03, -2.6935e-02,  2.0706e-02, -7.6834e-04,\n",
+      "        -3.3921e-02, -2.1038e-03, -9.7629e-03, -1.0075e-01, -3.4957e-03,\n",
+      "        -1.1938e-01,  2.0515e-02, -1.2025e-01, -7.6495e-02, -7.3686e-02,\n",
+      "         1.4028e-01, -5.4861e-02,  6.3574e-02, -6.8641e-02, -3.4717e-03,\n",
+      "         8.9254e-02, -6.6756e-02, -1.1933e-02, -2.5598e-02, -2.3417e-02,\n",
+      "        -2.2641e-02, -8.7963e-02, -1.3415e-02, -2.7325e-02, -2.1457e-02,\n",
+      "         9.5025e-03, -1.0811e-02, -2.3483e-02, -3.4465e-02, -3.7646e-02,\n",
+      "         1.2264e-01,  3.4352e-02, -7.9471e-03, -1.2759e-02, -4.8542e-02,\n",
+      "         7.8945e-03,  2.1505e-02,  6.7065e-02, -9.0807e-02, -1.7642e-03,\n",
+      "         1.2028e-02, -4.3784e-03, -1.8430e-02, -5.7891e-03, -3.0062e-03,\n",
+      "         4.3625e-03, -5.4199e-02,  3.0296e-02,  4.2325e-03, -1.8105e-01,\n",
+      "        -1.1015e-02,  5.2900e-02,  9.1332e-02,  5.9744e-02, -8.4851e-02,\n",
+      "        -1.7462e-02, -1.1889e-02, -2.2140e-01,  4.5326e-02, -2.5878e-03,\n",
+      "        -1.3347e-03, -2.8316e-02,  1.0215e-01, -5.4072e-02,  2.3040e-03,\n",
+      "         1.5488e-01, -1.0158e-01, -1.1689e-02, -4.7116e-03, -3.5240e-02,\n",
+      "         1.3895e-02, -7.0212e-04,  7.7599e-02, -1.8480e-01, -1.9592e-02,\n",
+      "        -7.6502e-02,  2.5315e-03, -1.5304e-01, -2.7194e-03, -4.3042e-02,\n",
+      "        -8.8305e-02, -1.1796e-02, -1.8647e-01, -2.8958e-02, -6.9510e-02,\n",
+      "        -2.2606e-02,  4.7769e-02, -3.5153e-02,  6.7531e-02, -1.1734e-01,\n",
+      "         4.7769e-03,  1.0302e-01, -1.1798e-02, -6.7415e-02, -1.2252e-01,\n",
+      "        -1.9038e-02, -2.4617e-02, -9.1922e-02,  4.5782e-03, -2.5077e-02,\n",
+      "        -4.0830e-02, -3.2970e-03, -3.1051e-02, -1.2189e-01, -1.9581e-02,\n",
+      "        -7.3689e-04,  9.5409e-02, -1.4335e-02, -2.8963e-02, -7.9932e-03,\n",
+      "         5.8009e-04, -7.4242e-02, -1.5674e-02,  4.1824e-03,  1.2193e-02,\n",
+      "        -6.7232e-03, -5.6049e-02, -3.7187e-03, -1.5556e-02, -3.8097e-02,\n",
+      "        -1.9593e-02,  1.0763e-02, -8.4055e-02,  3.3936e-03, -1.0871e-02,\n",
+      "        -1.5202e-02,  1.2705e-02, -1.2195e-01,  1.1155e-01, -2.1221e-02,\n",
+      "         4.0439e-04, -9.4857e-03, -4.9444e-02, -5.4898e-02, -5.7739e-02,\n",
+      "        -7.1992e-02, -1.9979e-01, -2.5614e-02, -2.3499e-02, -2.1370e-02,\n",
+      "         4.6467e-02,  1.0552e-01, -2.6600e-02, -1.5009e-02, -1.3421e-01,\n",
+      "        -5.7408e-02, -7.2703e-02,  1.9544e-02, -2.2311e-02,  4.2266e-02,\n",
+      "        -1.3127e-02, -2.9626e-02,  3.6506e-03,  1.5995e-03, -4.6771e-02,\n",
+      "        -2.3951e-02, -6.2843e-02, -2.7501e-02, -6.9398e-02,  5.0777e-03,\n",
+      "        -2.6780e-02, -1.6179e-02, -2.0671e-03, -2.8215e-02, -6.8840e-02,\n",
+      "        -9.8869e-03, -5.6213e-03, -1.4225e-02,  5.9927e-04, -1.9206e-03,\n",
+      "         3.9658e-02,  5.4387e-02,  3.6592e-03,  2.3704e-02, -5.9149e-02,\n",
+      "        -1.6632e-02, -2.4019e-02, -1.9697e-02,  1.0832e-02, -4.9498e-03,\n",
+      "         2.6389e-03, -1.3339e-01, -9.2142e-02, -1.1045e-01,  1.7826e-02,\n",
+      "         3.1171e-02,  6.4782e-02, -1.7959e-02,  2.1373e-02, -4.0799e-02,\n",
+      "        -1.1060e-01, -7.3506e-05,  1.0506e-01,  1.4767e-02,  2.8929e-02,\n",
+      "        -4.0475e-02,  5.2119e-03, -1.3807e-02, -4.7222e-02, -1.6049e-02,\n",
+      "        -6.7627e-03, -4.6223e-03, -2.1308e-02, -1.9834e-03, -1.7014e-01,\n",
+      "        -2.4700e-02, -3.5880e-02,  4.7170e-02, -1.0531e-01, -1.9170e-02,\n",
+      "        -3.3501e-02, -8.5333e-02,  9.1702e-02, -1.0361e-01, -5.2003e-02,\n",
+      "        -8.7673e-03, -3.5249e-02, -8.5947e-02,  2.4171e-02, -1.9609e-02,\n",
+      "        -3.9559e-02, -1.3783e-02,  7.2129e-02, -1.3042e-02, -1.6155e-02,\n",
+      "        -8.0509e-02,  4.7270e-02, -3.0943e-03, -4.7824e-02, -4.1222e-02,\n",
+      "        -2.2656e-03,  1.4500e-01, -5.8193e-02,  1.9965e-02, -1.6433e-01,\n",
+      "        -1.1482e-01, -1.8277e-02,  4.2326e-02, -2.0651e-02, -1.5241e-02,\n",
+      "        -7.1102e-02,  7.2781e-02, -1.6009e-02, -9.3808e-03,  2.5663e-03,\n",
+      "        -1.8798e-01, -1.3083e-01, -7.5326e-02, -1.1007e-02,  1.0965e-01,\n",
+      "        -2.8810e-03, -1.4340e-01])), ('pretrained_model.layer2.1.bn3.running_mean', tensor([-5.6898e-02, -2.2058e-03, -5.0726e-02, -4.9824e-03, -2.9229e-02,\n",
+      "        -7.2455e-02,  1.2794e-02, -3.4452e-02, -3.6684e-02, -6.3797e-02,\n",
+      "         3.7950e-02, -1.7385e-02, -2.0643e-02,  2.1817e-02, -6.5121e-03,\n",
+      "        -1.6516e-02,  1.3802e-02,  3.1492e-04,  1.5217e-02,  6.8816e-03,\n",
+      "         1.4144e-04, -1.9627e-03,  5.0517e-03, -5.4255e-02,  3.5118e-03,\n",
+      "        -1.5742e-02,  8.5536e-02,  4.4703e-03, -2.3682e-03, -9.3962e-03,\n",
+      "        -1.3571e-02,  3.2744e-03, -5.3980e-03,  5.3071e-03,  2.0251e-02,\n",
+      "        -1.4984e-02,  6.4956e-03, -1.7766e-03, -5.5303e-04, -3.9594e-02,\n",
+      "         1.0789e-02,  5.0566e-03,  7.2859e-04,  5.8021e-02, -1.3284e-02,\n",
+      "        -2.5762e-03, -4.5660e-02, -5.7336e-03, -3.1588e-03, -3.4010e-02,\n",
+      "        -3.2685e-02, -2.3593e-04,  1.3589e-02, -1.1926e-02,  5.8303e-02,\n",
+      "         1.5083e-04,  2.6854e-02, -7.4066e-03, -1.6665e-02, -5.7078e-02,\n",
+      "        -2.1389e-02,  2.7691e-02, -8.0885e-03,  1.8655e-03, -1.4336e-03,\n",
+      "        -7.0670e-03, -2.2536e-02,  1.2688e-02, -1.4737e-04, -1.9573e-03,\n",
+      "         2.9572e-02,  5.5299e-03, -2.1548e-02, -1.0199e-02,  8.6354e-03,\n",
+      "        -6.2735e-02, -1.3631e-03,  3.5515e-03,  1.2132e-02,  5.5798e-03,\n",
+      "        -3.9277e-03,  3.0008e-03, -7.9750e-03,  7.3109e-03,  4.0573e-03,\n",
+      "         7.7700e-05, -1.5737e-02,  1.8094e-02, -2.7038e-02, -3.3414e-02,\n",
+      "        -5.9789e-02,  5.4731e-03, -9.7038e-03,  1.1588e-02, -8.3623e-02,\n",
+      "        -3.4161e-03, -2.8587e-03,  6.8622e-02,  5.0453e-03, -6.3877e-03,\n",
+      "         2.4275e-02, -1.8185e-02, -4.1091e-02, -2.6317e-03, -5.5008e-02,\n",
+      "        -8.5316e-02,  3.8149e-03, -7.9104e-03,  9.5666e-03, -2.4119e-02,\n",
+      "        -1.9782e-03, -7.4352e-03, -4.8865e-02,  8.6310e-03,  1.0715e-02,\n",
+      "        -1.0771e-02,  1.2303e-02,  9.8970e-03, -5.4636e-03, -3.3016e-04,\n",
+      "         2.0445e-03,  2.6161e-05,  2.9104e-02,  4.6877e-03, -9.7720e-03,\n",
+      "        -1.6904e-02, -3.5959e-03,  1.5238e-03, -2.9557e-02, -2.0082e-02,\n",
+      "        -2.9813e-03, -1.8064e-03, -2.0763e-02, -1.5549e-01, -9.7933e-03,\n",
+      "        -2.7448e-02, -1.1896e-02,  2.2336e-02, -7.6816e-02,  1.2877e-02,\n",
+      "        -1.0594e-02,  1.4608e-06,  8.8003e-05, -5.8562e-03, -7.2239e-02,\n",
+      "        -3.9968e-02, -4.9727e-02,  4.5863e-04,  3.9545e-03, -3.9197e-03,\n",
+      "        -7.4561e-03,  9.1753e-03,  9.9109e-03, -5.4088e-02, -1.9992e-02,\n",
+      "         6.7007e-03,  6.7928e-03, -5.1895e-02,  2.3107e-02, -3.4142e-02,\n",
+      "         1.6073e-03,  2.1334e-02, -8.9340e-03,  3.0543e-02,  1.3452e-03,\n",
+      "        -7.6917e-03, -3.7100e-02, -1.3369e-02,  9.9116e-03, -2.6852e-02,\n",
+      "        -5.6768e-02, -9.2297e-03, -4.9523e-03, -6.0124e-03, -1.3888e-02,\n",
+      "         8.4426e-03, -6.4869e-02, -2.3805e-03, -4.3413e-02,  3.2903e-03,\n",
+      "        -2.6703e-02,  1.8037e-03,  3.2125e-03, -1.4162e-01,  4.5363e-03,\n",
+      "        -5.1413e-02, -5.4413e-02,  2.1296e-02,  7.3424e-02,  5.3763e-02,\n",
+      "         1.4071e-02,  1.1095e-02, -3.3939e-03, -2.4673e-02, -3.8403e-02,\n",
+      "        -1.1809e-03, -6.2317e-02, -3.1239e-03,  1.2970e-02, -9.1353e-02,\n",
+      "        -6.1640e-07,  6.3046e-03,  5.8286e-03,  7.8587e-03, -1.1407e-01,\n",
+      "        -1.4931e-02, -1.3974e-01, -1.8791e-04, -9.9666e-03,  2.4136e-03,\n",
+      "        -1.0770e-03, -1.1481e-04,  1.4421e-02, -7.4957e-02,  2.0444e-03,\n",
+      "         3.7899e-03, -1.7383e-02, -3.8534e-02, -1.1071e-01,  4.6381e-03,\n",
+      "         5.1607e-02,  1.6711e-03, -4.3099e-02, -2.6755e-02, -6.8700e-03,\n",
+      "         7.1955e-03, -2.0737e-03, -8.9002e-02,  2.3802e-03, -3.7918e-03,\n",
+      "        -6.1660e-03, -2.5645e-02, -8.0762e-02, -2.0992e-02, -3.4095e-02,\n",
+      "         1.9979e-03,  4.1896e-02, -1.4797e-02, -3.9465e-03, -1.2299e-02,\n",
+      "        -1.2634e-02,  1.1363e-02, -3.2882e-03,  1.6564e-02, -8.7891e-03,\n",
+      "         3.9749e-04,  5.5087e-02,  1.8036e-02, -1.3417e-03, -2.9631e-02,\n",
+      "        -7.4094e-03, -1.9252e-02, -1.2265e-03,  1.7053e-02, -9.3719e-03,\n",
+      "        -1.9216e-02,  2.8805e-03,  6.9334e-03, -1.4091e-03, -1.3945e-02,\n",
+      "        -2.2579e-02, -1.8829e-03, -5.4232e-03, -8.6664e-02, -2.8214e-03,\n",
+      "         1.3709e-02, -7.7403e-04,  6.9878e-02, -2.2722e-02,  1.0392e-02,\n",
+      "        -7.1006e-02,  2.1249e-03, -4.4851e-02,  1.1377e-03, -5.4670e-04,\n",
+      "        -3.9213e-02, -1.8575e-02, -3.7729e-03,  1.0831e-03,  1.7701e-02,\n",
+      "        -1.2469e-03, -6.0554e-03,  6.3798e-04, -6.3423e-03, -4.9726e-02,\n",
+      "        -2.9898e-03,  1.2378e-02, -1.1100e-02,  1.9578e-02, -2.1111e-02,\n",
+      "         3.8198e-02, -2.6703e-02, -5.4982e-03,  4.4911e-03,  2.3868e-03,\n",
+      "         9.4839e-03,  8.2227e-03, -2.0699e-02, -6.0606e-02,  4.3587e-04,\n",
+      "        -5.5100e-03,  2.1478e-03, -5.7553e-02, -6.6833e-03,  1.5293e-02,\n",
+      "         1.1107e-02, -1.0863e-02,  2.3538e-02, -5.9572e-03,  1.2859e-02,\n",
+      "        -1.5212e-02, -1.1377e-01, -6.5449e-02, -6.4359e-02, -1.3035e-01,\n",
+      "        -3.7281e-02,  9.1102e-03,  6.8766e-03, -4.4560e-02,  1.2626e-03,\n",
+      "        -6.0997e-03,  5.7373e-03,  1.1761e-02, -1.5652e-02, -9.6614e-03,\n",
+      "        -5.2445e-02,  3.3023e-03,  3.4236e-03,  4.3623e-03, -2.1656e-02,\n",
+      "        -1.8909e-02, -1.0116e-03, -5.0516e-02,  4.4411e-02, -7.9356e-03,\n",
+      "        -3.2824e-02, -5.3779e-03,  2.6728e-02, -8.8110e-04,  1.1849e-02,\n",
+      "        -1.8351e-02, -9.8922e-03, -4.8263e-02, -9.0501e-03, -5.4968e-02,\n",
+      "        -7.4902e-03, -4.6229e-02,  1.9507e-02, -5.3543e-03, -3.9278e-02,\n",
+      "        -2.0096e-03,  7.3665e-02,  1.8367e-02, -2.2425e-02, -2.4990e-02,\n",
+      "        -1.7971e-03,  3.3271e-03,  2.9364e-02, -2.7073e-02, -1.0898e-02,\n",
+      "        -5.8552e-03, -2.7011e-02, -2.8723e-02, -7.1844e-02, -3.4702e-02,\n",
+      "        -5.0494e-04, -1.4366e-03, -4.6738e-03,  8.0267e-03, -1.2515e-03,\n",
+      "         2.6909e-02, -2.5166e-03,  1.9410e-03, -1.3781e-02,  5.4419e-03,\n",
+      "         1.5073e-02,  4.6931e-03, -9.9366e-04, -2.9289e-02, -3.3773e-02,\n",
+      "         2.4810e-03, -5.3161e-03,  9.3183e-02,  7.1633e-03,  4.7875e-03,\n",
+      "         1.3271e-03, -8.5670e-02, -6.9871e-02,  1.8666e-02, -5.1957e-03,\n",
+      "        -2.3204e-03,  1.9093e-03, -3.2714e-02, -2.6078e-02, -1.1236e-02,\n",
+      "         3.8764e-03, -3.2458e-02, -1.0113e-01, -1.2854e-03, -5.2131e-02,\n",
+      "        -7.3831e-02, -1.3871e-02, -7.8385e-03,  2.1076e-03,  6.4594e-02,\n",
+      "        -6.9646e-03, -2.1779e-02, -9.8920e-03,  3.5020e-02, -4.8288e-02,\n",
+      "        -7.7367e-04, -1.5054e-02,  7.8371e-04, -5.4664e-02, -2.4409e-03,\n",
+      "         9.6130e-03, -1.1583e-02,  1.0816e-02,  4.5877e-02,  2.0653e-04,\n",
+      "        -4.7391e-04,  2.5124e-02, -8.4063e-03, -3.9035e-03, -1.8909e-02,\n",
+      "        -1.8273e-02, -1.5151e-02, -1.9812e-02,  8.1474e-04, -1.1087e-02,\n",
+      "        -1.3497e-02, -1.9589e-02,  6.4653e-04, -1.7946e-02, -3.5177e-02,\n",
+      "         1.7800e-04, -1.0297e-03,  1.4331e-02, -3.1722e-03,  2.4932e-03,\n",
+      "        -7.5788e-03, -7.6127e-02, -1.1296e-02, -6.0312e-02,  5.7703e-02,\n",
+      "        -5.5268e-03, -5.6162e-02, -7.0122e-03, -8.5765e-03, -1.5990e-02,\n",
+      "         1.9609e-02, -8.3084e-05, -2.3569e-01,  1.8060e-03, -3.8928e-02,\n",
+      "        -4.0650e-02, -5.2048e-03,  4.7691e-03, -9.9508e-02,  1.5173e-03,\n",
+      "         1.5172e-02,  2.6078e-03,  2.4099e-03, -8.9280e-06, -5.2571e-02,\n",
+      "        -1.0580e-02, -1.8273e-02, -5.5272e-02, -4.4477e-02,  2.5084e-03,\n",
+      "         3.1555e-02, -4.8586e-02, -4.0704e-02, -2.4020e-02,  4.5823e-03,\n",
+      "        -3.5959e-03, -3.0571e-02, -2.0025e-02,  5.3892e-03,  7.0556e-03,\n",
+      "        -1.1233e-02,  1.9108e-02, -1.6691e-01,  1.5976e-02,  1.4918e-03,\n",
+      "        -2.1493e-02, -4.3140e-02,  1.8317e-03, -2.9020e-02, -2.8863e-02,\n",
+      "        -5.7540e-03,  7.2766e-03, -2.4070e-02, -2.4675e-02, -5.7138e-02,\n",
+      "        -1.6820e-01, -4.8958e-03,  5.1212e-03, -4.4720e-02, -7.8731e-03,\n",
+      "        -2.6248e-02, -1.7036e-02,  8.2553e-03, -1.5235e-02, -6.5042e-03,\n",
+      "        -8.5825e-03, -1.1555e-02, -9.9090e-03,  1.4918e-03, -3.6280e-02,\n",
+      "         1.2191e-02, -2.5479e-02])), ('pretrained_model.layer2.1.bn3.running_var', tensor([1.8425e-03, 2.0888e-04, 6.4483e-03, 3.2935e-04, 2.3259e-03, 3.0572e-03,\n",
+      "        2.7534e-04, 6.7756e-03, 1.2007e-03, 4.0873e-03, 3.0194e-03, 3.2462e-04,\n",
+      "        1.8668e-03, 2.1644e-03, 4.4866e-03, 1.5331e-04, 4.6987e-04, 1.2370e-03,\n",
+      "        1.2281e-03, 6.2555e-04, 1.4621e-04, 3.5977e-04, 2.1659e-04, 7.6052e-03,\n",
+      "        2.9575e-04, 3.0501e-03, 2.2425e-03, 3.9747e-04, 5.9021e-03, 2.7087e-04,\n",
+      "        1.4983e-04, 2.7480e-04, 8.0535e-03, 6.9107e-04, 6.0997e-04, 2.1395e-04,\n",
+      "        8.3144e-04, 2.3465e-04, 3.8173e-06, 8.4895e-04, 1.9507e-04, 1.6838e-04,\n",
+      "        3.5451e-03, 1.5439e-03, 4.8659e-03, 1.7136e-04, 1.9051e-03, 1.5156e-04,\n",
+      "        2.2805e-04, 8.3123e-04, 5.3400e-03, 1.6606e-07, 3.1034e-04, 2.9974e-04,\n",
+      "        3.0925e-03, 1.3448e-04, 4.1280e-04, 5.0723e-04, 3.8315e-04, 2.1556e-03,\n",
+      "        3.0907e-03, 4.2218e-04, 1.0940e-04, 1.0915e-04, 2.7067e-04, 3.9678e-04,\n",
+      "        2.4413e-04, 2.0921e-04, 4.0373e-08, 1.1364e-04, 3.1310e-04, 2.4436e-04,\n",
+      "        5.4263e-04, 4.1630e-04, 2.9157e-04, 6.3486e-04, 4.1052e-04, 3.5608e-04,\n",
+      "        2.2132e-03, 1.9609e-04, 4.1969e-04, 1.5426e-04, 3.9068e-03, 1.6568e-04,\n",
+      "        1.4148e-04, 3.3047e-04, 5.8940e-04, 6.2695e-03, 3.7599e-03, 2.8308e-03,\n",
+      "        6.3689e-03, 2.4785e-04, 1.4889e-04, 1.1343e-03, 8.7359e-03, 1.1145e-04,\n",
+      "        2.4954e-04, 1.0154e-03, 3.7159e-04, 7.5237e-03, 6.7212e-04, 2.3184e-04,\n",
+      "        2.9127e-03, 2.9065e-04, 3.8924e-03, 5.2737e-03, 1.6050e-04, 1.2551e-04,\n",
+      "        3.4893e-04, 2.3095e-03, 2.7217e-04, 3.2861e-04, 2.2935e-03, 6.0711e-04,\n",
+      "        1.0164e-03, 4.9814e-04, 1.4615e-04, 3.0248e-04, 2.0324e-04, 8.1583e-04,\n",
+      "        7.1228e-04, 6.6602e-04, 1.8756e-03, 1.7026e-04, 1.7679e-04, 7.6252e-03,\n",
+      "        2.9499e-04, 2.1579e-04, 1.4998e-03, 1.7683e-04, 2.0828e-04, 3.0830e-04,\n",
+      "        2.8899e-04, 2.7114e-03, 7.7896e-04, 1.5667e-03, 2.0482e-04, 2.6134e-04,\n",
+      "        1.0631e-02, 8.3492e-04, 4.0650e-04, 3.7654e-03, 1.6021e-04, 5.0885e-03,\n",
+      "        2.2287e-03, 1.5428e-03, 1.1929e-03, 3.3837e-04, 2.6202e-04, 6.8706e-04,\n",
+      "        2.9426e-04, 4.3188e-03, 3.6894e-04, 5.8525e-03, 2.4822e-03, 4.7945e-04,\n",
+      "        2.2465e-03, 6.3340e-03, 2.2148e-04, 1.9397e-03, 3.1808e-04, 7.7320e-04,\n",
+      "        3.1458e-04, 4.7081e-04, 3.4415e-04, 2.2417e-03, 4.6719e-04, 8.2543e-04,\n",
+      "        1.1314e-04, 1.2058e-03, 8.4061e-03, 7.4236e-04, 8.6026e-04, 4.4066e-04,\n",
+      "        2.3889e-03, 2.1271e-04, 2.8567e-03, 2.7925e-04, 1.8904e-03, 3.7705e-04,\n",
+      "        3.7265e-04, 3.5099e-04, 1.8473e-04, 4.2734e-03, 4.0707e-04, 3.0591e-03,\n",
+      "        1.0644e-02, 5.9854e-04, 4.0422e-03, 2.1406e-03, 7.6552e-04, 1.4380e-04,\n",
+      "        1.0872e-03, 4.7126e-04, 1.0620e-02, 2.0904e-04, 5.6242e-03, 1.5568e-04,\n",
+      "        4.9378e-03, 3.8646e-03, 6.9652e-13, 3.2467e-04, 2.3545e-04, 2.7511e-03,\n",
+      "        8.4996e-03, 1.6602e-04, 1.6967e-03, 3.3047e-04, 8.7793e-04, 7.0044e-06,\n",
+      "        5.2041e-04, 3.6366e-04, 7.5581e-04, 1.1425e-02, 4.6376e-03, 1.6132e-04,\n",
+      "        3.7118e-04, 6.6816e-04, 1.0940e-02, 2.7259e-04, 1.7793e-03, 2.5014e-04,\n",
+      "        6.0064e-03, 2.0042e-04, 2.0611e-04, 2.8394e-04, 2.1839e-04, 6.9421e-03,\n",
+      "        1.6611e-04, 3.5798e-04, 1.8396e-04, 2.5434e-04, 7.3213e-03, 2.0358e-03,\n",
+      "        1.2547e-02, 2.1255e-04, 7.2695e-03, 3.4318e-04, 3.5613e-04, 1.8472e-04,\n",
+      "        9.1416e-03, 1.0708e-02, 2.1150e-04, 8.0742e-04, 1.0147e-04, 9.3377e-05,\n",
+      "        1.9242e-03, 3.9767e-04, 1.1393e-04, 3.2042e-03, 2.6741e-04, 1.6991e-03,\n",
+      "        1.6516e-04, 2.7578e-04, 1.5367e-04, 1.4745e-03, 1.7775e-04, 8.2995e-04,\n",
+      "        3.1550e-04, 4.6228e-04, 4.1504e-04, 2.3565e-04, 2.2126e-04, 4.4307e-03,\n",
+      "        2.8436e-04, 4.5496e-04, 2.0043e-04, 6.5374e-04, 9.9814e-04, 3.0061e-04,\n",
+      "        5.3003e-03, 3.5462e-04, 5.4031e-03, 4.1830e-03, 2.3726e-04, 4.2729e-03,\n",
+      "        1.7392e-03, 1.5365e-03, 1.6577e-04, 1.4798e-04, 1.6929e-04, 2.4759e-03,\n",
+      "        1.6997e-04, 2.1764e-03, 4.0400e-03, 2.9971e-03, 3.1220e-04, 2.7003e-04,\n",
+      "        3.4689e-04, 2.8940e-04, 2.6478e-03, 1.3074e-03, 1.3145e-04, 2.1388e-04,\n",
+      "        8.5744e-05, 3.0332e-04, 2.5421e-04, 7.7562e-03, 1.5291e-03, 1.7471e-07,\n",
+      "        4.3085e-04, 7.5998e-05, 1.8348e-03, 3.4573e-04, 1.4606e-04, 3.3741e-04,\n",
+      "        1.8611e-04, 1.4237e-03, 3.9981e-04, 3.2982e-04, 1.9344e-04, 4.8122e-03,\n",
+      "        1.1900e-02, 4.8046e-03, 4.3874e-03, 8.6882e-03, 1.0780e-04, 2.8699e-03,\n",
+      "        7.8196e-03, 3.6612e-03, 2.2493e-04, 2.9149e-04, 4.1263e-04, 8.1890e-04,\n",
+      "        3.0252e-04, 1.6239e-02, 4.7470e-04, 2.8811e-04, 2.1756e-04, 7.8922e-03,\n",
+      "        5.3076e-04, 2.8402e-04, 1.5477e-02, 4.6523e-04, 1.6706e-04, 1.0654e-03,\n",
+      "        2.0752e-04, 4.7940e-04, 1.8946e-04, 7.4592e-04, 4.2093e-03, 3.5206e-04,\n",
+      "        3.2762e-03, 1.4521e-04, 6.6872e-03, 5.1443e-04, 1.0273e-02, 4.9349e-04,\n",
+      "        2.9792e-04, 8.3044e-04, 3.4351e-04, 2.1915e-03, 4.2616e-04, 1.9461e-03,\n",
+      "        6.6300e-03, 1.8920e-04, 3.7800e-04, 8.8216e-04, 3.0570e-04, 1.9423e-04,\n",
+      "        1.8523e-03, 4.5595e-04, 1.3053e-03, 3.6486e-04, 4.3180e-03, 3.9890e-04,\n",
+      "        3.2497e-04, 1.9645e-04, 4.5804e-04, 2.4513e-04, 5.5291e-03, 1.8988e-04,\n",
+      "        3.8637e-04, 3.6101e-04, 4.7146e-04, 2.1798e-04, 3.1982e-04, 1.7788e-04,\n",
+      "        4.5705e-04, 2.3485e-03, 2.8644e-04, 2.4536e-04, 2.3943e-03, 1.4639e-04,\n",
+      "        2.6078e-04, 1.7089e-04, 6.5235e-03, 2.8947e-03, 3.4338e-03, 1.1528e-04,\n",
+      "        1.9144e-04, 1.9158e-04, 1.5530e-03, 1.7596e-04, 1.0487e-03, 8.4911e-03,\n",
+      "        2.4328e-03, 1.0016e-03, 1.8081e-04, 4.4116e-03, 1.0793e-02, 4.3516e-03,\n",
+      "        3.2825e-04, 1.4526e-04, 1.4936e-03, 6.3561e-04, 3.8079e-04, 3.4148e-04,\n",
+      "        1.1610e-03, 3.2747e-03, 2.4510e-04, 2.0413e-04, 2.7957e-04, 2.4428e-03,\n",
+      "        6.4269e-03, 1.1707e-04, 8.3291e-04, 1.8916e-04, 3.3341e-04, 3.3557e-03,\n",
+      "        2.2839e-04, 8.3861e-03, 1.6164e-04, 2.4666e-04, 7.0144e-04, 8.3116e-04,\n",
+      "        6.2671e-03, 7.1677e-03, 5.8640e-04, 1.8876e-04, 5.6086e-03, 5.5699e-04,\n",
+      "        3.3838e-04, 5.3404e-03, 7.2479e-04, 1.5894e-04, 1.5157e-04, 2.2902e-04,\n",
+      "        1.7522e-04, 1.7495e-04, 1.5699e-04, 1.6616e-03, 7.5612e-04, 7.0340e-03,\n",
+      "        1.0734e-03, 2.7442e-04, 5.9414e-03, 3.1842e-04, 3.0774e-04, 2.4627e-03,\n",
+      "        1.2896e-02, 1.9946e-09, 3.0755e-03, 2.0606e-04, 4.4237e-03, 7.3530e-04,\n",
+      "        2.5798e-04, 1.4489e-04, 7.1528e-03, 8.2289e-04, 1.8936e-04, 2.4264e-04,\n",
+      "        1.4665e-04, 2.5607e-04, 6.4363e-03, 2.4692e-04, 1.0218e-04, 8.4495e-03,\n",
+      "        1.0513e-03, 1.9367e-04, 2.0927e-04, 9.6979e-03, 1.6923e-02, 1.9099e-03,\n",
+      "        2.0433e-04, 2.1107e-04, 4.8615e-04, 3.9163e-04, 2.7277e-04, 2.1612e-04,\n",
+      "        5.7108e-04, 2.1144e-04, 2.9223e-03, 2.0944e-04, 3.1972e-04, 9.0259e-04,\n",
+      "        7.0542e-03, 2.7411e-04, 2.4641e-03, 4.2026e-04, 1.4913e-04, 7.4170e-04,\n",
+      "        2.3810e-03, 7.8586e-04, 1.5610e-03, 1.1822e-03, 2.7544e-04, 1.4808e-03,\n",
+      "        8.4342e-03, 2.6811e-04, 1.8317e-03, 1.4822e-03, 1.5710e-04, 2.5094e-03,\n",
+      "        1.4836e-04, 4.7857e-04, 2.6768e-04, 6.3358e-04, 2.4728e-04, 3.5747e-03,\n",
+      "        4.0027e-04, 6.0564e-03])), ('pretrained_model.layer2.1.bn3.num_batches_tracked', tensor(0)), ('pretrained_model.layer2.2.conv1.weight', tensor([[[[-0.0046]],\n",
+      "\n",
+      "         [[ 0.0035]],\n",
+      "\n",
+      "         [[-0.0138]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0236]],\n",
+      "\n",
+      "         [[ 0.0096]],\n",
+      "\n",
+      "         [[ 0.0275]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0026]],\n",
+      "\n",
+      "         [[-0.0419]],\n",
+      "\n",
+      "         [[-0.0126]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0047]],\n",
+      "\n",
+      "         [[ 0.0164]],\n",
+      "\n",
+      "         [[-0.0176]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0024]],\n",
+      "\n",
+      "         [[-0.0172]],\n",
+      "\n",
+      "         [[ 0.0190]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0215]],\n",
+      "\n",
+      "         [[-0.0496]],\n",
+      "\n",
+      "         [[ 0.0011]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0047]],\n",
+      "\n",
+      "         [[ 0.0009]],\n",
+      "\n",
+      "         [[-0.0033]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0343]],\n",
+      "\n",
+      "         [[ 0.0056]],\n",
+      "\n",
+      "         [[ 0.0559]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0177]],\n",
+      "\n",
+      "         [[ 0.0078]],\n",
+      "\n",
+      "         [[ 0.0029]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0565]],\n",
+      "\n",
+      "         [[ 0.0397]],\n",
+      "\n",
+      "         [[-0.0045]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0131]],\n",
+      "\n",
+      "         [[ 0.0026]],\n",
+      "\n",
+      "         [[ 0.0588]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0123]],\n",
+      "\n",
+      "         [[ 0.0162]],\n",
+      "\n",
+      "         [[-0.0223]]]])), ('pretrained_model.layer2.2.bn1.weight', tensor([0.1028, 0.1186, 0.1839, 0.2189, 0.1081, 0.1557, 0.1801, 0.1295, 0.2297,\n",
+      "        0.1414, 0.1919, 0.1921, 0.1750, 0.1323, 0.2312, 0.1311, 0.1966, 0.1231,\n",
+      "        0.1429, 0.1736, 0.2086, 0.1663, 0.1855, 0.2286, 0.1761, 0.1989, 0.2283,\n",
+      "        0.1530, 0.1740, 0.1019, 0.2154, 0.2136, 0.1008, 0.1740, 0.1869, 0.1036,\n",
+      "        0.1192, 0.0940, 0.2047, 0.1167, 0.2029, 0.2422, 0.1568, 0.1372, 0.2403,\n",
+      "        0.2022, 0.1927, 0.1115, 0.1863, 0.1994, 0.1420, 0.1791, 0.1784, 0.1562,\n",
+      "        0.1607, 0.2191, 0.1710, 0.1464, 0.1976, 0.1909, 0.1389, 0.1069, 0.1997,\n",
+      "        0.1540, 0.2009, 0.1610, 0.2212, 0.1704, 0.1574, 0.1264, 0.2148, 0.2141,\n",
+      "        0.1402, 0.2179, 0.2171, 0.1276, 0.1912, 0.1923, 0.1662, 0.1478, 0.2120,\n",
+      "        0.2060, 0.1926, 0.2269, 0.2016, 0.1976, 0.1260, 0.2496, 0.1349, 0.1983,\n",
+      "        0.1421, 0.1317, 0.1176, 0.2074, 0.1564, 0.1720, 0.2104, 0.1325, 0.1695,\n",
+      "        0.1683, 0.1548, 0.0933, 0.2190, 0.2145, 0.1612, 0.2463, 0.1631, 0.1348,\n",
+      "        0.1683, 0.1940, 0.1581, 0.1736, 0.1865, 0.1439, 0.1468, 0.1451, 0.1147,\n",
+      "        0.1570, 0.2310, 0.1166, 0.1517, 0.1899, 0.2100, 0.1278, 0.2066, 0.1362,\n",
+      "        0.1317, 0.1776])), ('pretrained_model.layer2.2.bn1.bias', tensor([ 1.5351e-01,  2.3507e-02, -6.8644e-02,  2.0993e-02,  9.3418e-02,\n",
+      "         4.8192e-02, -2.3122e-02,  4.7662e-02, -3.9435e-02,  1.1214e-01,\n",
+      "        -7.1860e-02, -4.5587e-03, -3.1610e-02, -1.4424e-02, -1.8548e-02,\n",
+      "         2.1440e-01,  5.1906e-02, -1.7745e-02,  5.6549e-02, -5.2153e-02,\n",
+      "         6.9089e-02, -2.2627e-02,  3.0961e-02, -7.4510e-02, -6.7705e-02,\n",
+      "        -9.5962e-02,  4.5100e-02,  5.0762e-02,  3.9048e-02,  7.8720e-02,\n",
+      "        -7.4007e-02,  2.6294e-02,  2.6613e-02,  6.2179e-02,  8.9338e-02,\n",
+      "         2.2034e-01,  6.0269e-02,  1.3247e-01, -1.4494e-01,  1.9398e-01,\n",
+      "        -1.0009e-01, -3.8041e-02,  3.6887e-02, -7.8416e-03, -1.0620e-01,\n",
+      "        -7.2712e-02, -9.8363e-02,  4.4852e-02,  3.9523e-02, -4.4670e-02,\n",
+      "         3.0487e-02, -2.2006e-03,  5.2030e-02,  2.2551e-02, -4.9139e-02,\n",
+      "         4.2246e-02,  5.0366e-03,  8.6406e-02, -6.4601e-02,  1.5227e-02,\n",
+      "         4.9824e-02,  9.2283e-02, -7.4503e-02, -1.0413e-01,  4.3976e-02,\n",
+      "        -4.9044e-02, -3.3844e-02, -8.3511e-02, -4.7129e-02,  6.3936e-02,\n",
+      "        -5.1601e-02,  2.9851e-02,  2.7332e-01,  6.4567e-02, -2.0951e-01,\n",
+      "         2.5097e-02, -7.2530e-02, -2.7881e-02, -7.7582e-02, -5.3435e-02,\n",
+      "         5.9700e-02, -3.3290e-03,  1.1695e-02, -7.4929e-02, -1.6798e-02,\n",
+      "         6.0702e-02,  9.5066e-03, -2.7284e-02,  3.6587e-02, -7.7300e-03,\n",
+      "        -7.4891e-02,  5.9645e-02,  8.2942e-02,  5.9987e-02,  2.2979e-02,\n",
+      "        -1.5228e-02, -1.7656e-02,  8.4665e-02, -9.7361e-02, -9.6202e-02,\n",
+      "         6.2263e-02,  1.0922e-01, -1.3204e-01,  2.7000e-02, -1.0835e-01,\n",
+      "        -8.8331e-02,  2.8377e-02, -2.3898e-02, -8.9876e-02,  1.4454e-02,\n",
+      "         1.3751e-02, -6.5145e-02, -3.3856e-02,  1.6583e-02, -4.6751e-02,\n",
+      "        -6.9513e-02,  1.0808e-01,  3.3386e-02,  1.2683e-04,  4.3265e-02,\n",
+      "        -5.5557e-02, -3.0606e-03, -1.3856e-01, -4.5548e-03, -1.3129e-01,\n",
+      "         7.1358e-02,  5.5802e-02,  2.7828e-02])), ('pretrained_model.layer2.2.bn1.running_mean', tensor([-4.6623e-02, -1.2387e-01, -5.7782e-02, -3.1670e-02, -2.8971e-01,\n",
+      "        -1.4343e-01, -1.8116e-01, -1.1522e-01,  6.9752e-02, -2.5388e-01,\n",
+      "        -1.1003e-01,  2.7711e-02,  1.3183e-02,  2.8561e-02,  1.1489e-01,\n",
+      "        -1.7072e-01, -1.4408e-01, -1.2919e-01,  6.0812e-03,  1.0089e-01,\n",
+      "        -1.7691e-01,  7.7539e-03, -4.5584e-02,  2.0890e-03, -1.3325e-01,\n",
+      "         9.4007e-02, -9.5677e-02,  1.3389e-01,  2.6192e-02, -1.9276e-01,\n",
+      "        -1.0073e-01, -7.5721e-02,  3.1921e-02,  3.3944e-03, -7.2397e-02,\n",
+      "        -3.2640e-02,  2.8299e-02,  1.4571e-01,  1.8090e-02, -1.4427e-01,\n",
+      "         7.2703e-02, -1.1150e-01, -4.5706e-02,  5.8959e-03,  1.2837e-02,\n",
+      "         2.3350e-02,  1.1029e-01,  1.3910e-01, -1.0640e-01,  1.1102e-01,\n",
+      "        -1.1647e-01, -2.8632e-01,  2.3418e-02,  2.0084e-02, -5.8708e-02,\n",
+      "         9.3384e-02,  4.6279e-02,  8.5360e-02,  2.4467e-01, -1.2140e-01,\n",
+      "        -9.1329e-02, -1.0987e-01, -1.1369e-01,  1.1893e-02, -2.8244e-01,\n",
+      "        -2.0512e-01,  1.2002e-01, -1.0866e-01,  3.9772e-02, -1.5486e-02,\n",
+      "        -3.2635e-01, -2.2049e-01,  3.1378e-02, -1.0145e-02, -1.4991e-01,\n",
+      "         3.6455e-02, -3.8619e-02, -7.3598e-02, -6.8916e-02,  5.2880e-02,\n",
+      "         1.1106e-01,  9.1923e-02, -2.2595e-02, -6.2127e-02, -2.9727e-01,\n",
+      "         9.3688e-02,  1.8783e-01,  3.0166e-01, -1.1896e-04,  4.4964e-02,\n",
+      "        -1.2047e-01, -9.1935e-03, -1.4612e-01, -8.4130e-02,  3.9064e-02,\n",
+      "        -1.3966e-01, -6.4208e-02,  1.7797e-02, -4.6803e-02, -1.0011e-01,\n",
+      "        -1.1108e-02, -8.2421e-02, -2.1589e-02,  2.8112e-02, -8.6422e-02,\n",
+      "        -9.2076e-03, -7.7067e-02, -5.4592e-02,  8.2381e-03, -1.6088e-01,\n",
+      "        -4.6781e-02, -8.8014e-02,  1.6011e-01,  1.5578e-01,  3.2114e-03,\n",
+      "        -2.1004e-03,  4.8433e-02,  7.9850e-03, -3.8772e-02, -2.0175e-01,\n",
+      "        -3.1233e-02, -1.2429e-01, -5.5400e-02, -1.5205e-01,  5.8700e-02,\n",
+      "         1.4058e-01,  1.5624e-02,  2.2768e-02])), ('pretrained_model.layer2.2.bn1.running_var', tensor([0.0205, 0.0206, 0.0210, 0.0463, 0.0199, 0.0337, 0.0200, 0.0180, 0.0473,\n",
+      "        0.0673, 0.0158, 0.0233, 0.0205, 0.0320, 0.0258, 0.1124, 0.0482, 0.0095,\n",
+      "        0.0202, 0.0278, 0.0435, 0.0204, 0.0287, 0.0369, 0.0091, 0.0315, 0.0422,\n",
+      "        0.0230, 0.0203, 0.0368, 0.0350, 0.0461, 0.0164, 0.0267, 0.0458, 0.0431,\n",
+      "        0.0176, 0.0161, 0.0230, 0.0749, 0.0170, 0.0482, 0.0238, 0.0223, 0.0272,\n",
+      "        0.0353, 0.0236, 0.0229, 0.0303, 0.0195, 0.0217, 0.0141, 0.0211, 0.0222,\n",
+      "        0.0276, 0.0377, 0.0375, 0.0333, 0.0256, 0.0244, 0.0238, 0.0378, 0.0311,\n",
+      "        0.0149, 0.0526, 0.0253, 0.0322, 0.0163, 0.0188, 0.0214, 0.0370, 0.0448,\n",
+      "        0.1253, 0.0414, 0.0133, 0.0162, 0.0212, 0.0288, 0.0196, 0.0168, 0.0465,\n",
+      "        0.0297, 0.0328, 0.0336, 0.0380, 0.0336, 0.0170, 0.0278, 0.0125, 0.0358,\n",
+      "        0.0214, 0.0618, 0.0170, 0.0281, 0.0222, 0.0254, 0.0311, 0.0354, 0.0186,\n",
+      "        0.0144, 0.0425, 0.0159, 0.0351, 0.0485, 0.0247, 0.0406, 0.0261, 0.0163,\n",
+      "        0.0198, 0.0433, 0.0232, 0.0160, 0.0234, 0.0168, 0.0173, 0.0264, 0.0296,\n",
+      "        0.0190, 0.0301, 0.0286, 0.0151, 0.0281, 0.0200, 0.0233, 0.0194, 0.0161,\n",
+      "        0.0159, 0.0256])), ('pretrained_model.layer2.2.bn1.num_batches_tracked', tensor(0)), ('pretrained_model.layer2.2.conv2.weight', tensor([[[[-1.9657e-03, -1.3146e-04, -1.6163e-04],\n",
+      "          [ 1.1143e-02, -1.8628e-03,  8.7626e-03],\n",
+      "          [-1.5762e-03, -9.0533e-03,  3.2953e-03]],\n",
+      "\n",
+      "         [[ 1.1400e-02,  6.0231e-03,  8.3017e-03],\n",
+      "          [ 1.8108e-02,  1.8676e-02, -1.3968e-03],\n",
+      "          [ 4.1217e-03,  1.2003e-02,  1.5654e-02]],\n",
+      "\n",
+      "         [[ 1.7070e-02,  1.2720e-02,  5.2583e-03],\n",
+      "          [ 4.1682e-03, -1.7749e-03,  2.8441e-02],\n",
+      "          [ 3.0846e-03,  9.7835e-03, -1.5097e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.0079e-02, -1.4486e-04, -3.4057e-04],\n",
+      "          [-1.2446e-02, -1.9540e-02, -7.4863e-03],\n",
+      "          [-2.2008e-02, -1.2550e-03,  1.6696e-03]],\n",
+      "\n",
+      "         [[-3.0489e-02, -2.6255e-02, -8.7258e-03],\n",
+      "          [-2.3311e-02, -8.7248e-03,  1.3719e-02],\n",
+      "          [-1.7433e-02,  3.5650e-03,  9.4016e-03]],\n",
+      "\n",
+      "         [[ 3.8512e-02,  1.2985e-02,  1.8503e-03],\n",
+      "          [ 2.9406e-02,  7.3331e-03,  3.8742e-02],\n",
+      "          [ 2.0351e-02,  1.9797e-02,  3.8353e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.6031e-02,  4.9061e-03, -1.3024e-02],\n",
+      "          [ 5.7992e-03,  4.4193e-02,  1.0646e-04],\n",
+      "          [-2.9308e-02, -5.4377e-02, -3.8493e-02]],\n",
+      "\n",
+      "         [[-1.5029e-02, -1.1364e-02, -4.3696e-03],\n",
+      "          [-2.2280e-03, -4.6072e-04,  5.5800e-03],\n",
+      "          [ 6.7754e-03,  7.2763e-03,  1.3790e-02]],\n",
+      "\n",
+      "         [[ 1.1411e-02,  2.5667e-03, -7.0712e-03],\n",
+      "          [-9.2011e-03, -2.9615e-02, -3.2731e-02],\n",
+      "          [-1.5286e-02, -8.3211e-03, -2.5432e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.7944e-02, -6.6966e-03, -1.5787e-02],\n",
+      "          [-7.0550e-03,  9.7768e-03, -6.2854e-03],\n",
+      "          [-1.0446e-04,  5.3423e-03,  2.9387e-02]],\n",
+      "\n",
+      "         [[ 7.7977e-03, -6.8176e-03, -2.2386e-03],\n",
+      "          [ 2.0476e-02,  6.0130e-03, -9.8229e-03],\n",
+      "          [ 7.4351e-03, -5.8448e-04, -6.7444e-03]],\n",
+      "\n",
+      "         [[-1.5007e-02, -4.8112e-03, -1.0821e-02],\n",
+      "          [-1.2797e-02,  4.9933e-03,  1.5671e-03],\n",
+      "          [-7.3153e-03, -7.3764e-04, -4.8681e-04]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.0876e-02, -1.9749e-02, -9.1514e-03],\n",
+      "          [ 9.3670e-04,  7.7681e-03,  1.5675e-02],\n",
+      "          [-3.6919e-03, -6.2873e-03,  8.1671e-03]],\n",
+      "\n",
+      "         [[-8.2264e-03, -9.0163e-03, -1.0781e-02],\n",
+      "          [-6.4303e-03, -9.8470e-03,  6.9151e-03],\n",
+      "          [ 1.1674e-02,  1.6945e-02, -7.2416e-03]],\n",
+      "\n",
+      "         [[ 4.1712e-03,  1.4253e-02,  1.9678e-02],\n",
+      "          [-1.5090e-02, -1.7354e-02, -8.3738e-03],\n",
+      "          [ 9.0011e-03, -4.3371e-03, -1.0938e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.2900e-02, -1.9801e-02,  1.2191e-02],\n",
+      "          [ 1.9220e-02, -3.5841e-02, -2.2808e-03],\n",
+      "          [ 1.4829e-02,  4.2374e-02, -2.4903e-02]],\n",
+      "\n",
+      "         [[ 5.9404e-05, -6.3542e-03,  6.6772e-03],\n",
+      "          [-3.7566e-03,  2.9720e-02,  8.1114e-03],\n",
+      "          [-2.2410e-02, -1.0098e-02,  1.7616e-02]],\n",
+      "\n",
+      "         [[-2.7526e-02, -4.1745e-02, -1.3017e-02],\n",
+      "          [ 4.6336e-02,  6.9338e-03,  3.2289e-02],\n",
+      "          [ 1.2901e-02,  1.2643e-02,  4.9786e-02]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-1.0474e-02, -8.0178e-03, -1.2024e-02],\n",
+      "          [-1.4123e-02, -6.1022e-03, -1.4577e-02],\n",
+      "          [-3.1082e-02,  5.3570e-02,  1.7834e-02]],\n",
+      "\n",
+      "         [[-1.4221e-02, -2.0456e-02, -7.8363e-03],\n",
+      "          [-1.2690e-02, -2.0244e-02, -1.9924e-03],\n",
+      "          [-3.3910e-02,  4.7884e-02,  5.7628e-02]],\n",
+      "\n",
+      "         [[-3.0737e-02, -2.1424e-02, -2.1225e-02],\n",
+      "          [-2.3126e-02, -1.4130e-02, -2.9083e-02],\n",
+      "          [ 1.2578e-02,  9.9594e-03,  1.1006e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.6019e-02,  1.7784e-02,  5.6350e-04],\n",
+      "          [ 1.5711e-03, -9.8243e-03,  7.3517e-03],\n",
+      "          [ 3.0711e-03, -1.9695e-02, -6.4335e-04]],\n",
+      "\n",
+      "         [[ 6.7560e-03,  1.0255e-02, -2.4382e-04],\n",
+      "          [-1.3485e-02, -2.4517e-02, -2.9360e-02],\n",
+      "          [-1.1709e-02, -2.5595e-02, -2.1725e-02]],\n",
+      "\n",
+      "         [[ 2.9380e-02,  2.5744e-02,  8.2000e-03],\n",
+      "          [ 1.9156e-02,  2.3347e-02,  3.0191e-03],\n",
+      "          [ 1.7353e-02, -1.0862e-02, -3.9072e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 2.4145e-02,  1.6255e-02,  1.3929e-02],\n",
+      "          [ 1.3413e-02, -1.6559e-02, -9.9341e-03],\n",
+      "          [-3.2040e-03,  9.1988e-03, -7.6716e-03]],\n",
+      "\n",
+      "         [[ 4.2154e-03, -5.4614e-03,  3.9659e-04],\n",
+      "          [ 8.8132e-04,  6.4501e-04, -5.5789e-03],\n",
+      "          [-4.6606e-03,  2.7946e-02,  2.3420e-02]],\n",
+      "\n",
+      "         [[ 1.2958e-02, -2.0947e-02, -8.5164e-03],\n",
+      "          [ 9.2375e-02,  9.1185e-03, -1.0621e-01],\n",
+      "          [ 2.6671e-02, -1.7224e-02, -1.9748e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 5.2394e-03, -1.6676e-02, -1.0910e-02],\n",
+      "          [-1.3784e-02,  3.9533e-03,  3.5826e-02],\n",
+      "          [ 5.4231e-03,  1.0633e-02,  1.1448e-02]],\n",
+      "\n",
+      "         [[ 2.3769e-02, -4.3010e-03, -7.0841e-03],\n",
+      "          [-1.7367e-02, -2.1389e-02, -3.5096e-02],\n",
+      "          [-8.7866e-03, -2.1188e-02, -1.8839e-02]],\n",
+      "\n",
+      "         [[-9.0803e-03,  4.8224e-03,  4.7907e-03],\n",
+      "          [-3.6677e-02,  1.5674e-02,  2.5231e-02],\n",
+      "          [ 5.6588e-03,  2.0479e-02,  3.4542e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-9.6951e-03, -2.2182e-02, -1.3671e-02],\n",
+      "          [ 7.1324e-04,  5.8328e-03,  1.8976e-02],\n",
+      "          [ 1.0199e-02,  2.4349e-02,  1.3660e-02]],\n",
+      "\n",
+      "         [[-1.8441e-02, -4.2956e-02, -1.2985e-02],\n",
+      "          [-1.7081e-02,  1.7575e-02, -1.1736e-03],\n",
+      "          [-1.4989e-03, -1.2853e-02, -1.2868e-03]],\n",
+      "\n",
+      "         [[ 2.7203e-03,  1.2150e-03,  6.4162e-03],\n",
+      "          [ 6.6569e-03, -1.3283e-02, -1.1345e-02],\n",
+      "          [ 2.7614e-02,  3.5587e-02,  3.8059e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-5.0144e-02, -6.8908e-02, -1.7409e-02],\n",
+      "          [-7.2577e-02,  2.4253e-02, -1.2950e-02],\n",
+      "          [-1.3030e-02, -6.4723e-03,  1.1490e-02]],\n",
+      "\n",
+      "         [[ 1.6846e-03,  2.0626e-02, -5.5765e-04],\n",
+      "          [ 2.0054e-02, -2.1686e-02, -4.3757e-03],\n",
+      "          [-1.3529e-02,  1.6285e-02,  3.5246e-03]],\n",
+      "\n",
+      "         [[-7.9041e-03,  6.9854e-03, -1.2817e-03],\n",
+      "          [-1.5572e-02,  1.9209e-03, -2.2191e-02],\n",
+      "          [ 8.7682e-03,  1.9299e-02,  1.4356e-02]]]])), ('pretrained_model.layer2.2.bn2.weight', tensor([0.2387, 0.1813, 0.2223, 0.2244, 0.1852, 0.2276, 0.1810, 0.1938, 0.1569,\n",
+      "        0.1372, 0.1222, 0.1773, 0.1407, 0.1332, 0.2294, 0.2084, 0.1966, 0.1581,\n",
+      "        0.1400, 0.1975, 0.1464, 0.1953, 0.1696, 0.1915, 0.2239, 0.1882, 0.1722,\n",
+      "        0.1713, 0.1468, 0.1741, 0.1058, 0.2185, 0.2251, 0.1753, 0.1566, 0.2472,\n",
+      "        0.2017, 0.1825, 0.1574, 0.1919, 0.2022, 0.1951, 0.1620, 0.2347, 0.1920,\n",
+      "        0.2147, 0.1861, 0.2253, 0.1803, 0.1876, 0.1922, 0.2221, 0.2186, 0.1444,\n",
+      "        0.2111, 0.1457, 0.1874, 0.1639, 0.1306, 0.2124, 0.2250, 0.2165, 0.2025,\n",
+      "        0.1996, 0.1932, 0.1921, 0.1499, 0.1086, 0.2003, 0.2018, 0.1882, 0.1669,\n",
+      "        0.1416, 0.1612, 0.1283, 0.1562, 0.2348, 0.1716, 0.1185, 0.1373, 0.2055,\n",
+      "        0.1684, 0.1857, 0.1287, 0.1379, 0.2033, 0.1629, 0.1862, 0.1634, 0.2541,\n",
+      "        0.2194, 0.2257, 0.1762, 0.2131, 0.1667, 0.1177, 0.2202, 0.2203, 0.1314,\n",
+      "        0.1449, 0.2105, 0.1942, 0.1755, 0.2087, 0.1855, 0.1761, 0.1113, 0.1426,\n",
+      "        0.1625, 0.2124, 0.1657, 0.2239, 0.2211, 0.1885, 0.1638, 0.2521, 0.1901,\n",
+      "        0.2138, 0.2032, 0.1383, 0.2234, 0.1346, 0.1790, 0.1848, 0.2038, 0.2024,\n",
+      "        0.1800, 0.1290])), ('pretrained_model.layer2.2.bn2.bias', tensor([-6.4542e-02, -7.4697e-03, -7.7650e-02,  2.4397e-04, -8.5634e-03,\n",
+      "        -7.3927e-02,  5.3007e-03,  6.1911e-02, -1.3265e-02,  2.1376e-01,\n",
+      "         1.5091e-01, -8.7349e-02,  2.5611e-02,  1.1192e-01, -4.7060e-02,\n",
+      "        -1.8289e-03, -8.0632e-02,  9.8147e-03, -4.2322e-02, -1.0623e-01,\n",
+      "         4.8737e-02, -3.9899e-02, -3.7221e-02, -2.0846e-02, -6.6622e-02,\n",
+      "         1.3154e-01,  7.5035e-02,  1.0933e-01,  6.0842e-02, -1.1906e-01,\n",
+      "         1.8838e-01, -5.4894e-02, -3.1073e-02,  4.0864e-03, -6.1832e-02,\n",
+      "        -5.5029e-02, -3.3260e-02,  4.6135e-02, -6.9460e-02,  7.2622e-03,\n",
+      "        -4.9658e-02,  7.8872e-03,  4.4202e-02, -5.4087e-02,  3.4073e-02,\n",
+      "        -5.3520e-02, -4.9597e-02, -1.5682e-01, -1.6960e-02, -6.1208e-02,\n",
+      "        -3.6181e-02, -7.2207e-02, -1.2634e-02,  4.8387e-03, -1.1472e-01,\n",
+      "        -9.4014e-03, -1.3111e-01,  6.4072e-02,  2.0190e-01, -3.2940e-03,\n",
+      "        -7.2257e-02, -4.5136e-02, -4.5619e-02, -1.5822e-01, -8.7449e-02,\n",
+      "         5.4906e-02,  9.1735e-02,  2.7864e-01, -3.8261e-02, -9.0260e-02,\n",
+      "        -4.9813e-03, -5.1500e-03, -1.0563e-02, -4.2374e-02,  1.1148e-01,\n",
+      "        -1.2213e-01, -5.6973e-02,  6.2851e-02,  1.8719e-01,  5.9746e-02,\n",
+      "        -4.0854e-02, -4.4742e-02, -5.9675e-02,  1.2506e-01,  1.3620e-01,\n",
+      "        -8.8744e-03, -3.7198e-02, -1.5137e-02,  8.8554e-02, -1.6788e-01,\n",
+      "        -1.1888e-01, -2.7105e-02,  2.3197e-02,  7.7644e-02,  4.7929e-02,\n",
+      "         4.2529e-02, -7.5873e-02, -1.0239e-01,  5.1742e-02,  9.3358e-02,\n",
+      "         1.2179e-02, -1.1871e-01, -2.5381e-02, -9.7674e-02,  1.4337e-02,\n",
+      "         1.0343e-01,  1.4825e-01,  8.1004e-02,  5.4609e-02,  7.7372e-02,\n",
+      "        -1.0059e-01, -7.0448e-02, -1.0569e-01,  3.8480e-02,  1.2832e-01,\n",
+      "        -1.5135e-01,  8.4964e-02, -8.9734e-02, -2.1736e-02, -1.0652e-02,\n",
+      "        -1.5807e-01,  1.1419e-01,  3.9247e-02, -1.0619e-01, -7.3433e-02,\n",
+      "        -8.1382e-02, -1.8410e-02,  2.0451e-01])), ('pretrained_model.layer2.2.bn2.running_mean', tensor([-0.1209,  0.0150, -0.0349,  0.0872, -0.0760, -0.1607,  0.1583,  0.0797,\n",
+      "        -0.0031,  0.0247,  0.0509, -0.1815,  0.0122,  0.0957,  0.1733,  0.0693,\n",
+      "        -0.0201,  0.0447, -0.2729, -0.1526, -0.1089, -0.0438, -0.0400,  0.1321,\n",
+      "        -0.1026,  0.1389,  0.1974,  0.2283, -0.0152, -0.1029, -0.2391,  0.1140,\n",
+      "        -0.1251,  0.0475, -0.1324, -0.0551,  0.0810, -0.0458,  0.0189,  0.0303,\n",
+      "         0.1480,  0.0725, -0.1086,  0.0315,  0.1124,  0.0438, -0.0307, -0.0657,\n",
+      "         0.1385, -0.0362, -0.0480,  0.0666,  0.0563, -0.1315, -0.1100,  0.1281,\n",
+      "        -0.1370,  0.0337,  0.1016,  0.0079, -0.1903, -0.1364,  0.0111,  0.0224,\n",
+      "        -0.0247,  0.2266,  0.0625, -0.0319,  0.1614, -0.0288, -0.0670, -0.0938,\n",
+      "        -0.1120,  0.1847, -0.0983, -0.1676, -0.2649,  0.0653, -0.0869,  0.1167,\n",
+      "         0.0944, -0.0186, -0.0436,  0.1607,  0.1074, -0.0926, -0.1407, -0.0291,\n",
+      "         0.2213,  0.0052, -0.0906, -0.0542, -0.0014,  0.1767,  0.1530, -0.2065,\n",
+      "        -0.1382,  0.0616, -0.3902, -0.0760,  0.0626,  0.0398,  0.0649, -0.0440,\n",
+      "        -0.0335,  0.1368,  0.1163,  0.2458,  0.0805,  0.1151, -0.1566, -0.0466,\n",
+      "        -0.1346, -0.0975, -0.1331,  0.1475,  0.0730,  0.0307,  0.0144,  0.0322,\n",
+      "        -0.1717,  0.1986, -0.1527, -0.0855, -0.0253,  0.0159,  0.1323, -0.1881])), ('pretrained_model.layer2.2.bn2.running_var', tensor([0.0310, 0.0144, 0.0232, 0.0188, 0.0240, 0.0320, 0.0218, 0.0275, 0.0144,\n",
+      "        0.0270, 0.0155, 0.0194, 0.0131, 0.0189, 0.0341, 0.0234, 0.0206, 0.0100,\n",
+      "        0.0119, 0.0205, 0.0125, 0.0122, 0.0090, 0.0179, 0.0278, 0.0431, 0.0212,\n",
+      "        0.0412, 0.0260, 0.0306, 0.0134, 0.0352, 0.0352, 0.0158, 0.0178, 0.0376,\n",
+      "        0.0200, 0.0191, 0.0136, 0.0188, 0.0272, 0.0198, 0.0240, 0.0264, 0.0235,\n",
+      "        0.0175, 0.0170, 0.0157, 0.0195, 0.0268, 0.0200, 0.0197, 0.0228, 0.0095,\n",
+      "        0.0207, 0.0180, 0.0329, 0.0262, 0.0161, 0.0352, 0.0292, 0.0294, 0.0158,\n",
+      "        0.0131, 0.0150, 0.0332, 0.0190, 0.0246, 0.0246, 0.0293, 0.0309, 0.0186,\n",
+      "        0.0393, 0.0140, 0.0156, 0.0227, 0.0338, 0.0276, 0.0140, 0.0209, 0.0178,\n",
+      "        0.0131, 0.0120, 0.0171, 0.0197, 0.0325, 0.0121, 0.0147, 0.0286, 0.0125,\n",
+      "        0.0180, 0.0349, 0.0195, 0.0355, 0.0259, 0.0264, 0.0200, 0.0166, 0.0275,\n",
+      "        0.0152, 0.0263, 0.0202, 0.0137, 0.0212, 0.0195, 0.0253, 0.0149, 0.0243,\n",
+      "        0.0201, 0.0514, 0.0065, 0.0219, 0.0219, 0.0282, 0.0232, 0.0152, 0.0364,\n",
+      "        0.0174, 0.0190, 0.0156, 0.0114, 0.0303, 0.0226, 0.0148, 0.0104, 0.0153,\n",
+      "        0.0212, 0.0240])), ('pretrained_model.layer2.2.bn2.num_batches_tracked', tensor(0)), ('pretrained_model.layer2.2.conv3.weight', tensor([[[[-0.0145]],\n",
+      "\n",
+      "         [[ 0.0275]],\n",
+      "\n",
+      "         [[-0.0069]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0013]],\n",
+      "\n",
+      "         [[ 0.0013]],\n",
+      "\n",
+      "         [[ 0.0297]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0063]],\n",
+      "\n",
+      "         [[-0.0190]],\n",
+      "\n",
+      "         [[-0.0075]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0197]],\n",
+      "\n",
+      "         [[-0.0123]],\n",
+      "\n",
+      "         [[-0.0259]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0158]],\n",
+      "\n",
+      "         [[ 0.0124]],\n",
+      "\n",
+      "         [[ 0.0117]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0081]],\n",
+      "\n",
+      "         [[ 0.0035]],\n",
+      "\n",
+      "         [[-0.0048]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0172]],\n",
+      "\n",
+      "         [[-0.0228]],\n",
+      "\n",
+      "         [[-0.0165]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0007]],\n",
+      "\n",
+      "         [[ 0.0108]],\n",
+      "\n",
+      "         [[ 0.0072]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0053]],\n",
+      "\n",
+      "         [[ 0.0164]],\n",
+      "\n",
+      "         [[ 0.0160]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0030]],\n",
+      "\n",
+      "         [[ 0.0024]],\n",
+      "\n",
+      "         [[ 0.0060]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0099]],\n",
+      "\n",
+      "         [[ 0.0082]],\n",
+      "\n",
+      "         [[ 0.0248]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0107]],\n",
+      "\n",
+      "         [[-0.0095]],\n",
+      "\n",
+      "         [[ 0.0014]]]])), ('pretrained_model.layer2.2.bn3.weight', tensor([ 0.0841,  0.0674,  0.0804,  0.2079,  0.2204,  0.1421,  0.0061,  0.2153,\n",
+      "         0.1130,  0.1247,  0.1452,  0.0690,  0.0983,  0.0783,  0.1752,  0.0726,\n",
+      "         0.0718,  0.1764,  0.1229,  0.1917,  0.0456,  0.0810,  0.0176,  0.1642,\n",
+      "         0.0565,  0.2111,  0.2099,  0.1722,  0.1730,  0.1421,  0.0440,  0.2039,\n",
+      "         0.0612,  0.0966,  0.1033,  0.0318, -0.0008,  0.0494,  0.2087,  0.0152,\n",
+      "         0.0742,  0.1095,  0.2179,  0.0897,  0.1522,  0.1138,  0.1110,  0.1209,\n",
+      "         0.0778,  0.0687,  0.1093,  0.0815,  0.2554,  0.0915,  0.0883,  0.0516,\n",
+      "         0.1440,  0.1079,  0.0049,  0.2178,  0.0939,  0.0577,  0.1876,  0.1191,\n",
+      "         0.1004,  0.1649,  0.1121,  0.0815,  0.0831,  0.0527,  0.0443,  0.1511,\n",
+      "         0.0626,  0.2071,  0.0136,  0.0854,  0.0421,  0.0058,  0.1030,  0.0826,\n",
+      "         0.0450,  0.0730,  0.0627,  0.1040,  0.1829,  0.0520,  0.0555,  0.1242,\n",
+      "         0.0762,  0.2229,  0.1033,  0.0415,  0.0586,  0.1305,  0.1643,  0.1136,\n",
+      "         0.0573,  0.0759,  0.0537,  0.0591,  0.0860,  0.0636, -0.0365, -0.0012,\n",
+      "         0.2646,  0.1411,  0.1107,  0.1082,  0.0265,  0.1233,  0.0356,  0.1834,\n",
+      "         0.2753,  0.1282,  0.0938,  0.0063,  0.0812,  0.0528,  0.0323,  0.1290,\n",
+      "         0.1853,  0.1130,  0.0804,  0.1512,  0.2595,  0.1687,  0.0099,  0.0478,\n",
+      "         0.1669,  0.1272,  0.1229,  0.1309,  0.1563,  0.0939,  0.0093,  0.3038,\n",
+      "         0.0730,  0.1374,  0.1716,  0.1423,  0.0561,  0.1728,  0.1013,  0.2054,\n",
+      "         0.0856,  0.0678,  0.0956,  0.0650,  0.0554,  0.0940,  0.0375,  0.1775,\n",
+      "         0.1257,  0.1893,  0.1434,  0.0291,  0.1534,  0.1312,  0.0917,  0.1055,\n",
+      "         0.1602,  0.1157,  0.0115,  0.0909,  0.0448,  0.2806,  0.0226,  0.2282,\n",
+      "         0.0670,  0.1416,  0.1994, -0.0026, -0.0076, -0.0678,  0.1406,  0.0472,\n",
+      "         0.0948,  0.0222,  0.1848,  0.0811,  0.1159,  0.1210,  0.0465,  0.0597,\n",
+      "         0.0888,  0.0576,  0.1460,  0.0572,  0.0612,  0.1493,  0.0502,  0.1202,\n",
+      "         0.1422,  0.1249,  0.1753,  0.0705,  0.1115,  0.0834,  0.1834,  0.0583,\n",
+      "         0.3446,  0.1337,  0.1180,  0.2310,  0.1477,  0.1503,  0.1339,  0.0231,\n",
+      "         0.0160,  0.3400,  0.1062,  0.0006,  0.0341,  0.1521,  0.1380,  0.1241,\n",
+      "         0.2344,  0.0256,  0.1023,  0.0719,  0.1025,  0.2126,  0.1107,  0.1271,\n",
+      "         0.0055,  0.1505,  0.0553,  0.1593,  0.0832,  0.0400,  0.1302,  0.1115,\n",
+      "         0.1380,  0.2072,  0.2175,  0.1040,  0.0735,  0.0123, -0.0123,  0.1057,\n",
+      "         0.0982,  0.1697,  0.0699,  0.0519,  0.1832,  0.0882,  0.0485,  0.0065,\n",
+      "         0.0839,  0.1500,  0.1535,  0.1121,  0.0855,  0.0764,  0.1306,  0.1307,\n",
+      "        -0.0121,  0.0647,  0.1333,  0.0131,  0.1192, -0.0059,  0.0756, -0.0031,\n",
+      "         0.1596,  0.0044,  0.3175,  0.0806, -0.0024,  0.1037,  0.1269,  0.1691,\n",
+      "         0.2194,  0.0915,  0.1593,  0.0969,  0.1347,  0.1477,  0.1376,  0.1193,\n",
+      "         0.0561,  0.2292,  0.0871,  0.1881,  0.1337,  0.0848,  0.1418,  0.0933,\n",
+      "         0.0643,  0.1348,  0.0478,  0.3187,  0.0888,  0.0613,  0.0718,  0.0089,\n",
+      "         0.1121,  0.1292,  0.1426,  0.1278,  0.1553,  0.0612,  0.1431,  0.1643,\n",
+      "         0.0840,  0.1008,  0.2662,  0.1803,  0.1346,  0.1142,  0.1309,  0.0782,\n",
+      "         0.1151,  0.1913,  0.1705,  0.0651,  0.1581,  0.2053,  0.1088,  0.1457,\n",
+      "         0.0982,  0.0762,  0.1703,  0.2826,  0.0045,  0.1630,  0.1134,  0.1330,\n",
+      "         0.1111,  0.1378,  0.0108,  0.0304,  0.1309,  0.1338,  0.1389,  0.1152,\n",
+      "         0.0676,  0.0390,  0.0908,  0.1291,  0.1504,  0.2025,  0.1602,  0.1423,\n",
+      "         0.1046,  0.0783,  0.1766,  0.0711,  0.1388, -0.0141,  0.0791,  0.1652,\n",
+      "         0.0760,  0.0921,  0.1768,  0.1098,  0.1162,  0.1335,  0.0864,  0.1218,\n",
+      "         0.0805,  0.0576,  0.1673,  0.0950,  0.1851,  0.0540,  0.1566, -0.0492,\n",
+      "         0.0167,  0.0495,  0.0625,  0.0953,  0.0882,  0.0216,  0.0176,  0.0467,\n",
+      "         0.1726,  0.1112,  0.2151,  0.0748, -0.0032,  0.0245,  0.0556,  0.1927,\n",
+      "         0.0355,  0.1569,  0.1493,  0.0555,  0.0450,  0.0890,  0.0816,  0.0614,\n",
+      "         0.1379,  0.1140,  0.0153,  0.1300,  0.0861,  0.1276,  0.1174,  0.1057,\n",
+      "         0.1769,  0.0368,  0.0323,  0.1257,  0.1960,  0.0842,  0.0290,  0.1172,\n",
+      "         0.1892,  0.2655,  0.0128,  0.0870,  0.1664,  0.2301,  0.0126,  0.0757,\n",
+      "         0.2269,  0.0446,  0.1265,  0.1769,  0.1286,  0.0415,  0.0859,  0.0506,\n",
+      "         0.1319,  0.2327,  0.0641,  0.0434,  0.0800,  0.1176,  0.1015,  0.1356,\n",
+      "         0.0614,  0.0353,  0.1306,  0.0797,  0.0932,  0.0261,  0.1709,  0.1573,\n",
+      "         0.1224,  0.0611,  0.1119,  0.1881,  0.1976,  0.0409,  0.1625,  0.0961,\n",
+      "         0.0213,  0.1889,  0.1692,  0.2460,  0.1816,  0.0858,  0.1436,  0.1155,\n",
+      "         0.0520,  0.0788,  0.0792,  0.1109,  0.0693,  0.0259,  0.1653,  0.0959,\n",
+      "         0.2302,  0.0882,  0.0794,  0.0934,  0.0295,  0.0531,  0.1089,  0.0855,\n",
+      "         0.1718,  0.0851,  0.1990,  0.0908, -0.0860,  0.1525,  0.0471,  0.0657,\n",
+      "         0.0856,  0.1167,  0.1512,  0.0847,  0.0407,  0.2062,  0.0370,  0.0910,\n",
+      "         0.1413,  0.0482,  0.1028,  0.1737,  0.1437,  0.0951,  0.0526,  0.1283,\n",
+      "         0.0885,  0.1156,  0.2331,  0.0017,  0.1490,  0.0646,  0.1602,  0.1837,\n",
+      "         0.1360,  0.0851,  0.0733,  0.2488,  0.0759,  0.0516,  0.0533,  0.0825])), ('pretrained_model.layer2.2.bn3.bias', tensor([-7.3341e-02,  6.8807e-02, -8.4657e-02, -4.9460e-02, -1.3968e-01,\n",
+      "         7.4553e-02, -4.4234e-03, -2.0813e-01, -1.2062e-01, -8.9614e-02,\n",
+      "        -7.5948e-02, -6.7939e-02, -1.4256e-01,  6.8089e-02, -5.8538e-02,\n",
+      "        -7.1491e-02,  5.0601e-02, -5.0682e-02, -5.8449e-02,  5.3855e-03,\n",
+      "         4.7107e-03, -8.5414e-02, -5.3606e-02, -1.2903e-01, -6.3990e-02,\n",
+      "        -9.6904e-02, -9.7246e-02,  7.5726e-02, -9.6566e-02, -8.5586e-02,\n",
+      "        -3.8197e-02, -1.2729e-01, -3.5209e-02, -1.1461e-01, -8.5444e-02,\n",
+      "         2.8671e-03, -2.2260e-02, -4.2335e-02,  9.1374e-02, -2.5742e-04,\n",
+      "        -6.9838e-02, -3.5906e-02, -4.1759e-03, -1.0811e-01, -5.8706e-02,\n",
+      "        -4.1678e-02, -1.3259e-01, -8.6971e-02, -2.7924e-02,  2.5246e-02,\n",
+      "        -1.4576e-01,  1.6209e-02,  3.9797e-02, -8.9430e-02, -1.1472e-01,\n",
+      "        -5.1499e-03,  3.1334e-02,  7.3892e-02, -4.0256e-03, -4.3260e-02,\n",
+      "        -1.0837e-01, -5.1607e-02, -4.5615e-02, -1.7061e-01, -9.8640e-03,\n",
+      "        -3.6532e-02, -4.4316e-02,  5.7836e-03,  1.0309e-02, -5.7995e-02,\n",
+      "        -4.6816e-02, -5.3395e-03, -5.2212e-02, -2.7315e-02, -2.1444e-02,\n",
+      "        -1.3282e-01, -5.2762e-02, -1.7934e-01, -1.1604e-01, -9.8313e-02,\n",
+      "        -3.8160e-02, -4.5901e-02, -7.5627e-02, -1.8683e-02, -6.4858e-02,\n",
+      "        -4.5437e-02, -3.2595e-02, -1.0383e-01, -8.2447e-02, -6.3232e-02,\n",
+      "        -4.6138e-02, -4.6655e-02, -1.3961e-02, -1.2106e-01, -1.3519e-01,\n",
+      "        -4.0085e-02, -2.3360e-02, -9.2160e-02, -1.3328e-02,  3.1580e-02,\n",
+      "        -1.3157e-01, -6.2199e-02, -6.8024e-02,  1.2846e-03, -2.2033e-01,\n",
+      "         2.5877e-02, -4.2000e-02, -1.9639e-02, -6.0408e-03, -1.3707e-02,\n",
+      "        -2.0933e-02, -2.2314e-02,  1.0050e-02, -8.1845e-02, -1.0882e-01,\n",
+      "        -2.1502e-02, -5.6589e-02, -3.4043e-02, -2.6447e-02, -6.9596e-02,\n",
+      "        -3.8901e-02, -9.7178e-02, -9.4885e-02, -5.9724e-02, -4.1582e-02,\n",
+      "        -2.7787e-01, -9.0958e-03, -5.2618e-03, -1.1654e-01,  6.2812e-03,\n",
+      "        -6.0185e-03, -3.1854e-02, -5.2919e-02, -1.1810e-02,  1.1498e-02,\n",
+      "        -6.1129e-02, -9.4832e-04, -1.2535e-01, -8.5103e-02, -8.1109e-02,\n",
+      "        -6.6283e-02,  1.9698e-02, -9.9860e-02, -7.1561e-02,  8.4776e-02,\n",
+      "        -1.2911e-01, -6.1738e-02, -5.4172e-02, -2.8041e-02, -8.5628e-02,\n",
+      "        -3.8973e-02, -1.0956e-01, -4.0638e-02, -5.2697e-02, -1.6255e-01,\n",
+      "        -1.2129e-02, -2.1142e-01, -4.0668e-02, -9.4655e-02, -6.6160e-02,\n",
+      "        -1.0701e-02, -6.9883e-02, -1.0417e-02, -7.9717e-02, -1.0119e-02,\n",
+      "        -2.2757e-03, -2.8645e-02, -9.5978e-04, -6.7735e-02, -4.1184e-02,\n",
+      "        -1.0569e-01,  5.9071e-03,  6.4493e-03, -2.3463e-03,  4.6712e-03,\n",
+      "        -8.2413e-02, -1.5151e-01, -8.0972e-03, -8.6002e-02, -5.3933e-02,\n",
+      "        -1.1274e-01, -3.4342e-02, -4.3069e-02, -9.4877e-02, -8.1810e-02,\n",
+      "        -1.3005e-01, -1.3808e-01, -5.4522e-02, -1.0567e-01,  1.6210e-01,\n",
+      "        -3.1485e-02, -6.6786e-02, -1.8461e-01, -1.8007e-01, -6.7848e-02,\n",
+      "        -2.6984e-02, -7.4344e-02, -3.8342e-02, -7.9451e-02, -2.1865e-02,\n",
+      "         4.3149e-02, -1.1802e-01, -8.2281e-02, -1.1681e-01, -1.9099e-01,\n",
+      "        -3.2591e-02, -5.5533e-02, -3.8672e-02,  1.6238e-02,  2.4236e-02,\n",
+      "        -1.3109e-02, -3.5512e-03, -2.8502e-02, -1.1369e-01,  2.8336e-02,\n",
+      "        -7.7803e-02, -7.5016e-02,  1.4812e-03, -1.1798e-01, -5.3560e-02,\n",
+      "        -9.4910e-02, -1.8687e-02, -8.5978e-02, -4.5642e-02, -1.2889e-02,\n",
+      "        -6.0698e-02, -3.1267e-02, -1.0679e-01, -2.6277e-02, -3.3368e-02,\n",
+      "        -5.8847e-02, -1.6324e-01, -1.2070e-01, -4.6135e-04, -1.3114e-01,\n",
+      "         1.2504e-02, -6.1967e-02,  9.3774e-05, -6.5583e-03, -8.6730e-02,\n",
+      "        -1.2166e-01, -2.5466e-01, -2.8090e-02, -4.0832e-02, -2.9019e-02,\n",
+      "        -9.8414e-02, -3.8180e-02, -7.5514e-03, -6.2912e-02, -5.5749e-02,\n",
+      "        -8.1935e-02, -1.4963e-01, -7.8492e-02, -4.7278e-02, -2.1722e-02,\n",
+      "        -1.1023e-01, -2.7240e-03, -6.3803e-02,  2.0653e-02, -1.9775e-02,\n",
+      "        -8.5494e-02, -4.0438e-05, -2.3418e-02, -5.3152e-02, -7.3572e-02,\n",
+      "         9.4063e-03,  1.8900e-02, -1.1804e-01, -7.6105e-03, -8.0861e-02,\n",
+      "         9.7167e-02, -5.8400e-02, -8.5589e-02, -8.1906e-02, -4.7282e-02,\n",
+      "        -1.5863e-02, -6.1648e-02, -3.3948e-02, -3.1242e-02, -4.5661e-02,\n",
+      "        -7.1712e-02, -9.6448e-02,  3.4298e-03, -4.8959e-02, -6.9148e-02,\n",
+      "        -9.5929e-02, -1.7291e-02, -6.1630e-02, -1.5010e-02, -6.0913e-02,\n",
+      "         5.0696e-02, -7.8030e-02, -8.9274e-02, -8.3167e-02, -4.9899e-02,\n",
+      "        -2.6555e-03,  8.0311e-03, -1.2419e-01, -1.5004e-01,  4.3218e-02,\n",
+      "        -1.0544e-01, -6.1685e-02, -2.3099e-02, -5.3122e-02, -5.5940e-02,\n",
+      "        -2.1334e-02,  8.9567e-04, -8.8658e-02,  3.3391e-02, -1.3499e-01,\n",
+      "        -9.7257e-02, -7.3617e-02, -1.2002e-01, -1.3387e-01, -1.6787e-01,\n",
+      "        -7.2841e-02,  8.9507e-03, -2.2148e-01, -1.6318e-01, -2.1882e-02,\n",
+      "        -8.8518e-04, -8.1719e-02,  1.1245e-01, -5.1126e-02, -1.7678e-02,\n",
+      "        -2.8075e-01, -1.1838e-01, -3.8370e-02, -6.7569e-02, -1.2485e-01,\n",
+      "         3.9426e-04, -2.5311e-02, -1.4270e-01, -1.0727e-01, -8.9010e-02,\n",
+      "        -5.9000e-02, -3.6098e-02, -5.2421e-02,  4.8118e-04, -4.8323e-03,\n",
+      "        -1.4508e-01,  3.5262e-02, -1.3261e-01, -1.0514e-01, -1.0843e-01,\n",
+      "        -3.1685e-02, -1.5082e-01, -5.3776e-02,  5.8272e-02, -6.5117e-02,\n",
+      "        -3.7679e-02,  6.8793e-02, -6.0858e-02, -9.5243e-02, -2.4512e-01,\n",
+      "        -8.0110e-02, -1.0231e-01, -1.1147e-01, -4.9348e-02, -2.7164e-02,\n",
+      "        -7.4853e-02, -4.6060e-02, -1.0418e-01, -1.2169e-01, -1.4604e-03,\n",
+      "        -4.4749e-02,  1.0155e-01, -2.0818e-02, -5.2062e-02, -2.8492e-02,\n",
+      "        -2.9378e-02, -6.0927e-02, -8.0187e-02, -4.0692e-03,  1.5685e-03,\n",
+      "        -3.4532e-02, -6.0424e-02, -5.8153e-02,  7.6083e-03, -8.5337e-02,\n",
+      "        -1.5764e-02,  1.5034e-03, -8.3514e-02, -1.1805e-01, -4.6783e-03,\n",
+      "        -8.0418e-02, -8.0051e-02, -1.0446e-01,  5.3506e-02, -9.7692e-02,\n",
+      "        -2.9382e-02, -4.1144e-02, -1.3050e-01, -5.1568e-02, -5.2898e-02,\n",
+      "        -4.6977e-02, -1.1841e-01, -3.8151e-02, -2.5217e-02, -8.4253e-02,\n",
+      "        -1.6093e-01, -3.9059e-02, -5.1150e-02, -8.9721e-02, -1.8974e-01,\n",
+      "        -2.9400e-02, -7.3488e-02,  2.1093e-02, -5.6270e-02, -3.8951e-02,\n",
+      "        -1.6007e-02, -7.8996e-02, -1.5200e-01, -4.3667e-02, -4.8341e-02,\n",
+      "        -3.0292e-02, -8.1839e-03, -2.6277e-02, -1.4313e-01, -8.0727e-02,\n",
+      "        -8.2747e-02, -5.1165e-02, -4.8618e-02, -7.6095e-02, -1.5951e-01,\n",
+      "        -7.3769e-02, -1.1012e-01, -6.2164e-02, -7.6777e-02, -4.2138e-02,\n",
+      "        -1.1490e-01,  3.2038e-02, -3.6431e-02, -5.1238e-02, -1.0474e-01,\n",
+      "        -3.1482e-02, -1.0205e-01,  3.7841e-02, -2.3244e-02, -7.5028e-02,\n",
+      "         2.0811e-02, -6.2146e-02, -1.2556e-01, -3.4682e-02,  2.0641e-02,\n",
+      "         5.5843e-02, -1.5598e-01, -1.0288e-01,  3.5917e-02, -7.5130e-02,\n",
+      "        -2.1240e-01,  3.3396e-02, -3.4710e-02,  1.1777e-02, -6.5349e-02,\n",
+      "        -6.1023e-02, -3.9579e-02, -7.6343e-02, -3.8278e-02, -1.2234e-01,\n",
+      "        -6.6060e-02, -1.7646e-02,  6.8742e-02, -7.4077e-02, -2.3581e-01,\n",
+      "        -8.6210e-02,  1.2471e-02, -7.9440e-02, -1.1312e-01, -2.2606e-02,\n",
+      "        -8.5898e-02, -1.2962e-01, -1.4402e-01, -8.3610e-02, -1.0455e-01,\n",
+      "        -3.8587e-02, -6.7601e-02, -1.4872e-02, -1.2292e-03, -7.2707e-02,\n",
+      "         4.3149e-02, -7.1776e-02, -2.5388e-02, -8.5501e-02, -4.9237e-02,\n",
+      "        -9.8432e-02, -4.9628e-02, -4.7367e-02, -1.1277e-01, -1.1261e-01,\n",
+      "         2.0736e-02,  1.5261e-01, -6.4322e-02, -3.5108e-02, -8.1228e-02,\n",
+      "        -2.2920e-02, -5.5632e-02, -3.5508e-02, -1.1985e-01, -1.2726e-02,\n",
+      "        -8.6779e-02, -5.4042e-02, -1.1620e-01, -2.2309e-02, -6.7584e-02,\n",
+      "        -1.4182e-01, -9.4761e-02,  2.2861e-02,  4.5556e-02,  6.4035e-04,\n",
+      "        -2.7977e-02, -1.3110e-01])), ('pretrained_model.layer2.2.bn3.running_mean', tensor([-0.0071, -0.0114,  0.0137, -0.0338, -0.0149,  0.0264, -0.0023, -0.0189,\n",
+      "         0.0094,  0.0036, -0.0209, -0.0646, -0.0155,  0.0210, -0.0463, -0.0283,\n",
+      "         0.0314,  0.0034,  0.0280, -0.0144,  0.0156,  0.0272,  0.0141,  0.0149,\n",
+      "        -0.0233,  0.0116,  0.0395, -0.0126,  0.0238, -0.0322, -0.0146,  0.0427,\n",
+      "         0.0056,  0.0475,  0.0156, -0.0182, -0.0045, -0.0164,  0.0165, -0.0189,\n",
+      "         0.0139, -0.0150, -0.0074, -0.0008, -0.0079, -0.0169,  0.0002, -0.0198,\n",
+      "         0.0037, -0.0167, -0.0115, -0.0279,  0.0455, -0.0230,  0.0229,  0.0262,\n",
+      "        -0.0608, -0.0124,  0.0010, -0.0181, -0.0122, -0.0063, -0.0333,  0.0132,\n",
+      "        -0.0069, -0.0275,  0.0420, -0.0120,  0.0174, -0.0128,  0.0301, -0.0274,\n",
+      "         0.0382,  0.0149,  0.0053,  0.0414,  0.0070, -0.0007,  0.0057,  0.0169,\n",
+      "         0.0137,  0.0140,  0.0128,  0.0122, -0.0312,  0.0027,  0.0271,  0.0393,\n",
+      "         0.0032,  0.0051, -0.0193, -0.0031,  0.0097,  0.0473,  0.0693, -0.0163,\n",
+      "         0.0040,  0.0316, -0.0170, -0.0053,  0.0064, -0.0245, -0.0049,  0.0077,\n",
+      "        -0.0319, -0.0141,  0.0199, -0.0328, -0.0132,  0.0042,  0.0350, -0.0191,\n",
+      "        -0.0381, -0.0529,  0.0297,  0.0021,  0.0670, -0.0153,  0.0105, -0.0387,\n",
+      "        -0.0028, -0.0101,  0.0099,  0.0112,  0.0049,  0.0348,  0.0024,  0.0342,\n",
+      "         0.0083,  0.0352, -0.0245,  0.0106, -0.0552,  0.0196, -0.0172, -0.0086,\n",
+      "        -0.0038,  0.0941,  0.0099, -0.0333, -0.0125,  0.0068, -0.0170,  0.0056,\n",
+      "        -0.0034,  0.0242,  0.0004, -0.0395,  0.0455, -0.0097,  0.0029,  0.0095,\n",
+      "         0.0401, -0.0042,  0.0387, -0.0222,  0.0464,  0.0605,  0.0287,  0.0161,\n",
+      "        -0.0151,  0.0086, -0.0029,  0.0387,  0.0404,  0.0348, -0.0313, -0.0289,\n",
+      "         0.0243,  0.0365,  0.0446, -0.0040, -0.0016, -0.0079,  0.0641,  0.0010,\n",
+      "        -0.0448,  0.0027, -0.0403,  0.0201,  0.0223,  0.0114,  0.0196,  0.0284,\n",
+      "         0.0199,  0.0190,  0.0168,  0.0073,  0.0318,  0.0395,  0.0070, -0.0281,\n",
+      "        -0.0174,  0.0615,  0.0194, -0.0374, -0.0244,  0.0104, -0.0463,  0.0083,\n",
+      "        -0.0235, -0.0315,  0.0304,  0.0444,  0.0063, -0.0279, -0.0322, -0.0219,\n",
+      "         0.0047, -0.0107, -0.0290,  0.0204,  0.0274, -0.0014,  0.0154, -0.0667,\n",
+      "         0.0078,  0.0128,  0.0424, -0.0164, -0.0091,  0.0104,  0.0047, -0.0159,\n",
+      "         0.0163,  0.0123,  0.0014, -0.0054, -0.0212,  0.0248,  0.0083, -0.0153,\n",
+      "        -0.0172, -0.0132,  0.0235, -0.0434,  0.0050,  0.0152, -0.0037,  0.0142,\n",
+      "         0.0271,  0.0685,  0.0249,  0.0031,  0.0285, -0.0647,  0.0523,  0.0095,\n",
+      "        -0.0305, -0.0772, -0.0153,  0.0556, -0.0184, -0.0117, -0.0059,  0.0071,\n",
+      "        -0.0038, -0.0187, -0.0354, -0.0169, -0.0563, -0.0150, -0.0100, -0.0170,\n",
+      "         0.0072, -0.0017,  0.0363,  0.0172, -0.0092, -0.0264,  0.0281, -0.0410,\n",
+      "         0.0126,  0.0172, -0.0263, -0.0218,  0.0008,  0.0432, -0.0436, -0.0116,\n",
+      "         0.0032,  0.0325,  0.0126, -0.0097, -0.0175,  0.0349, -0.0216, -0.0081,\n",
+      "         0.0299, -0.0103, -0.0008,  0.0333, -0.0303,  0.0230, -0.0091, -0.0197,\n",
+      "        -0.0275,  0.0139,  0.0284, -0.0155,  0.0083, -0.0216,  0.0005, -0.0289,\n",
+      "        -0.0359, -0.0169, -0.0123,  0.0817,  0.0246, -0.0031, -0.0264,  0.0276,\n",
+      "        -0.0266,  0.0371, -0.0066,  0.0079,  0.0062,  0.0297,  0.0306, -0.0274,\n",
+      "        -0.0466, -0.0113,  0.0515,  0.0144, -0.0080,  0.0139, -0.0006, -0.0330,\n",
+      "        -0.0273,  0.0040, -0.0006,  0.0358,  0.0178, -0.0064,  0.0516, -0.0084,\n",
+      "        -0.0170,  0.0123, -0.0077,  0.0071,  0.0244, -0.0320, -0.0037, -0.0314,\n",
+      "        -0.0177, -0.0182,  0.0068, -0.0112,  0.0036,  0.0620, -0.0123,  0.0996,\n",
+      "         0.0091, -0.0290,  0.0479,  0.0012,  0.0066,  0.0172, -0.0214, -0.0323,\n",
+      "        -0.0057, -0.0252, -0.0355,  0.0148, -0.0296,  0.0182,  0.0225,  0.0121,\n",
+      "         0.0349,  0.0203,  0.0348,  0.0265, -0.0245, -0.0015,  0.0030,  0.0366,\n",
+      "         0.0071,  0.0447,  0.0092, -0.0289, -0.0010, -0.0385, -0.0016,  0.0553,\n",
+      "        -0.0115, -0.0164, -0.0109, -0.0395,  0.0086,  0.0043, -0.0047, -0.0061,\n",
+      "         0.0834, -0.0196,  0.0068, -0.0842,  0.0383, -0.0461, -0.0165, -0.0024,\n",
+      "         0.0242, -0.0001,  0.0142,  0.0389,  0.0290,  0.0475, -0.0070, -0.0261,\n",
+      "         0.1027, -0.0001, -0.0121, -0.0245, -0.0633, -0.0094,  0.0087,  0.0206,\n",
+      "        -0.0578, -0.0377,  0.0498, -0.0110,  0.0039,  0.0019,  0.0014, -0.0431,\n",
+      "        -0.0410, -0.0182,  0.0221,  0.0179, -0.0042, -0.0723, -0.0191,  0.0754,\n",
+      "         0.0504,  0.0080,  0.0144, -0.0144, -0.0204,  0.0042,  0.0522, -0.0055,\n",
+      "        -0.0343, -0.0094, -0.0168,  0.0071, -0.0643, -0.0189,  0.0094,  0.0047,\n",
+      "        -0.0125, -0.0168,  0.1063, -0.0043, -0.1180,  0.0346, -0.0081, -0.0490,\n",
+      "         0.0190, -0.0242, -0.0027,  0.0307,  0.0041,  0.0022, -0.0310, -0.0562,\n",
+      "        -0.0021,  0.0301, -0.0178,  0.0214, -0.0086, -0.0052, -0.0184, -0.0227,\n",
+      "        -0.0012, -0.0049, -0.0079, -0.0169, -0.0754, -0.0172, -0.0407,  0.0085,\n",
+      "        -0.0334, -0.0222,  0.0395, -0.0021,  0.0182,  0.0569,  0.0305,  0.0097,\n",
+      "         0.0180,  0.0321,  0.0058, -0.0232, -0.0083, -0.0266, -0.0261, -0.0323,\n",
+      "        -0.0263,  0.0619, -0.0062,  0.0073, -0.0237,  0.0133,  0.0003, -0.0360,\n",
+      "         0.0148, -0.0558, -0.0466, -0.0107, -0.0123,  0.0324,  0.0042,  0.0546])), ('pretrained_model.layer2.2.bn3.running_var', tensor([0.0008, 0.0008, 0.0006, 0.0029, 0.0021, 0.0024, 0.0003, 0.0021, 0.0009,\n",
+      "        0.0017, 0.0009, 0.0010, 0.0009, 0.0014, 0.0025, 0.0008, 0.0023, 0.0015,\n",
+      "        0.0013, 0.0031, 0.0004, 0.0011, 0.0004, 0.0022, 0.0008, 0.0030, 0.0015,\n",
+      "        0.0030, 0.0024, 0.0026, 0.0005, 0.0055, 0.0008, 0.0009, 0.0008, 0.0004,\n",
+      "        0.0007, 0.0012, 0.0022, 0.0005, 0.0008, 0.0011, 0.0040, 0.0007, 0.0022,\n",
+      "        0.0013, 0.0008, 0.0011, 0.0008, 0.0009, 0.0011, 0.0024, 0.0051, 0.0010,\n",
+      "        0.0009, 0.0007, 0.0016, 0.0014, 0.0003, 0.0026, 0.0007, 0.0005, 0.0030,\n",
+      "        0.0010, 0.0008, 0.0017, 0.0012, 0.0012, 0.0009, 0.0005, 0.0009, 0.0021,\n",
+      "        0.0005, 0.0029, 0.0003, 0.0012, 0.0004, 0.0002, 0.0007, 0.0006, 0.0004,\n",
+      "        0.0006, 0.0006, 0.0018, 0.0018, 0.0013, 0.0012, 0.0018, 0.0009, 0.0033,\n",
+      "        0.0016, 0.0004, 0.0005, 0.0007, 0.0038, 0.0015, 0.0011, 0.0007, 0.0006,\n",
+      "        0.0010, 0.0013, 0.0004, 0.0002, 0.0002, 0.0054, 0.0019, 0.0014, 0.0011,\n",
+      "        0.0008, 0.0014, 0.0011, 0.0038, 0.0050, 0.0016, 0.0012, 0.0003, 0.0006,\n",
+      "        0.0005, 0.0008, 0.0018, 0.0028, 0.0017, 0.0009, 0.0014, 0.0052, 0.0031,\n",
+      "        0.0002, 0.0005, 0.0012, 0.0016, 0.0018, 0.0012, 0.0014, 0.0010, 0.0002,\n",
+      "        0.0061, 0.0010, 0.0017, 0.0024, 0.0015, 0.0005, 0.0028, 0.0008, 0.0027,\n",
+      "        0.0009, 0.0009, 0.0010, 0.0008, 0.0010, 0.0015, 0.0007, 0.0025, 0.0021,\n",
+      "        0.0031, 0.0023, 0.0003, 0.0016, 0.0015, 0.0013, 0.0011, 0.0023, 0.0025,\n",
+      "        0.0003, 0.0010, 0.0005, 0.0041, 0.0003, 0.0036, 0.0006, 0.0016, 0.0026,\n",
+      "        0.0003, 0.0005, 0.0012, 0.0027, 0.0008, 0.0013, 0.0005, 0.0016, 0.0009,\n",
+      "        0.0007, 0.0014, 0.0005, 0.0012, 0.0008, 0.0012, 0.0023, 0.0005, 0.0009,\n",
+      "        0.0019, 0.0005, 0.0012, 0.0025, 0.0017, 0.0034, 0.0007, 0.0011, 0.0009,\n",
+      "        0.0033, 0.0007, 0.0051, 0.0017, 0.0012, 0.0036, 0.0015, 0.0012, 0.0015,\n",
+      "        0.0008, 0.0006, 0.0058, 0.0015, 0.0004, 0.0008, 0.0024, 0.0019, 0.0008,\n",
+      "        0.0038, 0.0006, 0.0014, 0.0008, 0.0012, 0.0030, 0.0010, 0.0013, 0.0002,\n",
+      "        0.0026, 0.0008, 0.0025, 0.0011, 0.0006, 0.0011, 0.0013, 0.0023, 0.0032,\n",
+      "        0.0030, 0.0015, 0.0007, 0.0002, 0.0002, 0.0012, 0.0014, 0.0037, 0.0006,\n",
+      "        0.0006, 0.0017, 0.0009, 0.0005, 0.0003, 0.0009, 0.0018, 0.0025, 0.0027,\n",
+      "        0.0012, 0.0008, 0.0014, 0.0013, 0.0001, 0.0008, 0.0021, 0.0004, 0.0011,\n",
+      "        0.0004, 0.0005, 0.0002, 0.0021, 0.0004, 0.0061, 0.0005, 0.0002, 0.0006,\n",
+      "        0.0016, 0.0023, 0.0031, 0.0014, 0.0022, 0.0014, 0.0014, 0.0012, 0.0012,\n",
+      "        0.0018, 0.0006, 0.0031, 0.0009, 0.0024, 0.0011, 0.0011, 0.0017, 0.0012,\n",
+      "        0.0008, 0.0009, 0.0008, 0.0051, 0.0009, 0.0008, 0.0006, 0.0003, 0.0018,\n",
+      "        0.0022, 0.0013, 0.0021, 0.0019, 0.0004, 0.0010, 0.0016, 0.0006, 0.0012,\n",
+      "        0.0034, 0.0027, 0.0023, 0.0005, 0.0009, 0.0010, 0.0015, 0.0021, 0.0014,\n",
+      "        0.0006, 0.0019, 0.0034, 0.0014, 0.0021, 0.0012, 0.0009, 0.0033, 0.0034,\n",
+      "        0.0002, 0.0019, 0.0012, 0.0019, 0.0013, 0.0024, 0.0003, 0.0006, 0.0016,\n",
+      "        0.0012, 0.0010, 0.0015, 0.0006, 0.0004, 0.0006, 0.0018, 0.0024, 0.0040,\n",
+      "        0.0018, 0.0015, 0.0017, 0.0008, 0.0020, 0.0010, 0.0021, 0.0007, 0.0010,\n",
+      "        0.0034, 0.0013, 0.0009, 0.0024, 0.0017, 0.0009, 0.0018, 0.0011, 0.0015,\n",
+      "        0.0013, 0.0007, 0.0019, 0.0006, 0.0034, 0.0012, 0.0024, 0.0003, 0.0007,\n",
+      "        0.0004, 0.0012, 0.0011, 0.0013, 0.0003, 0.0003, 0.0003, 0.0015, 0.0015,\n",
+      "        0.0025, 0.0007, 0.0002, 0.0006, 0.0006, 0.0025, 0.0009, 0.0018, 0.0020,\n",
+      "        0.0008, 0.0015, 0.0009, 0.0011, 0.0006, 0.0020, 0.0007, 0.0004, 0.0031,\n",
+      "        0.0013, 0.0011, 0.0011, 0.0018, 0.0020, 0.0004, 0.0003, 0.0011, 0.0021,\n",
+      "        0.0014, 0.0005, 0.0017, 0.0019, 0.0041, 0.0001, 0.0009, 0.0030, 0.0036,\n",
+      "        0.0006, 0.0005, 0.0028, 0.0008, 0.0010, 0.0031, 0.0014, 0.0003, 0.0006,\n",
+      "        0.0006, 0.0012, 0.0022, 0.0008, 0.0008, 0.0010, 0.0010, 0.0011, 0.0023,\n",
+      "        0.0009, 0.0004, 0.0011, 0.0007, 0.0008, 0.0006, 0.0019, 0.0019, 0.0021,\n",
+      "        0.0008, 0.0007, 0.0033, 0.0035, 0.0016, 0.0020, 0.0014, 0.0004, 0.0023,\n",
+      "        0.0024, 0.0030, 0.0018, 0.0007, 0.0019, 0.0016, 0.0008, 0.0005, 0.0021,\n",
+      "        0.0024, 0.0005, 0.0004, 0.0019, 0.0012, 0.0040, 0.0012, 0.0009, 0.0012,\n",
+      "        0.0005, 0.0005, 0.0008, 0.0020, 0.0031, 0.0010, 0.0027, 0.0010, 0.0016,\n",
+      "        0.0012, 0.0005, 0.0006, 0.0011, 0.0016, 0.0032, 0.0010, 0.0003, 0.0020,\n",
+      "        0.0007, 0.0009, 0.0011, 0.0010, 0.0008, 0.0030, 0.0016, 0.0014, 0.0011,\n",
+      "        0.0016, 0.0008, 0.0012, 0.0031, 0.0002, 0.0017, 0.0004, 0.0015, 0.0027,\n",
+      "        0.0012, 0.0009, 0.0006, 0.0046, 0.0009, 0.0009, 0.0007, 0.0012])), ('pretrained_model.layer2.2.bn3.num_batches_tracked', tensor(0)), ('pretrained_model.layer2.3.conv1.weight', tensor([[[[ 3.4326e-05]],\n",
+      "\n",
+      "         [[-2.1674e-02]],\n",
+      "\n",
+      "         [[ 2.3581e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 8.1197e-03]],\n",
+      "\n",
+      "         [[ 3.2872e-02]],\n",
+      "\n",
+      "         [[ 3.1556e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 2.5948e-02]],\n",
+      "\n",
+      "         [[-1.7679e-02]],\n",
+      "\n",
+      "         [[-3.6318e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 8.4283e-03]],\n",
+      "\n",
+      "         [[ 2.5841e-02]],\n",
+      "\n",
+      "         [[ 8.7287e-04]]],\n",
+      "\n",
+      "\n",
+      "        [[[-8.8078e-03]],\n",
+      "\n",
+      "         [[ 1.2529e-03]],\n",
+      "\n",
+      "         [[ 1.2764e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.0455e-02]],\n",
+      "\n",
+      "         [[ 3.9034e-02]],\n",
+      "\n",
+      "         [[ 5.1356e-03]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 1.9328e-02]],\n",
+      "\n",
+      "         [[-3.1126e-02]],\n",
+      "\n",
+      "         [[-8.0424e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.3430e-02]],\n",
+      "\n",
+      "         [[ 1.0816e-02]],\n",
+      "\n",
+      "         [[-1.9914e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 5.9551e-03]],\n",
+      "\n",
+      "         [[-9.4206e-04]],\n",
+      "\n",
+      "         [[ 1.9111e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.2038e-03]],\n",
+      "\n",
+      "         [[-5.8520e-03]],\n",
+      "\n",
+      "         [[ 6.5518e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.0358e-02]],\n",
+      "\n",
+      "         [[-1.9958e-02]],\n",
+      "\n",
+      "         [[-7.6402e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 9.6120e-03]],\n",
+      "\n",
+      "         [[-1.6831e-03]],\n",
+      "\n",
+      "         [[-1.8247e-02]]]])), ('pretrained_model.layer2.3.bn1.weight', tensor([0.1731, 0.1822, 0.1780, 0.1515, 0.1966, 0.1651, 0.1413, 0.1692, 0.1648,\n",
+      "        0.1675, 0.1662, 0.1716, 0.1351, 0.1853, 0.1215, 0.2014, 0.1354, 0.1899,\n",
+      "        0.2139, 0.2168, 0.1578, 0.1537, 0.1639, 0.1536, 0.1746, 0.1846, 0.1733,\n",
+      "        0.1755, 0.0978, 0.1741, 0.1656, 0.1645, 0.1734, 0.1627, 0.1497, 0.1458,\n",
+      "        0.1215, 0.1542, 0.1642, 0.1677, 0.1583, 0.2094, 0.1589, 0.1667, 0.1548,\n",
+      "        0.1673, 0.1620, 0.1932, 0.1478, 0.1689, 0.1776, 0.1691, 0.1963, 0.1708,\n",
+      "        0.1606, 0.1597, 0.1849, 0.1628, 0.2089, 0.1306, 0.1485, 0.1357, 0.2134,\n",
+      "        0.1331, 0.1513, 0.1861, 0.1963, 0.1807, 0.1913, 0.1629, 0.1928, 0.1473,\n",
+      "        0.1478, 0.1635, 0.1728, 0.1748, 0.1632, 0.1442, 0.1487, 0.1613, 0.1238,\n",
+      "        0.1443, 0.1399, 0.1575, 0.1557, 0.1520, 0.1753, 0.1522, 0.1665, 0.1904,\n",
+      "        0.1388, 0.1910, 0.1680, 0.1944, 0.1649, 0.1555, 0.1639, 0.1917, 0.1884,\n",
+      "        0.1797, 0.1836, 0.1669, 0.1589, 0.1857, 0.1410, 0.1663, 0.1773, 0.1732,\n",
+      "        0.1591, 0.1844, 0.1917, 0.1975, 0.1836, 0.1670, 0.2273, 0.1750, 0.2190,\n",
+      "        0.1715, 0.1320, 0.2351, 0.2098, 0.1712, 0.1682, 0.1456, 0.1596, 0.1472,\n",
+      "        0.1592, 0.1797])), ('pretrained_model.layer2.3.bn1.bias', tensor([-0.1236, -0.0083, -0.1129,  0.0354, -0.0846, -0.0578,  0.0415,  0.0408,\n",
+      "         0.0605, -0.1294,  0.0522,  0.0465,  0.0805, -0.1239,  0.1266, -0.1067,\n",
+      "        -0.0605, -0.1197, -0.1848, -0.0470,  0.0368,  0.0308, -0.0769, -0.1052,\n",
+      "        -0.0034, -0.0265, -0.0398, -0.0482,  0.1273, -0.1406, -0.0584, -0.0574,\n",
+      "         0.0225, -0.1017,  0.0487,  0.0275, -0.0199, -0.0935,  0.0534, -0.1649,\n",
+      "         0.0167, -0.2088, -0.0615,  0.0690, -0.0752, -0.0434,  0.0585, -0.0199,\n",
+      "        -0.0340, -0.0820, -0.0460, -0.0037, -0.1045,  0.0309, -0.0076, -0.0033,\n",
+      "        -0.0044,  0.0908, -0.1083,  0.0589, -0.0536,  0.0258, -0.1080,  0.0037,\n",
+      "         0.0540, -0.0483, -0.0115,  0.0208, -0.1177, -0.1136, -0.0203,  0.0065,\n",
+      "        -0.1137,  0.0259, -0.1139,  0.0139,  0.0388,  0.0737, -0.0198, -0.1220,\n",
+      "         0.1123,  0.0599,  0.1217,  0.0238,  0.0361,  0.0490, -0.0257, -0.0116,\n",
+      "         0.0621,  0.0456,  0.0455, -0.1058, -0.0231, -0.0202,  0.0510, -0.0886,\n",
+      "        -0.0884, -0.0775, -0.0959, -0.0237, -0.0237, -0.0112, -0.0810, -0.1178,\n",
+      "         0.0208, -0.0898,  0.0504,  0.0173,  0.0863,  0.0366,  0.0239, -0.0278,\n",
+      "        -0.0689,  0.0148, -0.1331, -0.0556, -0.2303,  0.0304,  0.0163, -0.1352,\n",
+      "        -0.1145, -0.0168, -0.0657,  0.0670,  0.0743,  0.0671,  0.0151, -0.0524])), ('pretrained_model.layer2.3.bn1.running_mean', tensor([-0.0783, -0.1184,  0.0527, -0.1635, -0.0221,  0.0951, -0.0069, -0.0891,\n",
+      "        -0.0182,  0.1043,  0.0129,  0.0771, -0.0470, -0.0586,  0.2077, -0.0851,\n",
+      "         0.0015, -0.1421, -0.1610,  0.0495, -0.0310, -0.1282, -0.0788,  0.0077,\n",
+      "        -0.3233, -0.1772, -0.0573,  0.0412,  0.0411,  0.1081,  0.0007,  0.0740,\n",
+      "        -0.0267, -0.1072, -0.1074, -0.1517,  0.0725, -0.0321, -0.0810, -0.0661,\n",
+      "        -0.2245, -0.1749,  0.0336, -0.1292, -0.0083,  0.0228, -0.2395, -0.0369,\n",
+      "         0.0643, -0.0367, -0.0448, -0.0469,  0.1307, -0.1429, -0.1168, -0.0925,\n",
+      "         0.0204, -0.2424, -0.1081,  0.0246,  0.0075, -0.1067, -0.0662, -0.0982,\n",
+      "        -0.1373, -0.1456,  0.0985,  0.0187, -0.0845, -0.0004, -0.1034,  0.1069,\n",
+      "        -0.0728, -0.1899,  0.0469, -0.0749, -0.0922, -0.1268,  0.0678, -0.0311,\n",
+      "         0.0342, -0.1494, -0.0912, -0.0147, -0.1461, -0.2142,  0.0302, -0.0124,\n",
+      "        -0.1996,  0.0016, -0.0698,  0.0448, -0.0319, -0.1462, -0.0770,  0.0659,\n",
+      "        -0.2464,  0.0035, -0.0085, -0.0688, -0.0336, -0.1665,  0.1124, -0.1221,\n",
+      "        -0.2350,  0.0573,  0.0176, -0.0648, -0.0615, -0.0609, -0.2557,  0.0612,\n",
+      "         0.1057, -0.0810, -0.1171, -0.1312, -0.0655, -0.1344,  0.0504, -0.1848,\n",
+      "        -0.0847, -0.0545,  0.0603, -0.0622, -0.1573, -0.1431, -0.1718, -0.0302])), ('pretrained_model.layer2.3.bn1.running_var', tensor([0.0135, 0.0281, 0.0221, 0.0215, 0.0180, 0.0184, 0.0155, 0.0268, 0.0374,\n",
+      "        0.0180, 0.0274, 0.0271, 0.0207, 0.0197, 0.0284, 0.0217, 0.0138, 0.0236,\n",
+      "        0.0182, 0.0297, 0.0263, 0.0272, 0.0207, 0.0119, 0.0289, 0.0226, 0.0189,\n",
+      "        0.0241, 0.0154, 0.0143, 0.0166, 0.0187, 0.0235, 0.0248, 0.0194, 0.0215,\n",
+      "        0.0118, 0.0149, 0.0288, 0.0139, 0.0291, 0.0085, 0.0196, 0.0396, 0.0195,\n",
+      "        0.0155, 0.0294, 0.0296, 0.0100, 0.0143, 0.0203, 0.0264, 0.0229, 0.0289,\n",
+      "        0.0208, 0.0193, 0.0316, 0.0362, 0.0167, 0.0128, 0.0185, 0.0191, 0.0213,\n",
+      "        0.0213, 0.0273, 0.0295, 0.0331, 0.0275, 0.0201, 0.0156, 0.0235, 0.0181,\n",
+      "        0.0139, 0.0327, 0.0161, 0.0253, 0.0333, 0.0249, 0.0195, 0.0089, 0.0163,\n",
+      "        0.0243, 0.0263, 0.0269, 0.0271, 0.0254, 0.0273, 0.0198, 0.0390, 0.0343,\n",
+      "        0.0181, 0.0190, 0.0152, 0.0340, 0.0337, 0.0158, 0.0169, 0.0220, 0.0332,\n",
+      "        0.0288, 0.0180, 0.0229, 0.0165, 0.0121, 0.0201, 0.0235, 0.0271, 0.0310,\n",
+      "        0.0281, 0.0311, 0.0412, 0.0263, 0.0174, 0.0279, 0.0242, 0.0182, 0.0153,\n",
+      "        0.0211, 0.0202, 0.0221, 0.0156, 0.0289, 0.0180, 0.0265, 0.0350, 0.0308,\n",
+      "        0.0250, 0.0202])), ('pretrained_model.layer2.3.bn1.num_batches_tracked', tensor(0)), ('pretrained_model.layer2.3.conv2.weight', tensor([[[[ 1.1568e-02,  5.6079e-03, -2.1436e-03],\n",
+      "          [-2.4744e-03,  3.7061e-03,  2.8562e-03],\n",
+      "          [ 2.0708e-02,  2.2487e-03, -7.6621e-03]],\n",
+      "\n",
+      "         [[-6.5856e-04,  8.3640e-03,  1.8543e-02],\n",
+      "          [-2.4947e-03, -7.8164e-05,  1.0201e-02],\n",
+      "          [-3.3370e-03,  6.5282e-04,  1.5541e-02]],\n",
+      "\n",
+      "         [[ 2.0477e-02,  3.6984e-02,  2.2346e-02],\n",
+      "          [ 2.4016e-02,  1.4476e-02,  2.1248e-02],\n",
+      "          [ 1.2793e-02,  1.2371e-02, -2.0287e-06]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 4.2628e-02,  1.1254e-02, -6.5558e-03],\n",
+      "          [ 3.1195e-02, -1.8355e-02, -3.7158e-02],\n",
+      "          [ 2.7809e-02, -7.8979e-03, -2.9662e-02]],\n",
+      "\n",
+      "         [[ 1.7621e-02,  1.7474e-02, -1.7395e-02],\n",
+      "          [-5.0617e-03,  1.3614e-02,  1.2506e-02],\n",
+      "          [ 1.6575e-02,  1.7738e-02, -2.1151e-02]],\n",
+      "\n",
+      "         [[-2.3011e-02, -3.6919e-04,  1.6354e-02],\n",
+      "          [-3.3863e-02, -1.3426e-02,  1.1487e-02],\n",
+      "          [-2.9647e-02,  1.1930e-02,  4.5245e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-5.1627e-03,  2.2550e-02,  2.8265e-02],\n",
+      "          [ 3.8816e-03, -1.9440e-02,  2.2556e-03],\n",
+      "          [ 1.0719e-02, -9.1595e-03, -4.1609e-02]],\n",
+      "\n",
+      "         [[-9.2146e-03, -1.6078e-02,  2.2808e-02],\n",
+      "          [ 7.1193e-03, -3.0490e-02,  3.2294e-02],\n",
+      "          [ 2.4793e-02,  2.7540e-02,  8.8795e-03]],\n",
+      "\n",
+      "         [[-1.7953e-02, -1.8759e-02, -3.4998e-02],\n",
+      "          [ 5.3859e-02, -2.3665e-02, -2.8349e-02],\n",
+      "          [ 3.0240e-02,  1.0098e-01,  4.2555e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 2.6213e-02,  2.0420e-02, -9.0681e-03],\n",
+      "          [ 1.3754e-02,  7.4117e-03,  3.8104e-03],\n",
+      "          [ 8.5871e-03, -2.7933e-02, -2.3520e-02]],\n",
+      "\n",
+      "         [[ 4.3020e-03,  8.1806e-03,  8.1683e-03],\n",
+      "          [ 1.3201e-02, -2.2657e-02,  5.1410e-03],\n",
+      "          [ 2.1477e-02, -1.8185e-02, -4.6716e-02]],\n",
+      "\n",
+      "         [[-2.4664e-02, -3.4853e-02, -3.8887e-02],\n",
+      "          [-1.5735e-02, -4.0756e-02, -7.0664e-04],\n",
+      "          [ 3.2650e-02,  3.1494e-02,  1.2407e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-2.3773e-03, -6.6229e-03,  1.6501e-02],\n",
+      "          [-9.1723e-03, -3.4098e-02, -1.6362e-02],\n",
+      "          [-3.4774e-03, -9.1451e-03, -2.1284e-03]],\n",
+      "\n",
+      "         [[ 2.3785e-03, -2.0270e-03, -8.8442e-03],\n",
+      "          [-2.6270e-02, -9.2492e-03, -1.4836e-03],\n",
+      "          [-1.3000e-02, -1.7131e-02, -2.0020e-02]],\n",
+      "\n",
+      "         [[ 2.1177e-02, -1.1830e-02, -1.5966e-02],\n",
+      "          [ 6.3029e-03, -1.6331e-03, -8.3448e-03],\n",
+      "          [ 9.6466e-03,  2.9822e-02,  3.1995e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.8283e-02,  2.3562e-03, -1.2671e-03],\n",
+      "          [-2.9303e-03, -6.9437e-04, -2.0401e-02],\n",
+      "          [-1.9192e-02, -1.3007e-03,  1.7538e-02]],\n",
+      "\n",
+      "         [[-1.0583e-02, -1.5689e-02, -2.5808e-02],\n",
+      "          [ 4.8728e-02,  1.8932e-02, -3.4869e-02],\n",
+      "          [ 2.2822e-03,  9.4072e-03,  2.6123e-02]],\n",
+      "\n",
+      "         [[-7.5417e-03, -4.0869e-03, -2.1342e-02],\n",
+      "          [-2.1358e-02, -7.4266e-03,  6.0449e-03],\n",
+      "          [ 2.3088e-02,  2.3310e-02,  2.7834e-02]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-5.1740e-02,  1.7896e-03, -2.1896e-02],\n",
+      "          [-3.8236e-02, -5.9276e-03,  1.4596e-02],\n",
+      "          [-8.8815e-03, -6.4665e-02, -1.6284e-02]],\n",
+      "\n",
+      "         [[-8.4523e-03, -1.0008e-02, -1.0732e-02],\n",
+      "          [-2.2594e-02,  3.5086e-02, -1.6685e-02],\n",
+      "          [-1.1922e-02,  2.2334e-02,  9.0227e-03]],\n",
+      "\n",
+      "         [[ 2.6866e-02, -8.4457e-04, -6.7651e-03],\n",
+      "          [ 7.2991e-03,  4.1197e-02, -8.2109e-02],\n",
+      "          [-9.4720e-03,  1.7223e-02, -4.1462e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.6234e-02,  1.4784e-02,  1.9342e-03],\n",
+      "          [ 1.8605e-02,  3.7314e-03,  3.1552e-02],\n",
+      "          [-2.2986e-04, -1.5844e-02,  2.5691e-02]],\n",
+      "\n",
+      "         [[-1.3193e-04, -4.0725e-03, -2.4478e-02],\n",
+      "          [ 7.3075e-03, -8.2156e-03, -2.1949e-02],\n",
+      "          [-7.1390e-03,  1.5210e-02,  8.2970e-03]],\n",
+      "\n",
+      "         [[ 2.3631e-02, -3.9305e-02,  3.3865e-02],\n",
+      "          [ 5.3799e-02,  4.6773e-03, -4.7526e-02],\n",
+      "          [ 2.9035e-02, -1.2939e-02, -5.0350e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-5.1057e-03,  1.2521e-02, -2.3236e-02],\n",
+      "          [ 2.1286e-03, -7.1248e-03, -7.9572e-03],\n",
+      "          [ 1.0163e-02,  1.1795e-02,  1.2868e-03]],\n",
+      "\n",
+      "         [[ 3.6261e-03,  2.3830e-02, -2.2069e-02],\n",
+      "          [-3.6714e-02, -1.6810e-02,  2.2740e-02],\n",
+      "          [-4.5968e-04, -7.6766e-03, -1.0811e-02]],\n",
+      "\n",
+      "         [[ 6.5389e-02, -1.1009e-03, -2.1752e-02],\n",
+      "          [ 9.4950e-03,  2.2549e-02,  6.1584e-02],\n",
+      "          [-1.1240e-02, -1.1843e-02, -1.5462e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-2.2454e-02,  5.4748e-03, -6.1005e-03],\n",
+      "          [-2.9828e-02, -1.4414e-02,  1.1814e-03],\n",
+      "          [ 4.8737e-03, -7.5823e-03, -3.4546e-02]],\n",
+      "\n",
+      "         [[ 2.4917e-02,  9.8607e-03,  5.4091e-03],\n",
+      "          [ 2.0584e-02,  6.4380e-03, -4.5457e-02],\n",
+      "          [-1.7838e-03, -8.3479e-03, -1.4172e-02]],\n",
+      "\n",
+      "         [[-2.7925e-03,  4.7345e-03, -5.3427e-03],\n",
+      "          [-1.0506e-02, -7.4050e-03, -6.6557e-03],\n",
+      "          [ 4.7342e-03,  1.1255e-02,  9.9175e-04]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.0228e-02, -6.6225e-03, -9.5325e-03],\n",
+      "          [ 3.5168e-02,  7.6603e-03, -2.2380e-02],\n",
+      "          [-1.0303e-02, -1.2567e-02, -3.2328e-02]],\n",
+      "\n",
+      "         [[-1.2021e-02, -1.8401e-02, -3.8883e-02],\n",
+      "          [-3.8855e-02, -3.4488e-03,  1.5827e-02],\n",
+      "          [-4.6740e-02, -1.2809e-02,  1.6099e-03]],\n",
+      "\n",
+      "         [[ 6.8834e-03, -1.7229e-02, -1.8612e-03],\n",
+      "          [ 3.1924e-02,  8.2769e-02,  3.8301e-02],\n",
+      "          [ 5.5963e-03,  5.1067e-02,  5.7673e-04]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 8.5318e-04, -3.3720e-02, -3.6295e-02],\n",
+      "          [ 9.9276e-03, -2.8534e-02,  7.5694e-03],\n",
+      "          [-1.1383e-02, -1.8548e-02,  1.0380e-02]],\n",
+      "\n",
+      "         [[-7.1429e-03, -1.0598e-03, -4.0772e-03],\n",
+      "          [ 3.3263e-03, -1.0144e-02,  7.4985e-03],\n",
+      "          [-1.2394e-02, -2.2784e-03, -1.3736e-02]],\n",
+      "\n",
+      "         [[ 1.0580e-02, -3.0077e-03,  7.5399e-03],\n",
+      "          [-3.0681e-02, -2.3861e-02,  2.4678e-02],\n",
+      "          [ 6.8195e-03, -2.1540e-02, -1.4173e-02]]]])), ('pretrained_model.layer2.3.bn2.weight', tensor([0.2387, 0.2663, 0.1829, 0.2484, 0.2143, 0.1933, 0.2295, 0.1804, 0.1978,\n",
+      "        0.2356, 0.2205, 0.1366, 0.2323, 0.2053, 0.2080, 0.2121, 0.1859, 0.1424,\n",
+      "        0.1864, 0.2069, 0.2113, 0.1682, 0.2154, 0.2154, 0.2122, 0.1698, 0.2118,\n",
+      "        0.1970, 0.1856, 0.2269, 0.1434, 0.1983, 0.2041, 0.1634, 0.2540, 0.2239,\n",
+      "        0.1586, 0.1709, 0.1629, 0.2038, 0.2128, 0.1978, 0.2412, 0.2194, 0.1890,\n",
+      "        0.2335, 0.2343, 0.1622, 0.2059, 0.2177, 0.2023, 0.2311, 0.2407, 0.2413,\n",
+      "        0.2076, 0.2204, 0.1418, 0.1715, 0.1790, 0.1779, 0.2265, 0.2555, 0.1888,\n",
+      "        0.2318, 0.2191, 0.1932, 0.2374, 0.1857, 0.2070, 0.1582, 0.2190, 0.2019,\n",
+      "        0.1650, 0.1849, 0.2024, 0.1420, 0.1940, 0.1784, 0.1763, 0.1758, 0.1991,\n",
+      "        0.1048, 0.2181, 0.1681, 0.2088, 0.2546, 0.1054, 0.1581, 0.2128, 0.2612,\n",
+      "        0.1971, 0.1882, 0.1229, 0.1833, 0.1780, 0.2023, 0.1842, 0.1830, 0.2276,\n",
+      "        0.1796, 0.1756, 0.1899, 0.2031, 0.1858, 0.1950, 0.2076, 0.2105, 0.2113,\n",
+      "        0.1885, 0.2326, 0.2241, 0.2166, 0.2043, 0.1670, 0.1997, 0.2330, 0.1774,\n",
+      "        0.2035, 0.2146, 0.2311, 0.1969, 0.2052, 0.2103, 0.2015, 0.2141, 0.2297,\n",
+      "        0.1886, 0.2038])), ('pretrained_model.layer2.3.bn2.bias', tensor([-0.0410, -0.1718, -0.0452, -0.1123, -0.0691, -0.0439, -0.1263, -0.1225,\n",
+      "        -0.1268, -0.0924, -0.0946,  0.1190, -0.0104, -0.1180, -0.1153, -0.0159,\n",
+      "        -0.0162, -0.1106, -0.0839, -0.0993, -0.1227, -0.1043, -0.1352, -0.0900,\n",
+      "        -0.0710, -0.0359, -0.0793, -0.0584, -0.0781, -0.1271,  0.0975, -0.0220,\n",
+      "        -0.0396, -0.0638, -0.1518, -0.0305, -0.0811, -0.0736,  0.0505, -0.0780,\n",
+      "        -0.0516, -0.0728, -0.1566, -0.1579, -0.1331, -0.1568, -0.1606, -0.0016,\n",
+      "        -0.0198, -0.0275, -0.0795, -0.1475, -0.0977, -0.1640, -0.0792, -0.0729,\n",
+      "         0.0580, -0.0585, -0.0172,  0.0251, -0.0725, -0.1509, -0.0644, -0.1317,\n",
+      "        -0.0817, -0.0673, -0.0739, -0.2474, -0.0620, -0.0402, -0.0382, -0.0825,\n",
+      "        -0.0182, -0.1241, -0.0677,  0.0820, -0.1084, -0.0632,  0.0482, -0.0558,\n",
+      "        -0.0396,  0.1941, -0.0223, -0.0837,  0.0068, -0.0783,  0.2682,  0.1625,\n",
+      "        -0.0784, -0.0752, -0.0463, -0.1057,  0.3085, -0.1131,  0.0679, -0.1126,\n",
+      "         0.0211, -0.0130, -0.0493, -0.0750, -0.0158, -0.0697, -0.0358,  0.1679,\n",
+      "        -0.0619, -0.1751, -0.1666, -0.1167, -0.0899, -0.1519, -0.1657, -0.1741,\n",
+      "        -0.1202, -0.1052, -0.0492, -0.1564, -0.0543, -0.1043, -0.0421, -0.0440,\n",
+      "        -0.0256, -0.0403, -0.0667,  0.0029, -0.1122,  0.0157, -0.0469, -0.1739])), ('pretrained_model.layer2.3.bn2.running_mean', tensor([-0.1447, -0.0012, -0.0779, -0.0964,  0.0138, -0.0322, -0.0875, -0.1109,\n",
+      "        -0.0609, -0.1057, -0.1635,  0.0744, -0.1077, -0.0962, -0.0315, -0.0800,\n",
+      "        -0.1209, -0.2032,  0.4602, -0.0720, -0.0905,  0.0059, -0.0565, -0.1312,\n",
+      "        -0.0446, -0.0767, -0.0404, -0.1036, -0.0093,  0.0623, -0.0411, -0.0896,\n",
+      "        -0.1206, -0.0257, -0.0473, -0.1129, -0.1428, -0.0595,  0.0099, -0.0929,\n",
+      "        -0.1514, -0.0573, -0.1485, -0.1137,  0.0791, -0.0207, -0.1218, -0.1303,\n",
+      "        -0.0454, -0.0862, -0.1379, -0.0103, -0.0635, -0.0592, -0.0459, -0.1304,\n",
+      "         0.0060, -0.1044, -0.0451, -0.0314, -0.0483, -0.1111,  0.0018, -0.0615,\n",
+      "        -0.0973, -0.0546, -0.0948,  0.1659,  0.0133, -0.0447, -0.0116, -0.0900,\n",
+      "         0.0375, -0.0119, -0.0534, -0.0073, -0.0636, -0.0722,  0.0645,  0.0077,\n",
+      "        -0.0522, -0.0912, -0.1029,  0.0082, -0.0314, -0.0923, -0.1049, -0.0446,\n",
+      "        -0.0895, -0.1177, -0.0478, -0.0280, -0.1281, -0.0350,  0.0503, -0.0351,\n",
+      "        -0.0201,  0.0197, -0.0513,  0.0077, -0.0978, -0.1093, -0.1252, -0.1153,\n",
+      "        -0.1380, -0.0969, -0.1145, -0.1486, -0.1406, -0.0901, -0.1065, -0.1188,\n",
+      "        -0.0464,  0.0021, -0.0197, -0.1088, -0.0530, -0.0294, -0.0910, -0.0599,\n",
+      "        -0.0381,  0.1352, -0.0888, -0.0850, -0.0638, -0.0789, -0.1125,  0.1444])), ('pretrained_model.layer2.3.bn2.running_var', tensor([0.0264, 0.0131, 0.0123, 0.0184, 0.0144, 0.0150, 0.0201, 0.0099, 0.0139,\n",
+      "        0.0176, 0.0206, 0.0165, 0.0205, 0.0101, 0.0105, 0.0176, 0.0109, 0.0072,\n",
+      "        0.0160, 0.0148, 0.0124, 0.0128, 0.0137, 0.0152, 0.0157, 0.0127, 0.0126,\n",
+      "        0.0142, 0.0095, 0.0151, 0.0108, 0.0270, 0.0129, 0.0096, 0.0164, 0.0142,\n",
+      "        0.0178, 0.0085, 0.0090, 0.0109, 0.0200, 0.0139, 0.0169, 0.0134, 0.0124,\n",
+      "        0.0147, 0.0160, 0.0170, 0.0188, 0.0281, 0.0117, 0.0109, 0.0141, 0.0168,\n",
+      "        0.0219, 0.0173, 0.0167, 0.0156, 0.0117, 0.0126, 0.0168, 0.0146, 0.0164,\n",
+      "        0.0129, 0.0215, 0.0203, 0.0134, 0.0109, 0.0187, 0.0111, 0.0153, 0.0123,\n",
+      "        0.0120, 0.0163, 0.0140, 0.0171, 0.0167, 0.0102, 0.0156, 0.0095, 0.0118,\n",
+      "        0.0120, 0.0227, 0.0078, 0.0143, 0.0251, 0.0154, 0.0191, 0.0234, 0.0210,\n",
+      "        0.0171, 0.0164, 0.0185, 0.0193, 0.0211, 0.0161, 0.0111, 0.0134, 0.0207,\n",
+      "        0.0107, 0.0137, 0.0077, 0.0181, 0.0407, 0.0180, 0.0108, 0.0117, 0.0146,\n",
+      "        0.0136, 0.0122, 0.0101, 0.0146, 0.0109, 0.0173, 0.0194, 0.0162, 0.0168,\n",
+      "        0.0103, 0.0194, 0.0127, 0.0147, 0.0193, 0.0200, 0.0181, 0.0190, 0.0176,\n",
+      "        0.0116, 0.0240])), ('pretrained_model.layer2.3.bn2.num_batches_tracked', tensor(0)), ('pretrained_model.layer2.3.conv3.weight', tensor([[[[-0.0033]],\n",
+      "\n",
+      "         [[-0.0102]],\n",
+      "\n",
+      "         [[-0.0206]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0138]],\n",
+      "\n",
+      "         [[ 0.0002]],\n",
+      "\n",
+      "         [[ 0.0034]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0041]],\n",
+      "\n",
+      "         [[ 0.0237]],\n",
+      "\n",
+      "         [[ 0.0232]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0164]],\n",
+      "\n",
+      "         [[ 0.0400]],\n",
+      "\n",
+      "         [[-0.0394]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0018]],\n",
+      "\n",
+      "         [[ 0.0055]],\n",
+      "\n",
+      "         [[ 0.0010]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0066]],\n",
+      "\n",
+      "         [[-0.0155]],\n",
+      "\n",
+      "         [[ 0.0047]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-0.0139]],\n",
+      "\n",
+      "         [[ 0.0005]],\n",
+      "\n",
+      "         [[ 0.0064]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0034]],\n",
+      "\n",
+      "         [[-0.0183]],\n",
+      "\n",
+      "         [[ 0.0028]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0175]],\n",
+      "\n",
+      "         [[ 0.0033]],\n",
+      "\n",
+      "         [[-0.0375]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0200]],\n",
+      "\n",
+      "         [[ 0.0341]],\n",
+      "\n",
+      "         [[ 0.0020]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0008]],\n",
+      "\n",
+      "         [[-0.0110]],\n",
+      "\n",
+      "         [[-0.0046]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0241]],\n",
+      "\n",
+      "         [[ 0.0145]],\n",
+      "\n",
+      "         [[ 0.0303]]]])), ('pretrained_model.layer2.3.bn3.weight', tensor([ 2.1638e-02,  1.0143e-01,  1.5860e-02,  9.2577e-02,  6.2168e-02,\n",
+      "         4.4773e-03,  9.1629e-03,  8.1474e-02,  1.8225e-01,  1.5903e-01,\n",
+      "         1.2390e-01,  4.5144e-02,  7.4362e-02,  6.8789e-03,  8.0506e-02,\n",
+      "         1.9408e-01,  4.2781e-02,  1.5226e-01,  1.1832e-01,  8.4420e-02,\n",
+      "         1.7438e-01,  3.3526e-02,  6.2878e-02,  3.5601e-02,  1.0848e-01,\n",
+      "         1.0308e-01,  2.0061e-01,  1.4541e-01,  2.9517e-02,  1.7355e-01,\n",
+      "         8.7661e-02, -2.1267e-03,  4.3995e-02,  9.6099e-02,  5.1754e-02,\n",
+      "         2.0413e-02,  1.8600e-02,  1.0166e-01,  5.2580e-02,  5.3147e-02,\n",
+      "         1.5471e-01,  1.4709e-01,  1.7675e-01, -3.9545e-02,  3.0188e-02,\n",
+      "         2.0068e-01,  3.0809e-02,  1.5184e-01,  2.0035e-01,  1.2062e-01,\n",
+      "         8.9449e-02,  2.6722e-01,  1.0670e-01,  1.0033e-01,  2.5566e-02,\n",
+      "         1.4695e-01,  1.6199e-01,  2.2716e-01, -2.5031e-03,  9.1988e-02,\n",
+      "         1.7502e-02,  1.7213e-01,  1.7962e-01,  2.7982e-02,  2.2699e-01,\n",
+      "         1.3122e-01,  1.5697e-02,  1.1077e-01,  2.2919e-01,  1.5716e-01,\n",
+      "         9.0593e-02,  1.9636e-01,  1.1822e-01,  1.5234e-01,  9.2561e-02,\n",
+      "         7.3093e-02,  1.0227e-01,  8.5255e-02,  1.3428e-01,  2.1372e-01,\n",
+      "         2.0977e-02,  2.0212e-01,  1.0661e-02,  1.0998e-01,  1.3919e-01,\n",
+      "         8.4895e-02,  1.1651e-01, -2.2030e-02,  3.2389e-02,  6.2219e-02,\n",
+      "         5.7696e-02,  1.7719e-01,  1.8120e-01,  4.6790e-02,  4.4408e-03,\n",
+      "         1.3464e-01,  8.2813e-02, -4.9363e-03,  7.5392e-02,  9.1635e-03,\n",
+      "         9.0001e-02,  1.8531e-01, -6.9835e-03,  9.1149e-02,  5.3208e-02,\n",
+      "         9.1986e-03,  1.4898e-01,  1.8815e-01,  6.3976e-02,  7.4224e-02,\n",
+      "         5.2086e-02,  1.4914e-01,  6.9846e-02,  1.6009e-01, -1.6087e-03,\n",
+      "         1.2158e-02,  1.2987e-01,  6.0404e-02,  9.1958e-02,  1.0817e-01,\n",
+      "         6.6170e-02,  1.6859e-01,  5.9821e-02,  1.1796e-01,  9.6378e-02,\n",
+      "         1.9037e-02,  5.1872e-02,  2.1247e-02,  2.0640e-01,  1.6057e-01,\n",
+      "         1.4077e-01,  1.3480e-01,  1.6523e-01, -6.4302e-03, -3.9782e-03,\n",
+      "         2.6495e-02,  1.5708e-01,  1.1886e-01,  1.5962e-02,  1.2479e-01,\n",
+      "         1.2077e-01,  8.9847e-02,  1.1826e-01,  7.6944e-02,  4.9397e-03,\n",
+      "         6.0281e-02,  3.0908e-02,  9.3594e-02,  1.3929e-01,  5.5261e-02,\n",
+      "         2.9902e-02,  6.8148e-02,  1.0225e-01,  3.5720e-02,  2.6627e-02,\n",
+      "         1.1776e-03, -3.9841e-02,  3.3882e-02,  7.2797e-02,  1.1753e-01,\n",
+      "         1.5017e-01,  3.6734e-03,  5.5671e-02, -2.7682e-02,  8.3314e-02,\n",
+      "         6.3385e-03,  2.7208e-02,  1.1887e-01,  1.7753e-01,  1.1402e-01,\n",
+      "        -3.4677e-03,  5.8728e-02,  1.6771e-02,  6.6012e-03,  6.9419e-02,\n",
+      "         1.7606e-01,  2.3051e-02,  1.1661e-01,  4.5093e-02,  1.5217e-01,\n",
+      "         1.8267e-01,  1.6913e-01,  4.4263e-02,  1.2382e-02,  7.3133e-02,\n",
+      "         5.9911e-02,  9.1655e-03,  2.5975e-01, -1.4049e-02,  9.8932e-02,\n",
+      "         7.4508e-02,  1.6216e-01,  8.2637e-02,  1.1875e-01,  9.1826e-03,\n",
+      "         1.0714e-01,  3.4560e-02,  1.8425e-01,  1.4677e-01,  2.7669e-03,\n",
+      "         5.7443e-02,  1.4218e-01,  5.1246e-02,  3.2247e-02,  4.4037e-02,\n",
+      "         2.1752e-01,  1.5368e-01,  6.4355e-02,  1.0530e-02,  1.0014e-01,\n",
+      "         4.7739e-02,  7.0504e-02,  3.3370e-02,  1.6046e-02,  1.0383e-01,\n",
+      "         1.1481e-01,  5.5564e-02, -3.0025e-03,  1.3325e-02,  1.0244e-01,\n",
+      "         1.0467e-01,  1.1003e-01, -2.7217e-02,  2.3616e-01,  6.7834e-02,\n",
+      "         1.5718e-01,  1.8758e-01,  1.5461e-03,  1.4170e-01,  7.4971e-02,\n",
+      "         1.8476e-01,  9.8371e-02,  1.0545e-01,  8.9476e-02,  9.4815e-03,\n",
+      "         1.2863e-01,  4.9579e-02,  1.4448e-02,  1.3929e-01,  3.1877e-02,\n",
+      "         2.5923e-02,  4.6456e-02,  1.5372e-01,  1.8678e-03,  2.2319e-01,\n",
+      "         1.4922e-01,  4.2672e-02,  2.9488e-02,  1.7320e-01,  1.3452e-02,\n",
+      "         1.3143e-01, -5.7472e-03,  2.0652e-01,  1.5584e-01,  1.9523e-01,\n",
+      "         1.3491e-01,  1.3962e-01,  1.0449e-01,  1.2007e-01,  5.0882e-03,\n",
+      "         2.3990e-01,  1.0625e-01,  1.3473e-01,  2.9491e-02,  1.4561e-01,\n",
+      "        -1.0046e-02,  6.4441e-02,  3.5530e-02, -1.5309e-03,  5.6129e-02,\n",
+      "        -2.2610e-03,  1.1248e-01,  1.8653e-02,  7.0444e-02,  1.6945e-01,\n",
+      "         3.9919e-03,  1.6156e-01,  1.5132e-01,  1.4416e-01,  5.8960e-02,\n",
+      "         7.0542e-02,  7.9445e-02,  9.7970e-02,  6.2865e-02,  3.5655e-02,\n",
+      "        -9.6071e-03,  1.5304e-01,  1.0099e-01,  5.0574e-02,  1.9790e-01,\n",
+      "         4.7199e-03,  2.4390e-02,  2.0011e-01,  1.3814e-01,  2.1792e-01,\n",
+      "         1.0391e-01,  1.2517e-01,  4.4125e-02,  5.0637e-02,  2.4363e-01,\n",
+      "         9.8773e-02,  4.7153e-02,  2.3134e-01,  1.3805e-01,  1.5233e-01,\n",
+      "         1.9252e-01,  1.4658e-01,  1.5230e-01,  2.1845e-01,  1.9212e-02,\n",
+      "         1.7573e-01,  6.7090e-03, -1.2438e-02,  3.7370e-02,  3.2908e-02,\n",
+      "         8.7841e-02,  1.8404e-01,  5.7677e-02, -2.7699e-02,  1.1983e-02,\n",
+      "         1.2970e-01,  1.3164e-01,  4.1204e-02,  8.8239e-02,  7.0823e-03,\n",
+      "         1.3775e-02,  1.8069e-01,  1.5040e-01,  5.2671e-02,  6.6444e-02,\n",
+      "         3.1802e-02,  7.0688e-02, -1.9657e-02,  5.1298e-02,  1.7555e-01,\n",
+      "         7.4455e-02,  2.3413e-01,  5.4827e-03,  1.1421e-01,  9.8995e-02,\n",
+      "         2.5359e-02,  8.2673e-02,  3.4817e-02,  1.4910e-01,  2.3923e-02,\n",
+      "         7.0734e-02,  1.1897e-02,  5.8553e-03,  1.7817e-01,  1.1385e-02,\n",
+      "         7.9436e-02,  3.6223e-02,  6.8952e-02,  9.0665e-02,  2.4630e-02,\n",
+      "         9.6199e-02,  1.4242e-01,  4.5803e-03,  1.0202e-01,  2.0638e-01,\n",
+      "         8.6986e-02,  7.4015e-02,  1.1236e-01, -3.6843e-02,  5.7813e-02,\n",
+      "         4.6071e-02,  5.5971e-02,  1.9559e-01,  2.1923e-02,  4.8906e-02,\n",
+      "         4.9966e-02, -9.7221e-03,  6.8821e-02,  7.5786e-02,  1.6376e-02,\n",
+      "         1.9739e-01,  1.2291e-01,  1.4554e-01,  1.5471e-01,  6.3268e-02,\n",
+      "         1.3889e-01,  6.3896e-02,  1.7540e-03,  1.0796e-01,  7.9586e-02,\n",
+      "         1.4417e-01,  3.1637e-02,  2.3155e-02,  1.2676e-02,  1.2818e-01,\n",
+      "         1.0420e-01,  1.4714e-01,  4.7084e-03,  2.6134e-01,  1.1092e-01,\n",
+      "         4.6623e-03,  2.2540e-02,  2.0576e-01,  1.0631e-01,  1.0662e-01,\n",
+      "         1.8555e-02,  1.8462e-02,  1.7064e-01,  5.0954e-02,  8.7095e-02,\n",
+      "         2.1069e-04, -1.0212e-02,  1.0723e-01,  8.0607e-02,  4.2448e-02,\n",
+      "         1.8008e-01,  1.5453e-01,  5.3137e-02,  5.9085e-02,  7.6140e-02,\n",
+      "         1.9516e-01,  1.0516e-01,  1.9837e-01,  1.6733e-02,  8.0557e-02,\n",
+      "         8.8163e-02,  3.9260e-02,  2.5942e-01,  1.2046e-01,  1.0909e-01,\n",
+      "         1.8215e-01,  1.8528e-02,  4.6981e-02,  8.3195e-02,  1.7772e-01,\n",
+      "         6.5498e-03,  7.3845e-02,  1.2121e-01,  4.0813e-02,  9.1069e-02,\n",
+      "         2.6573e-01,  1.8410e-01,  1.2788e-01,  9.4836e-02,  1.3353e-01,\n",
+      "         1.3343e-01, -2.3836e-02,  4.6505e-02, -3.5640e-03,  6.1288e-02,\n",
+      "         1.9893e-01,  9.1976e-03,  1.6471e-01,  2.6602e-02,  2.0536e-01,\n",
+      "         1.4374e-01,  1.2067e-01,  6.2877e-02,  8.8758e-02,  6.2559e-02,\n",
+      "         6.4734e-02,  1.4741e-01,  1.5935e-01,  1.3637e-02,  1.9704e-02,\n",
+      "         3.2630e-01,  1.1897e-01,  2.1865e-02,  9.7953e-02,  3.6166e-02,\n",
+      "         9.9383e-02,  2.1695e-01,  5.0269e-02,  2.7680e-03,  1.8757e-01,\n",
+      "         2.0982e-01,  6.0807e-03,  2.2322e-03,  3.0260e-02,  8.5891e-02,\n",
+      "         1.5509e-01,  1.2174e-02,  1.6946e-01,  1.2096e-01,  1.3347e-01,\n",
+      "         2.4883e-01,  1.1929e-01,  2.2835e-03,  1.2935e-01,  1.2996e-01,\n",
+      "         1.5469e-01,  1.5388e-02,  9.9355e-02,  6.0535e-02,  3.5872e-02,\n",
+      "         1.9478e-01,  7.9734e-02,  5.8255e-02,  5.9766e-02,  6.2439e-03,\n",
+      "         5.7121e-02,  1.2875e-01,  7.0014e-02,  1.8963e-02,  6.0438e-02,\n",
+      "         5.5217e-02, -2.6143e-02,  1.8659e-01,  1.0447e-01,  1.6321e-01,\n",
+      "         6.0722e-02,  1.9968e-02,  6.5344e-02,  1.2122e-01,  9.9586e-03,\n",
+      "         7.0015e-02,  4.2272e-02])), ('pretrained_model.layer2.3.bn3.bias', tensor([-2.0982e-02,  1.2154e-01,  2.5095e-02, -1.5198e-01, -1.2123e-01,\n",
+      "         1.4027e-02, -7.3001e-03, -9.7421e-02, -6.7383e-02, -1.8265e-01,\n",
+      "        -7.4907e-02, -6.7094e-02,  6.0653e-02,  1.2281e-02, -6.2771e-02,\n",
+      "        -1.0553e-01,  3.8054e-02, -8.8582e-02, -7.2233e-02, -1.4181e-01,\n",
+      "         1.0387e-02, -2.0152e-02, -1.0955e-01,  5.3163e-02, -1.6871e-01,\n",
+      "        -1.1207e-01, -1.9730e-01, -5.4231e-02,  6.3315e-02, -4.2968e-02,\n",
+      "        -1.2219e-01,  1.3645e-02, -6.5501e-02, -1.1231e-01, -1.0010e-01,\n",
+      "         2.3692e-02,  2.3327e-04, -1.1092e-01,  4.9831e-02, -4.5697e-02,\n",
+      "        -1.4112e-01, -9.6520e-02, -1.0834e-01, -2.3785e-02, -4.0888e-03,\n",
+      "        -1.1971e-01, -2.2288e-02, -9.4396e-02, -1.4690e-01, -5.1395e-02,\n",
+      "        -1.3907e-01,  5.9472e-02, -1.3453e-01, -9.0772e-02, -9.0237e-02,\n",
+      "         7.3158e-03, -1.5169e-02,  3.0255e-02,  8.7073e-03, -9.6045e-02,\n",
+      "        -2.6127e-02,  2.2490e-02, -1.0377e-01, -7.9601e-02, -6.5454e-02,\n",
+      "        -1.2608e-01, -1.4491e-02, -8.2121e-02,  1.0244e-01, -1.2243e-01,\n",
+      "        -1.3168e-01, -1.9085e-01, -1.4447e-01, -8.9931e-02, -7.3555e-02,\n",
+      "        -9.0975e-02, -1.0434e-01, -1.4453e-01,  7.5741e-02,  8.6246e-02,\n",
+      "        -4.3732e-02, -9.3350e-02, -3.3314e-02, -5.8750e-02, -9.6768e-02,\n",
+      "        -1.4261e-01, -1.0772e-01, -6.9911e-02, -2.8165e-02,  4.6120e-02,\n",
+      "         8.6283e-02, -2.6339e-02,  5.1538e-02,  3.4002e-02,  1.9664e-02,\n",
+      "         9.0682e-03, -8.9412e-02, -2.9543e-02, -8.6878e-02,  1.7184e-02,\n",
+      "        -1.2541e-01,  1.2150e-02,  7.3551e-03, -3.1454e-03, -7.1671e-02,\n",
+      "         9.5670e-03, -1.7053e-01, -8.1478e-02, -1.8395e-02, -1.2539e-02,\n",
+      "        -6.5460e-02, -1.7715e-01, -1.0884e-01,  6.7394e-02,  1.0742e-02,\n",
+      "        -6.7071e-03, -7.8536e-02, -8.4039e-02, -9.5445e-02, -3.1978e-02,\n",
+      "        -3.2961e-02,  5.4643e-02, -1.0286e-01, -1.8055e-01, -3.2080e-02,\n",
+      "        -1.1182e-01,  3.4722e-02,  2.5116e-02, -5.3828e-02,  2.7084e-02,\n",
+      "        -9.1377e-02, -1.4269e-01, -1.6307e-01,  5.3170e-03,  8.5669e-03,\n",
+      "        -1.0679e-02, -1.4162e-01,  9.3042e-02, -4.1061e-03, -8.2380e-03,\n",
+      "        -8.2588e-02, -1.4245e-01, -1.5418e-01, -8.3864e-02,  8.2255e-03,\n",
+      "        -1.5229e-01, -3.9573e-02, -1.2990e-01, -8.4210e-02, -1.2176e-01,\n",
+      "        -3.0971e-02, -6.0943e-02, -1.3547e-01, -5.5962e-02, -1.2622e-01,\n",
+      "        -8.9369e-03, -1.2989e-01,  4.1334e-02, -6.8212e-02, -3.8718e-02,\n",
+      "        -1.6636e-01,  1.4957e-02, -1.4308e-02, -2.7773e-02, -2.7913e-02,\n",
+      "         2.8672e-03,  1.9471e-02, -1.0037e-01, -2.5267e-03, -9.0829e-02,\n",
+      "         5.8595e-04, -2.3561e-02, -1.0431e-02,  1.5779e-02, -3.6076e-02,\n",
+      "        -3.1170e-02, -4.8155e-02, -1.4192e-01, -6.4906e-02, -5.8918e-02,\n",
+      "        -1.4597e-01, -9.8416e-02, -6.4320e-02, -7.1299e-03, -1.3934e-01,\n",
+      "        -1.0689e-01, -2.0753e-02, -1.4124e-01,  2.2855e-02,  4.3155e-02,\n",
+      "        -1.2884e-01, -1.0324e-01, -1.4114e-01, -2.1495e-01,  7.1460e-03,\n",
+      "        -2.8899e-02,  4.7700e-02, -3.5303e-02, -4.9189e-02,  7.8559e-03,\n",
+      "        -6.1777e-02, -7.1817e-02, -7.6023e-02, -4.9923e-02, -3.5577e-02,\n",
+      "        -1.8591e-02, -2.3838e-02, -3.6224e-02,  9.9817e-04, -9.4463e-02,\n",
+      "         8.9865e-02, -5.7237e-02,  3.8207e-02, -3.9971e-02, -2.1201e-02,\n",
+      "        -5.7440e-02,  6.8906e-02, -6.0057e-03, -1.3566e-02, -1.1095e-01,\n",
+      "        -1.3500e-01,  7.0358e-02, -3.7135e-02, -3.4265e-02, -1.9710e-01,\n",
+      "        -1.5678e-01, -8.7202e-02, -1.9651e-02, -1.2736e-01, -8.6909e-02,\n",
+      "        -1.8047e-01, -1.4457e-01, -1.5970e-01, -1.0873e-01,  9.9955e-03,\n",
+      "        -1.6290e-01,  2.4084e-02, -1.7432e-02, -1.6360e-01, -1.0628e-01,\n",
+      "         3.7146e-02, -8.3545e-02, -1.1197e-01,  7.2621e-03, -1.4654e-01,\n",
+      "        -5.5386e-02, -5.8351e-02, -7.0403e-02,  4.6396e-02, -6.7806e-02,\n",
+      "        -1.8549e-01,  2.0769e-02, -3.7346e-03, -1.3056e-01, -2.0288e-01,\n",
+      "        -1.1270e-01, -2.0414e-02, -1.1062e-01, -1.8366e-01,  1.2716e-02,\n",
+      "        -1.5494e-01, -6.8453e-02, -8.2614e-02,  2.6385e-03, -1.5245e-01,\n",
+      "         1.5025e-02, -8.2823e-02, -5.8001e-02,  2.6405e-02, -4.3261e-02,\n",
+      "         1.1474e-02, -7.9107e-02, -7.4820e-02, -1.3189e-01, -1.2871e-01,\n",
+      "         1.0791e-02, -1.7202e-02, -6.7093e-02, -1.1275e-01, -8.2680e-02,\n",
+      "        -1.2587e-01, -9.8372e-02, -1.9852e-02, -6.6126e-02, -4.0212e-02,\n",
+      "         1.9048e-04, -8.8086e-02, -9.4718e-02,  2.3853e-02, -1.3418e-02,\n",
+      "         3.6184e-03, -1.9110e-02, -1.0838e-01, -1.2180e-01, -3.2016e-02,\n",
+      "        -9.7961e-02, -1.8438e-01,  7.3644e-02, -1.0146e-01, -8.1110e-02,\n",
+      "         4.6275e-02, -2.5612e-02, -1.2910e-01, -1.2310e-01, -2.2672e-02,\n",
+      "        -3.4978e-02, -3.0227e-02, -7.4744e-02, -5.8655e-02, -6.7942e-02,\n",
+      "        -6.1889e-02,  8.5082e-03, -2.0093e-02, -4.1849e-02, -7.8851e-02,\n",
+      "         8.7731e-02, -1.4596e-01, -9.4907e-02, -3.5020e-02, -1.1712e-02,\n",
+      "        -1.1054e-01, -1.6955e-01,  5.1778e-02, -6.9671e-02,  3.8054e-03,\n",
+      "        -4.4650e-02, -1.6188e-01, -1.8099e-01, -1.4648e-01,  7.1401e-02,\n",
+      "        -2.0720e-02, -7.7961e-02, -6.6788e-03, -6.9261e-02,  3.2714e-02,\n",
+      "        -9.2898e-02, -1.5131e-01, -2.7543e-02, -4.8057e-02, -1.2227e-01,\n",
+      "        -4.7615e-02, -1.3958e-01, -9.2458e-02,  3.1542e-02, -1.6363e-02,\n",
+      "        -1.5134e-01, -3.7902e-02,  1.9391e-03, -5.0261e-02,  8.6789e-03,\n",
+      "        -1.0301e-01,  3.0874e-02, -1.0810e-01, -1.0095e-01, -1.0036e-01,\n",
+      "        -1.3701e-01, -1.3517e-01,  6.3533e-03, -2.6064e-02, -1.4070e-01,\n",
+      "        -1.6083e-01, -7.2881e-02, -1.3745e-01, -4.9546e-02, -8.2408e-02,\n",
+      "        -8.2894e-02, -6.8206e-03, -1.4988e-01, -6.7772e-02, -7.0725e-02,\n",
+      "         8.3818e-02,  7.5100e-03, -1.5230e-01, -5.9460e-02, -1.5356e-02,\n",
+      "        -1.1346e-01, -3.3781e-02, -1.5604e-01, -1.1254e-01, -7.7761e-02,\n",
+      "        -7.8102e-02, -6.1362e-02, -6.4404e-03, -5.8337e-02, -5.3077e-02,\n",
+      "        -1.4263e-01, -2.0424e-02, -3.4609e-02,  2.2013e-03, -2.2616e-02,\n",
+      "        -1.4951e-02, -8.9900e-02,  6.8671e-03, -5.2383e-03,  5.0040e-02,\n",
+      "         7.5129e-03, -6.6060e-02,  3.7594e-03, -1.3982e-01, -9.6454e-02,\n",
+      "         5.4908e-02,  1.1295e-02, -1.0084e-01, -9.6274e-02, -1.6392e-01,\n",
+      "         1.0589e-02, -2.8133e-03,  6.5802e-02, -6.5474e-02,  2.4550e-02,\n",
+      "        -1.1476e-01, -1.5527e-01, -7.0833e-02,  3.2981e-02,  8.7915e-02,\n",
+      "        -1.2100e-01,  2.8888e-02, -1.1215e-01, -2.3751e-02,  8.3784e-02,\n",
+      "         4.2995e-02,  4.9132e-02, -3.2628e-02,  1.1119e-02, -1.8871e-01,\n",
+      "        -5.6792e-02,  1.1948e-02,  2.6860e-02, -1.3986e-01, -4.3115e-02,\n",
+      "         1.3037e-02, -4.1142e-02, -9.9768e-02,  4.2355e-02,  1.7141e-02,\n",
+      "        -1.7099e-01,  1.7367e-02, -2.9074e-02, -7.5484e-02, -1.8200e-01,\n",
+      "         2.3216e-02,  4.0842e-03,  1.0003e-02, -8.2144e-03, -3.5921e-02,\n",
+      "        -6.1711e-02, -4.4375e-02, -1.9543e-01, -8.0372e-02, -1.0753e-01,\n",
+      "        -1.9695e-01, -1.1471e-01, -1.1338e-01, -9.4817e-02, -6.5560e-02,\n",
+      "        -1.9190e-01, -2.2386e-02, -7.7679e-03, -6.9751e-03, -1.3684e-01,\n",
+      "        -1.7479e-01, -6.6023e-02, -4.9365e-03, -1.1127e-01, -4.7347e-02,\n",
+      "        -1.5204e-01,  4.2433e-02,  8.1326e-02, -2.6809e-02, -1.4414e-01,\n",
+      "         9.6260e-02,  3.7169e-03,  6.3476e-03, -4.3120e-02, -8.0086e-02,\n",
+      "        -1.3287e-01,  1.6910e-02, -5.5563e-02, -1.4169e-01, -4.8575e-02,\n",
+      "         1.2042e-01, -1.4908e-01,  7.7659e-03, -7.4194e-02, -2.0948e-02,\n",
+      "        -1.3821e-01,  2.1565e-02, -1.2364e-01, -7.6647e-02,  4.8755e-03,\n",
+      "        -2.8579e-03,  5.7832e-02, -1.6448e-01, -5.6137e-02,  1.5618e-02,\n",
+      "        -3.9793e-02, -1.1731e-01, -2.5693e-02, -1.9828e-02, -4.4704e-02,\n",
+      "        -9.8060e-02,  1.1187e-02, -9.1409e-02, -7.5426e-02, -1.3665e-01,\n",
+      "        -4.7337e-02, -2.7027e-02,  4.5295e-02, -1.8548e-02,  1.1885e-02,\n",
+      "        -1.2691e-01, -8.4104e-02])), ('pretrained_model.layer2.3.bn3.running_mean', tensor([-1.2879e-02,  2.4482e-02,  5.0055e-03, -3.5883e-02, -6.2633e-03,\n",
+      "         3.0485e-03, -4.1444e-03, -1.8153e-02, -2.2544e-02, -1.4969e-02,\n",
+      "        -4.9152e-02, -5.2434e-03,  3.6698e-02,  7.9667e-03,  9.8760e-03,\n",
+      "        -2.5952e-03,  2.2727e-02, -1.5132e-03, -4.2498e-02, -1.4392e-03,\n",
+      "        -2.7932e-02,  1.2805e-03,  2.6253e-02,  3.4725e-03,  3.8405e-02,\n",
+      "         1.9257e-02,  5.2297e-03, -7.4226e-02, -1.0218e-02, -6.8306e-03,\n",
+      "         5.0021e-02,  8.1698e-03, -2.1572e-02, -1.1237e-03,  2.5487e-02,\n",
+      "        -6.9256e-03, -4.1173e-03,  6.0958e-02, -3.3324e-02,  5.4093e-03,\n",
+      "        -1.4772e-02, -1.3437e-02, -1.4970e-02, -7.7765e-03, -1.1363e-02,\n",
+      "        -1.2922e-02, -5.9184e-03,  1.3353e-02, -4.1281e-02,  1.6452e-02,\n",
+      "        -3.1240e-02,  1.9777e-02, -2.0195e-02,  3.0478e-02,  1.5428e-02,\n",
+      "        -2.7554e-02,  3.2987e-02, -1.9465e-02, -4.1077e-03, -4.8210e-03,\n",
+      "        -1.5718e-02, -7.5574e-02,  1.5012e-02,  1.1567e-03, -9.1994e-02,\n",
+      "         1.4231e-02, -4.1340e-03,  2.1338e-02, -2.8333e-04, -6.2687e-03,\n",
+      "        -4.0593e-04, -2.7227e-03, -2.8855e-03,  2.3599e-02, -7.0029e-03,\n",
+      "         1.5281e-02, -2.7339e-02,  4.7596e-03,  2.0179e-02, -3.0372e-02,\n",
+      "        -1.0034e-02,  2.1319e-02, -8.5443e-03, -1.2183e-03,  2.4212e-02,\n",
+      "         9.5546e-03,  1.0899e-02,  5.1698e-03,  1.3074e-03, -2.4248e-02,\n",
+      "         1.8791e-02, -2.4283e-02, -9.2989e-03, -4.0087e-02, -7.6858e-03,\n",
+      "         2.6538e-03,  3.3867e-02,  5.9984e-03,  7.9525e-03,  6.1119e-03,\n",
+      "         4.9763e-02, -1.5266e-02, -2.9828e-03, -4.1657e-03, -3.6780e-02,\n",
+      "         3.9435e-03, -1.3248e-03, -3.4006e-02, -1.3221e-02, -9.3247e-04,\n",
+      "         5.1331e-02, -2.7652e-02, -1.5058e-02, -7.3296e-02,  6.7963e-03,\n",
+      "         1.6116e-03, -2.4788e-02, -3.1301e-03, -5.9235e-03,  1.2571e-02,\n",
+      "         1.0168e-02, -3.7197e-03,  1.2350e-02,  1.0668e-03, -1.4688e-02,\n",
+      "         6.3632e-03, -6.5751e-03,  8.6658e-03, -2.6977e-02, -1.0432e-02,\n",
+      "         9.4988e-03,  1.3798e-02, -1.2351e-03, -3.6468e-03,  9.9917e-03,\n",
+      "        -3.2145e-03,  4.8497e-05,  3.9732e-02, -2.3217e-03,  1.9046e-02,\n",
+      "         3.6070e-02, -3.1553e-02,  1.0473e-02, -5.1505e-03, -3.8481e-03,\n",
+      "         5.1728e-03,  1.2557e-02, -9.3710e-03,  4.1585e-02, -6.7914e-03,\n",
+      "        -2.6592e-03,  4.6298e-03,  3.0830e-03,  4.7246e-03, -7.7416e-03,\n",
+      "         3.7237e-03, -8.8164e-03, -2.3815e-02,  4.1452e-02, -6.3006e-03,\n",
+      "         7.6494e-03,  1.7308e-03, -1.7388e-02, -1.3275e-02,  1.2644e-02,\n",
+      "        -5.2724e-03, -3.8519e-03, -1.5228e-02, -4.1907e-02, -1.0774e-02,\n",
+      "        -9.7997e-04, -2.3893e-03, -2.0423e-03,  6.8470e-03, -1.5708e-02,\n",
+      "        -1.9872e-02,  8.0786e-03,  5.2540e-03,  8.1310e-03,  7.3832e-02,\n",
+      "         3.6729e-02,  1.1981e-02,  1.6929e-02,  6.2092e-03,  2.2886e-02,\n",
+      "         4.4831e-02, -1.4084e-03,  5.8621e-03, -1.9323e-03, -2.3590e-04,\n",
+      "         3.8075e-03,  3.1939e-02,  2.0935e-02,  7.5158e-02, -5.9994e-03,\n",
+      "         1.5060e-02,  1.4832e-02,  1.5163e-02, -1.6861e-02, -4.7660e-03,\n",
+      "        -2.3530e-04,  2.2810e-02, -3.1107e-03, -1.2307e-02,  1.5636e-03,\n",
+      "         2.2415e-02,  4.5576e-02, -6.1303e-03, -3.7246e-03, -2.7527e-02,\n",
+      "         2.8401e-03,  5.9294e-02,  4.8261e-03, -2.0506e-02, -1.7692e-02,\n",
+      "        -2.4909e-03,  1.6213e-02,  4.5452e-03, -1.3831e-04,  1.2825e-02,\n",
+      "         1.8671e-02, -1.7027e-02,  7.1336e-03, -3.4743e-02,  1.0892e-02,\n",
+      "        -2.1520e-02, -3.0706e-02, -3.7758e-03, -2.0423e-02,  2.8639e-02,\n",
+      "         4.7471e-02,  2.9981e-02, -1.1865e-02,  1.5436e-02, -1.0870e-02,\n",
+      "         9.5617e-03,  2.1404e-03, -1.4022e-02, -3.3077e-02,  1.8465e-02,\n",
+      "         1.5396e-04, -1.7682e-02, -1.7871e-02, -4.2742e-04,  2.8656e-02,\n",
+      "         6.1861e-03, -1.7574e-02,  1.9384e-02, -5.4002e-02, -6.0454e-03,\n",
+      "         3.2470e-02, -9.3693e-03, -2.4524e-02, -1.9767e-02, -1.9218e-03,\n",
+      "        -4.2526e-04, -2.3829e-02, -6.9922e-05,  1.5123e-02, -1.7953e-03,\n",
+      "        -1.7806e-02, -3.3815e-03, -3.3458e-02,  4.7306e-03,  5.1874e-03,\n",
+      "         4.4552e-03, -1.9611e-02, -1.4852e-03,  2.2293e-03,  8.8786e-03,\n",
+      "         2.0446e-03, -1.5184e-02,  3.5332e-03,  1.2522e-02, -1.7163e-05,\n",
+      "         1.9781e-03, -5.5264e-03, -2.6193e-02, -6.5804e-03, -9.3108e-03,\n",
+      "         2.2277e-02, -1.1910e-02, -4.8545e-02,  1.9663e-03,  5.5324e-03,\n",
+      "        -4.5270e-03, -2.4219e-02,  1.5894e-02, -2.7267e-02, -6.4055e-02,\n",
+      "        -8.7701e-03, -1.1646e-02, -1.1608e-02, -3.0158e-02, -1.4975e-01,\n",
+      "        -2.2262e-02, -2.7231e-02,  5.7456e-03, -2.0822e-02, -6.7684e-02,\n",
+      "         5.4815e-02, -3.9373e-02, -6.1800e-02,  2.2509e-02, -6.3033e-02,\n",
+      "         1.8845e-02,  6.7892e-02,  8.7296e-02, -1.0977e-01, -6.2935e-05,\n",
+      "        -3.0538e-02, -4.6429e-03,  1.2479e-02, -3.2789e-03, -1.0514e-02,\n",
+      "         4.1475e-03, -1.0151e-02, -1.3803e-02, -5.4661e-05,  1.0027e-02,\n",
+      "        -4.1443e-02, -3.6705e-03, -2.0811e-03, -1.7397e-02, -1.4619e-02,\n",
+      "        -8.3772e-03,  6.2470e-03, -2.9040e-03, -7.8965e-03,  6.0673e-03,\n",
+      "         9.3557e-03, -1.2671e-02,  1.2171e-02, -1.6007e-02, -8.5612e-02,\n",
+      "        -9.7916e-03, -8.3405e-02, -7.7669e-03, -1.3272e-02, -6.5265e-04,\n",
+      "         8.7012e-03,  1.2084e-02, -3.9386e-02,  3.1740e-03, -7.5206e-03,\n",
+      "         2.2807e-02, -5.7523e-03,  2.9178e-03, -8.2661e-02, -8.1015e-03,\n",
+      "         1.4425e-02, -5.9155e-03,  2.4994e-02, -1.5782e-02, -1.2904e-02,\n",
+      "         2.7029e-02,  1.5463e-02,  1.2984e-03,  3.0965e-02,  4.9870e-03,\n",
+      "        -1.6213e-02, -4.2777e-03, -4.3110e-03, -8.8693e-03, -2.7635e-02,\n",
+      "         2.3195e-02, -1.0688e-02, -2.8968e-02,  4.5618e-02, -4.2812e-03,\n",
+      "        -3.3313e-03, -6.2553e-03, -2.0422e-03,  2.8031e-02,  1.2113e-02,\n",
+      "        -6.9890e-02,  2.3307e-02,  1.5865e-02,  8.4307e-03,  7.0819e-03,\n",
+      "         4.2628e-02,  6.2731e-03,  6.5656e-03,  2.2563e-02,  1.7342e-03,\n",
+      "        -2.5236e-02,  2.9439e-03, -1.9836e-03,  9.9823e-03,  1.1853e-03,\n",
+      "        -7.3140e-03,  1.6781e-02, -7.0196e-03, -4.9229e-02,  2.0574e-02,\n",
+      "        -1.8759e-03, -1.8053e-03,  3.8438e-02,  2.6576e-02, -1.1253e-02,\n",
+      "        -1.1739e-03, -7.1753e-04, -1.0347e-02,  2.1179e-02,  5.4496e-02,\n",
+      "        -2.8523e-03,  1.1019e-02, -3.6750e-02,  1.5277e-02, -1.3262e-02,\n",
+      "        -8.2415e-02,  1.0575e-02,  2.5951e-02,  1.9396e-02,  1.5145e-02,\n",
+      "         1.6776e-02, -2.1542e-02,  1.3740e-03, -1.0097e-02, -1.4122e-02,\n",
+      "         3.3877e-02,  3.1380e-03, -1.1565e-01,  1.8049e-03,  4.8278e-02,\n",
+      "         3.2285e-02,  3.6325e-03,  1.1252e-02,  1.6387e-02,  5.6697e-03,\n",
+      "        -3.4223e-02,  2.6294e-02,  7.3594e-03,  7.9081e-03, -2.6368e-02,\n",
+      "        -9.3092e-02,  4.8611e-03, -5.0802e-02,  4.9436e-02, -2.5528e-02,\n",
+      "         4.6931e-03,  1.0047e-02,  2.0552e-02,  7.8431e-04,  4.4339e-02,\n",
+      "        -1.3912e-02, -5.1370e-03, -4.7394e-03, -1.2596e-02, -1.5470e-02,\n",
+      "         4.5350e-02, -6.5940e-03, -1.4993e-02, -1.7439e-03, -1.2251e-02,\n",
+      "         2.1417e-02, -7.3563e-03, -4.6647e-02,  1.1084e-04,  7.0146e-02,\n",
+      "        -7.0925e-02, -4.3201e-02,  7.5729e-03, -4.1415e-03,  3.0318e-05,\n",
+      "        -2.3752e-02, -2.6722e-02,  5.5031e-03,  2.6458e-03, -2.8830e-02,\n",
+      "        -1.4923e-02,  1.0957e-03, -5.2851e-03,  3.7812e-03, -1.5438e-02,\n",
+      "        -2.5581e-02,  1.2391e-02, -1.6760e-02, -1.7619e-02, -7.6919e-03,\n",
+      "        -7.3490e-02, -1.5204e-03,  3.6358e-03, -3.6109e-03, -5.2522e-02,\n",
+      "         9.0722e-03,  8.0676e-03,  9.6427e-03, -1.9459e-02, -5.3987e-03,\n",
+      "        -3.4914e-02, -1.0951e-02,  1.2191e-02,  4.3634e-03,  2.5552e-03,\n",
+      "        -3.0061e-02,  8.0903e-03,  1.8865e-02, -2.9713e-03, -3.1577e-02,\n",
+      "        -3.1847e-03, -3.3979e-03, -1.1035e-02,  4.2331e-03,  3.7750e-02,\n",
+      "        -1.4782e-02, -4.8226e-03,  3.1608e-03,  8.7927e-04,  8.7001e-04,\n",
+      "         5.8099e-02, -3.7331e-03])), ('pretrained_model.layer2.3.bn3.running_var', tensor([1.4842e-04, 1.8690e-03, 2.8082e-04, 6.1648e-04, 4.6214e-04, 1.4388e-04,\n",
+      "        1.6668e-04, 4.5903e-04, 1.4197e-03, 1.3867e-03, 6.6431e-04, 3.0453e-04,\n",
+      "        9.0202e-04, 2.0188e-04, 5.0306e-04, 2.2996e-03, 1.0206e-03, 1.1541e-03,\n",
+      "        1.2111e-03, 7.8897e-04, 1.9681e-03, 5.1947e-04, 4.9430e-04, 5.7704e-04,\n",
+      "        1.6452e-03, 7.9151e-04, 1.2909e-03, 1.5790e-03, 3.9601e-04, 1.8606e-03,\n",
+      "        8.2856e-04, 1.9034e-04, 4.4632e-04, 5.0441e-04, 4.9799e-04, 3.4913e-04,\n",
+      "        5.3156e-04, 1.4585e-03, 8.2416e-04, 1.3874e-03, 1.2901e-03, 1.5272e-03,\n",
+      "        1.5444e-03, 2.7386e-04, 3.3367e-04, 1.9891e-03, 2.1541e-04, 1.4310e-03,\n",
+      "        2.1005e-03, 1.0780e-03, 4.4021e-04, 3.8680e-03, 1.0789e-03, 7.6396e-04,\n",
+      "        4.4496e-04, 1.6361e-03, 1.6692e-03, 3.4243e-03, 2.3127e-04, 7.3978e-04,\n",
+      "        1.2088e-04, 1.5623e-03, 1.7045e-03, 1.7311e-04, 1.6603e-03, 8.1510e-04,\n",
+      "        5.5652e-05, 1.4495e-03, 3.0350e-03, 1.1652e-03, 9.2716e-04, 1.9498e-03,\n",
+      "        1.0103e-03, 1.2770e-03, 1.5131e-03, 5.6213e-04, 6.2735e-04, 1.1324e-03,\n",
+      "        1.7890e-03, 2.6307e-03, 3.1379e-04, 1.7010e-03, 7.2032e-05, 1.0223e-03,\n",
+      "        1.3278e-03, 1.1887e-03, 1.3199e-03, 1.8699e-04, 2.8356e-04, 8.0281e-04,\n",
+      "        8.9098e-04, 1.8688e-03, 1.5313e-03, 5.6632e-04, 2.5894e-04, 1.6387e-03,\n",
+      "        1.0778e-03, 9.1855e-05, 5.8783e-04, 1.5515e-04, 7.7065e-04, 1.6665e-03,\n",
+      "        7.9759e-05, 9.5473e-04, 2.7263e-04, 1.9122e-04, 1.2038e-03, 1.8999e-03,\n",
+      "        9.9614e-04, 8.5905e-04, 7.4544e-04, 2.0874e-03, 5.4900e-04, 1.8386e-03,\n",
+      "        1.0557e-04, 2.9931e-04, 1.2050e-03, 5.2246e-04, 1.5245e-03, 1.0667e-03,\n",
+      "        8.6965e-04, 1.5963e-03, 4.4780e-04, 6.9845e-04, 7.6309e-04, 3.1756e-04,\n",
+      "        8.6595e-04, 2.5970e-04, 1.5067e-03, 1.6803e-03, 1.6256e-03, 1.0882e-03,\n",
+      "        9.1074e-04, 1.1679e-04, 2.7647e-04, 2.8845e-04, 1.4860e-03, 2.8630e-03,\n",
+      "        1.5427e-04, 1.3914e-03, 1.4038e-03, 7.2262e-04, 9.2167e-04, 4.5048e-04,\n",
+      "        1.4074e-04, 6.8296e-04, 2.6824e-04, 7.3419e-04, 1.5589e-03, 4.9155e-04,\n",
+      "        3.0275e-04, 3.9862e-04, 1.1256e-03, 1.8162e-04, 3.4936e-04, 2.2081e-04,\n",
+      "        3.0325e-04, 5.2529e-04, 6.0014e-04, 9.5731e-04, 1.3000e-03, 3.1200e-04,\n",
+      "        7.1464e-04, 2.2252e-04, 1.0628e-03, 1.5860e-04, 3.6597e-04, 1.1427e-03,\n",
+      "        2.4060e-03, 6.2687e-04, 1.2856e-04, 1.2964e-03, 4.0971e-04, 2.7734e-04,\n",
+      "        6.8303e-04, 2.4915e-03, 1.6031e-04, 1.2585e-03, 3.1644e-04, 2.1006e-03,\n",
+      "        1.7103e-03, 1.9704e-03, 4.9543e-04, 1.7333e-04, 8.3362e-04, 6.8506e-04,\n",
+      "        1.7445e-04, 1.7763e-03, 2.1106e-04, 1.4492e-03, 5.2880e-04, 1.7833e-03,\n",
+      "        7.4183e-04, 1.5577e-03, 1.7269e-04, 1.2175e-03, 6.0728e-04, 2.1662e-03,\n",
+      "        1.5072e-03, 1.2878e-04, 6.3487e-04, 2.0675e-03, 3.8220e-04, 4.0129e-04,\n",
+      "        2.9065e-04, 2.3749e-03, 1.1963e-03, 3.9999e-04, 3.6674e-04, 8.1304e-04,\n",
+      "        1.0352e-03, 1.2756e-03, 9.4468e-04, 3.0109e-04, 1.1886e-03, 1.1693e-03,\n",
+      "        1.0511e-03, 3.5180e-04, 9.3965e-05, 1.1042e-03, 6.9087e-04, 1.3341e-03,\n",
+      "        1.0222e-04, 2.9733e-03, 3.5169e-04, 1.5638e-03, 2.2065e-03, 1.1542e-04,\n",
+      "        1.1621e-03, 1.3849e-03, 1.9218e-03, 9.4664e-04, 1.3326e-03, 7.8542e-04,\n",
+      "        1.8085e-04, 9.9500e-04, 4.7898e-04, 5.6463e-04, 2.4242e-03, 5.2077e-04,\n",
+      "        6.8936e-04, 3.9565e-04, 1.3297e-03, 1.6352e-04, 1.8920e-03, 1.7244e-03,\n",
+      "        4.5505e-04, 7.2751e-04, 1.4351e-03, 3.0646e-04, 1.0207e-03, 3.0063e-04,\n",
+      "        2.0893e-03, 1.5986e-03, 1.5896e-03, 1.0381e-03, 1.3070e-03, 7.2061e-04,\n",
+      "        1.0755e-03, 2.5251e-04, 1.9206e-03, 9.4792e-04, 1.0863e-03, 2.2110e-04,\n",
+      "        1.2260e-03, 2.1687e-04, 6.5925e-04, 2.1106e-04, 2.1705e-04, 2.5373e-04,\n",
+      "        1.3356e-04, 1.1060e-03, 1.0960e-04, 6.8644e-04, 1.8791e-03, 9.6868e-05,\n",
+      "        2.2364e-03, 1.3623e-03, 9.6947e-04, 5.3875e-04, 8.6826e-04, 5.8334e-04,\n",
+      "        1.2392e-03, 9.6101e-04, 2.2060e-04, 1.5601e-04, 1.6070e-03, 9.1163e-04,\n",
+      "        7.8379e-04, 2.4428e-03, 1.1796e-04, 1.4105e-04, 1.7799e-03, 1.4009e-03,\n",
+      "        2.6260e-03, 1.4168e-03, 1.3181e-03, 7.1760e-04, 3.6414e-04, 4.0484e-03,\n",
+      "        1.1708e-03, 4.6444e-04, 1.9994e-03, 7.9056e-04, 1.2013e-03, 1.9259e-03,\n",
+      "        1.3417e-03, 1.7644e-03, 1.9882e-03, 1.1214e-04, 1.9014e-03, 1.2277e-04,\n",
+      "        1.2310e-04, 2.5523e-04, 2.2082e-04, 1.4292e-03, 1.4525e-03, 2.6497e-04,\n",
+      "        2.0691e-04, 1.6570e-04, 1.2088e-03, 7.6127e-04, 6.6036e-04, 6.8555e-04,\n",
+      "        2.0790e-04, 1.6023e-04, 1.2672e-03, 1.0296e-03, 4.4780e-04, 1.3202e-03,\n",
+      "        4.6581e-04, 8.9598e-04, 1.2336e-04, 2.3570e-04, 1.7242e-03, 5.6917e-04,\n",
+      "        2.4371e-03, 2.6722e-04, 7.4764e-04, 5.8288e-04, 3.4474e-04, 7.6360e-04,\n",
+      "        4.0860e-04, 1.1856e-03, 2.1563e-04, 7.7140e-04, 1.3393e-04, 1.8734e-04,\n",
+      "        1.9131e-03, 3.9553e-04, 9.9786e-04, 3.3527e-04, 9.1499e-04, 7.7060e-04,\n",
+      "        3.1946e-04, 8.8351e-04, 7.9173e-04, 1.8987e-04, 1.3131e-03, 1.9791e-03,\n",
+      "        7.8791e-04, 1.1967e-03, 8.3369e-04, 1.1647e-04, 5.8284e-04, 6.1996e-04,\n",
+      "        5.3823e-04, 1.8600e-03, 5.3996e-04, 5.5080e-04, 1.0612e-03, 1.5976e-04,\n",
+      "        1.1296e-03, 7.3093e-04, 2.4221e-04, 1.9999e-03, 1.1739e-03, 1.2440e-03,\n",
+      "        1.2237e-03, 4.7593e-04, 2.7346e-03, 8.9991e-04, 9.9918e-05, 1.2124e-03,\n",
+      "        1.3722e-03, 1.2965e-03, 1.3802e-04, 2.9718e-04, 3.0519e-04, 1.8684e-03,\n",
+      "        1.4768e-03, 1.7555e-03, 1.5116e-04, 2.1663e-03, 1.8981e-03, 1.5585e-04,\n",
+      "        4.6926e-04, 1.8269e-03, 8.3055e-04, 1.2279e-03, 5.4862e-04, 1.5271e-04,\n",
+      "        2.4844e-03, 5.2894e-04, 6.1995e-04, 1.5720e-04, 1.9228e-04, 1.0757e-03,\n",
+      "        6.4951e-04, 7.6363e-04, 1.9083e-03, 1.1038e-03, 3.9277e-04, 6.4771e-04,\n",
+      "        1.6701e-03, 2.0224e-03, 1.0814e-03, 2.2553e-03, 1.1067e-04, 1.8844e-03,\n",
+      "        8.6874e-04, 8.1437e-04, 3.1165e-03, 1.0981e-03, 8.3123e-04, 1.2195e-03,\n",
+      "        3.0049e-04, 6.6780e-04, 6.5372e-04, 1.6960e-03, 5.3854e-04, 8.9554e-04,\n",
+      "        1.9704e-03, 4.6803e-04, 1.3584e-03, 2.9623e-03, 1.9587e-03, 1.4973e-03,\n",
+      "        8.9128e-04, 9.3957e-04, 1.3649e-03, 1.7585e-04, 5.0201e-04, 1.2916e-04,\n",
+      "        7.9783e-04, 2.6805e-03, 1.5989e-04, 1.7558e-03, 6.7495e-04, 1.4195e-03,\n",
+      "        1.0245e-03, 1.1994e-03, 4.6875e-04, 9.9602e-04, 3.6839e-04, 3.2459e-04,\n",
+      "        1.7516e-03, 1.7731e-03, 1.2468e-04, 1.1022e-03, 3.2328e-03, 1.3662e-03,\n",
+      "        2.1287e-04, 5.7133e-04, 1.0681e-04, 9.8048e-04, 2.2586e-03, 7.4003e-04,\n",
+      "        9.1812e-05, 1.8082e-03, 1.9189e-03, 1.6132e-04, 2.3284e-04, 1.4254e-04,\n",
+      "        6.0098e-04, 1.1129e-03, 2.0216e-04, 1.3130e-03, 1.1426e-03, 1.5088e-03,\n",
+      "        3.1349e-03, 1.2807e-03, 1.2953e-04, 1.8906e-03, 1.9113e-03, 1.2764e-03,\n",
+      "        3.8176e-04, 8.2266e-04, 3.6579e-04, 2.6251e-04, 2.3157e-03, 9.2928e-04,\n",
+      "        4.7074e-04, 7.4758e-04, 2.5769e-04, 4.9378e-04, 1.2475e-03, 7.9073e-04,\n",
+      "        1.4941e-04, 5.8452e-04, 4.1691e-04, 2.0055e-04, 2.1340e-03, 6.8459e-04,\n",
+      "        1.3929e-03, 4.1416e-04, 2.6806e-04, 9.0717e-04, 1.1996e-03, 2.1164e-04,\n",
+      "        1.8579e-03, 6.1619e-04])), ('pretrained_model.layer2.3.bn3.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.0.conv1.weight', tensor([[[[ 0.0197]],\n",
+      "\n",
+      "         [[ 0.0080]],\n",
+      "\n",
+      "         [[ 0.0214]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0050]],\n",
+      "\n",
+      "         [[-0.0144]],\n",
+      "\n",
+      "         [[ 0.0101]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0189]],\n",
+      "\n",
+      "         [[ 0.0036]],\n",
+      "\n",
+      "         [[ 0.0032]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0030]],\n",
+      "\n",
+      "         [[ 0.0858]],\n",
+      "\n",
+      "         [[ 0.0016]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0255]],\n",
+      "\n",
+      "         [[-0.0475]],\n",
+      "\n",
+      "         [[-0.0022]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0054]],\n",
+      "\n",
+      "         [[ 0.0024]],\n",
+      "\n",
+      "         [[-0.0256]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0041]],\n",
+      "\n",
+      "         [[ 0.0083]],\n",
+      "\n",
+      "         [[-0.0154]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0134]],\n",
+      "\n",
+      "         [[-0.0203]],\n",
+      "\n",
+      "         [[ 0.0288]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0131]],\n",
+      "\n",
+      "         [[-0.0624]],\n",
+      "\n",
+      "         [[ 0.0080]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0013]],\n",
+      "\n",
+      "         [[ 0.0201]],\n",
+      "\n",
+      "         [[ 0.0154]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0018]],\n",
+      "\n",
+      "         [[-0.0272]],\n",
+      "\n",
+      "         [[-0.0063]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0021]],\n",
+      "\n",
+      "         [[-0.0514]],\n",
+      "\n",
+      "         [[ 0.0076]]]])), ('pretrained_model.layer3.0.bn1.weight', tensor([0.1946, 0.2617, 0.2087, 0.1587, 0.2027, 0.1730, 0.2454, 0.2592, 0.2182,\n",
+      "        0.2029, 0.2295, 0.2659, 0.2651, 0.2859, 0.2348, 0.2851, 0.1922, 0.2815,\n",
+      "        0.2790, 0.1846, 0.2794, 0.2664, 0.2968, 0.3046, 0.2837, 0.3099, 0.2741,\n",
+      "        0.2136, 0.2011, 0.1752, 0.2739, 0.2454, 0.2152, 0.2306, 0.1676, 0.2269,\n",
+      "        0.2046, 0.2215, 0.2540, 0.2155, 0.2195, 0.2246, 0.2190, 0.1922, 0.1857,\n",
+      "        0.1724, 0.3272, 0.2220, 0.1985, 0.1756, 0.2579, 0.2120, 0.3924, 0.2504,\n",
+      "        0.2650, 0.2444, 0.1703, 0.2315, 0.2014, 0.2235, 0.2755, 0.1706, 0.2455,\n",
+      "        0.2334, 0.2136, 0.2487, 0.2086, 0.2262, 0.1885, 0.2701, 0.2110, 0.1935,\n",
+      "        0.2632, 0.2312, 0.3171, 0.2469, 0.2354, 0.2735, 0.2652, 0.2207, 0.2865,\n",
+      "        0.1779, 0.1935, 0.2649, 0.2075, 0.2799, 0.2273, 0.2668, 0.2368, 0.2158,\n",
+      "        0.2321, 0.1873, 0.2301, 0.2571, 0.1696, 0.2818, 0.1938, 0.2788, 0.2242,\n",
+      "        0.1583, 0.2643, 0.2639, 0.1819, 0.2146, 0.2642, 0.2261, 0.2161, 0.1838,\n",
+      "        0.1416, 0.2997, 0.1923, 0.1891, 0.2813, 0.2060, 0.2566, 0.2151, 0.1697,\n",
+      "        0.2175, 0.2382, 0.2197, 0.2006, 0.2449, 0.1728, 0.3188, 0.3138, 0.3050,\n",
+      "        0.2144, 0.2121, 0.2070, 0.2041, 0.2402, 0.2102, 0.2211, 0.1640, 0.2761,\n",
+      "        0.2014, 0.2303, 0.3025, 0.2795, 0.2547, 0.1753, 0.2434, 0.1934, 0.2208,\n",
+      "        0.2255, 0.2009, 0.1928, 0.2270, 0.2117, 0.2366, 0.2901, 0.2348, 0.2749,\n",
+      "        0.2679, 0.3216, 0.1907, 0.2502, 0.2821, 0.2156, 0.2385, 0.2661, 0.1831,\n",
+      "        0.2353, 0.1922, 0.2107, 0.2038, 0.2064, 0.3195, 0.2072, 0.1696, 0.2869,\n",
+      "        0.2950, 0.2391, 0.2380, 0.2178, 0.1403, 0.2077, 0.1851, 0.2278, 0.2662,\n",
+      "        0.1636, 0.1750, 0.1586, 0.1870, 0.3164, 0.2360, 0.2331, 0.2344, 0.2715,\n",
+      "        0.2164, 0.2253, 0.2632, 0.3204, 0.2492, 0.2263, 0.2854, 0.2317, 0.2514,\n",
+      "        0.1576, 0.2941, 0.1917, 0.2355, 0.2080, 0.1700, 0.2820, 0.2833, 0.1912,\n",
+      "        0.1965, 0.2472, 0.2145, 0.2748, 0.2700, 0.2051, 0.2278, 0.2990, 0.2934,\n",
+      "        0.3358, 0.2811, 0.1782, 0.2058, 0.2848, 0.1696, 0.2047, 0.2000, 0.2095,\n",
+      "        0.2783, 0.1865, 0.1678, 0.2122, 0.2519, 0.2095, 0.2638, 0.2198, 0.1668,\n",
+      "        0.2887, 0.2352, 0.1970, 0.2252, 0.2797, 0.2141, 0.2603, 0.2994, 0.1559,\n",
+      "        0.2629, 0.2018, 0.2207, 0.3137, 0.1877, 0.1967, 0.2146, 0.3014, 0.1811,\n",
+      "        0.2272, 0.2603, 0.2319, 0.2340])), ('pretrained_model.layer3.0.bn1.bias', tensor([-0.0692, -0.2081, -0.0867,  0.0291, -0.1593, -0.0472, -0.2598, -0.1010,\n",
+      "        -0.1628, -0.0239, -0.1447, -0.2459, -0.1635, -0.1606, -0.1327, -0.2315,\n",
+      "         0.0361, -0.1483, -0.1851, -0.0782, -0.0794, -0.0806, -0.1905, -0.1824,\n",
+      "        -0.2217, -0.2145, -0.1680, -0.1334,  0.0289, -0.0659, -0.1179, -0.0702,\n",
+      "        -0.0340, -0.1316,  0.0171, -0.0792, -0.1182, -0.0977, -0.1457, -0.0807,\n",
+      "        -0.0253, -0.0681, -0.1369, -0.0126, -0.1129, -0.0496, -0.1026, -0.0184,\n",
+      "        -0.1780, -0.0841, -0.2193, -0.0868, -0.1563, -0.0713, -0.1043, -0.1770,\n",
+      "        -0.0679, -0.0805, -0.1011, -0.0101, -0.2414,  0.0962, -0.3248, -0.1526,\n",
+      "        -0.0086, -0.3881, -0.1113, -0.0718, -0.0134, -0.2518, -0.1331, -0.1183,\n",
+      "        -0.1783, -0.0766, -0.3530, -0.0838, -0.1399, -0.2234,  0.0452, -0.1525,\n",
+      "        -0.3417, -0.0538, -0.1040, -0.0875, -0.0416, -0.1794, -0.2732, -0.1466,\n",
+      "        -0.0951, -0.1330, -0.1243, -0.1131, -0.0776, -0.1571,  0.0540, -0.1969,\n",
+      "        -0.0543, -0.1917, -0.0867, -0.1040, -0.0426, -0.2246,  0.0656, -0.2109,\n",
+      "        -0.2000, -0.2712, -0.1032, -0.0926,  0.1145, -0.1300, -0.2116, -0.0735,\n",
+      "        -0.1037, -0.0695, -0.1039, -0.1328,  0.0162, -0.1233, -0.0188, -0.1056,\n",
+      "        -0.0676, -0.0879,  0.0247, -0.1670, -0.1410, -0.3631, -0.1746, -0.0132,\n",
+      "        -0.1235, -0.1412, -0.1350, -0.0964, -0.1329, -0.0923, -0.3673, -0.1160,\n",
+      "        -0.0983, -0.2129, -0.2417, -0.0998, -0.0954, -0.1264, -0.1015, -0.0708,\n",
+      "        -0.1557, -0.1264, -0.1248, -0.3387, -0.1945, -0.2591, -0.1933, -0.0843,\n",
+      "        -0.3715, -0.2109, -0.2682, -0.0962, -0.2056, -0.1206, -0.1073, -0.1612,\n",
+      "        -0.1123, -0.0838, -0.1492, -0.0714, -0.0751, -0.1380, -0.1564, -0.1436,\n",
+      "        -0.1246, -0.0215, -0.1203, -0.2195, -0.1995, -0.1178, -0.1083,  0.1088,\n",
+      "        -0.0929,  0.0294, -0.1411, -0.0800,  0.0142,  0.0115, -0.0106, -0.0962,\n",
+      "        -0.0901, -0.0544, -0.0822, -0.1632, -0.2050, -0.1158, -0.1364, -0.1469,\n",
+      "        -0.2618, -0.1954, -0.2032, -0.1087, -0.1240, -0.1396,  0.0139, -0.1135,\n",
+      "        -0.0415, -0.1453, -0.0268, -0.0691, -0.1061, -0.2461, -0.1225, -0.1523,\n",
+      "         0.0224, -0.1825, -0.2009, -0.2035, -0.1579, -0.1921, -0.1090, -0.0331,\n",
+      "        -0.1016, -0.2205, -0.0243, -0.1353, -0.2305,  0.0334, -0.1180,  0.0025,\n",
+      "        -0.1604, -0.1709, -0.0007, -0.0316, -0.1638, -0.3625, -0.1637, -0.2158,\n",
+      "        -0.1624, -0.0987, -0.1053, -0.3280, -0.1318, -0.1688, -0.1540, -0.1281,\n",
+      "        -0.2355, -0.1462, -0.0638, -0.1172, -0.1514, -0.0800, -0.1745, -0.0995,\n",
+      "        -0.0032, -0.0618, -0.1399, -0.0447, -0.0993, -0.1271, -0.2333, -0.1923])), ('pretrained_model.layer3.0.bn1.running_mean', tensor([-0.0790, -0.1410, -0.1637,  0.0179, -0.2146, -0.0011, -0.0862, -0.0416,\n",
+      "        -0.1289,  0.0233, -0.1373, -0.1374, -0.2689, -0.3039, -0.0574, -0.1618,\n",
+      "         0.0943, -0.1127, -0.1479, -0.0517, -0.4241, -0.1684, -0.2713, -0.1870,\n",
+      "        -0.0380, -0.0823, -0.0201, -0.1102, -0.1978, -0.0502, -0.1475, -0.1481,\n",
+      "        -0.1606,  0.0138, -0.1345,  0.0402, -0.0195, -0.0586, -0.1534, -0.0653,\n",
+      "        -0.0255, -0.0285,  0.0137, -0.0923, -0.1105, -0.3177, -0.0994,  0.0517,\n",
+      "        -0.1246, -0.1112, -0.0534, -0.1240, -0.1382, -0.0276, -0.0782, -0.0637,\n",
+      "        -0.2386, -0.2433, -0.1764, -0.1760, -0.0982, -0.1427, -0.1455, -0.0194,\n",
+      "        -0.0223, -0.1334, -0.1350, -0.1227, -0.2360, -0.0481,  0.0102, -0.1863,\n",
+      "        -0.2909, -0.1289,  0.0231, -0.2004, -0.0947, -0.1258, -0.1904, -0.1261,\n",
+      "         0.0253, -0.1417, -0.1164, -0.0945, -0.1137, -0.0594, -0.1076,  0.0664,\n",
+      "         0.1118, -0.0679, -0.0675, -0.0939,  0.0907, -0.1723, -0.0898,  0.0197,\n",
+      "        -0.1770, -0.1148, -0.0805, -0.0131, -0.2235, -0.0764, -0.1197,  0.0435,\n",
+      "        -0.2285,  0.2063, -0.1487, -0.1714,  0.1321, -0.0303, -0.0458, -0.1994,\n",
+      "         0.0087, -0.1591, -0.2837,  0.0870, -0.1042, -0.1328, -0.2393,  0.0713,\n",
+      "        -0.1473,  0.0601, -0.0814, -0.0409, -0.0828, -0.2605,  0.0041, -0.1111,\n",
+      "        -0.0802,  0.0347, -0.0460, -0.0152, -0.0893, -0.1324, -0.0465,  0.0060,\n",
+      "        -0.0339, -0.1433, -0.0699, -0.2205, -0.0843,  0.1557, -0.2321, -0.0241,\n",
+      "         0.1329, -0.0373, -0.2498,  0.2624, -0.1310,  0.0593, -0.2145, -0.0654,\n",
+      "        -0.2016, -0.0776, -0.2005, -0.1398, -0.0827, -0.1235, -0.0569, -0.1835,\n",
+      "        -0.2337, -0.1038, -0.1288, -0.0885, -0.1826,  0.0154, -0.1627, -0.1679,\n",
+      "        -0.1283, -0.0083, -0.0370,  0.0292, -0.1734, -0.0880, -0.3690,  0.0344,\n",
+      "        -0.0178, -0.1494, -0.0720,  0.0405, -0.1386, -0.3387,  0.0098, -0.0847,\n",
+      "        -0.2355, -0.2039,  0.0156, -0.0879, -0.2327, -0.1753, -0.2139, -0.1632,\n",
+      "        -0.1620, -0.1494,  0.0210, -0.1887, -0.3213, -0.0087, -0.0223, -0.0478,\n",
+      "        -0.0258, -0.1886, -0.0947, -0.2537, -0.0688, -0.1405, -0.0563, -0.1115,\n",
+      "         0.1454,  0.0904, -0.0561, -0.2867,  0.0318, -0.1375, -0.1407, -0.0522,\n",
+      "         0.0512, -0.1091,  0.0462, -0.0514, -0.0202, -0.1005, -0.0122, -0.1032,\n",
+      "        -0.0450,  0.0555,  0.0532, -0.2848, -0.0936, -0.1370,  0.0087, -0.1397,\n",
+      "         0.0654, -0.0853, -0.2607, -0.1126, -0.1653, -0.0383, -0.2178, -0.1863,\n",
+      "        -0.1925, -0.2557, -0.0507, -0.0240, -0.1326, -0.1389, -0.1089, -0.1948,\n",
+      "        -0.0879, -0.0282, -0.0975, -0.1390, -0.1828, -0.0596, -0.1241, -0.1682])), ('pretrained_model.layer3.0.bn1.running_var', tensor([0.0196, 0.0303, 0.0241, 0.0237, 0.0170, 0.0273, 0.0231, 0.0360, 0.0209,\n",
+      "        0.0355, 0.0238, 0.0332, 0.0404, 0.0330, 0.0254, 0.0240, 0.0346, 0.0335,\n",
+      "        0.0398, 0.0173, 0.0436, 0.0420, 0.0315, 0.0434, 0.0291, 0.0373, 0.0316,\n",
+      "        0.0217, 0.0443, 0.0205, 0.0411, 0.0337, 0.0373, 0.0183, 0.0364, 0.0442,\n",
+      "        0.0193, 0.0234, 0.0287, 0.0275, 0.0405, 0.0517, 0.0192, 0.0561, 0.0194,\n",
+      "        0.0284, 0.0493, 0.0480, 0.0242, 0.0204, 0.0269, 0.0430, 0.0461, 0.0394,\n",
+      "        0.0310, 0.0231, 0.0310, 0.0373, 0.0239, 0.0410, 0.0343, 0.0395, 0.0237,\n",
+      "        0.0228, 0.0340, 0.0156, 0.0204, 0.0332, 0.0277, 0.0351, 0.0332, 0.0288,\n",
+      "        0.0221, 0.0423, 0.0314, 0.0454, 0.0263, 0.0223, 0.0708, 0.0245, 0.0199,\n",
+      "        0.0214, 0.0137, 0.0361, 0.0226, 0.0345, 0.0175, 0.0294, 0.0305, 0.0261,\n",
+      "        0.0277, 0.0249, 0.0334, 0.0287, 0.0390, 0.0244, 0.0205, 0.0341, 0.0377,\n",
+      "        0.0165, 0.0335, 0.0227, 0.0622, 0.0306, 0.0257, 0.0182, 0.0223, 0.0258,\n",
+      "        0.0367, 0.0459, 0.0203, 0.0242, 0.0398, 0.0228, 0.0367, 0.0234, 0.0612,\n",
+      "        0.0217, 0.0601, 0.0247, 0.0435, 0.0419, 0.0267, 0.0555, 0.0509, 0.0243,\n",
+      "        0.0181, 0.0315, 0.0305, 0.0238, 0.0315, 0.0268, 0.0240, 0.0296, 0.0227,\n",
+      "        0.0169, 0.0234, 0.0585, 0.0256, 0.0455, 0.0332, 0.0275, 0.0280, 0.0299,\n",
+      "        0.0254, 0.0211, 0.0323, 0.0196, 0.0244, 0.0285, 0.0296, 0.0225, 0.0293,\n",
+      "        0.0315, 0.0361, 0.0240, 0.0238, 0.0477, 0.0192, 0.0290, 0.0316, 0.0170,\n",
+      "        0.0271, 0.0271, 0.0418, 0.0208, 0.0150, 0.0580, 0.0278, 0.0256, 0.0356,\n",
+      "        0.0316, 0.0261, 0.0282, 0.0321, 0.0320, 0.0259, 0.0736, 0.0329, 0.0356,\n",
+      "        0.0266, 0.0499, 0.0220, 0.0211, 0.0545, 0.0339, 0.0345, 0.0213, 0.0365,\n",
+      "        0.0309, 0.0326, 0.0415, 0.0370, 0.0239, 0.0201, 0.0400, 0.0329, 0.0197,\n",
+      "        0.0287, 0.0459, 0.0256, 0.0294, 0.0235, 0.0369, 0.0494, 0.0303, 0.0155,\n",
+      "        0.0151, 0.0374, 0.0308, 0.0355, 0.0239, 0.0234, 0.0276, 0.0463, 0.0593,\n",
+      "        0.0654, 0.0305, 0.0225, 0.0318, 0.0371, 0.0305, 0.0206, 0.0525, 0.0263,\n",
+      "        0.0373, 0.0259, 0.0365, 0.0162, 0.0265, 0.0286, 0.0208, 0.0279, 0.0301,\n",
+      "        0.0533, 0.0219, 0.0265, 0.0267, 0.0425, 0.0238, 0.0201, 0.0327, 0.0149,\n",
+      "        0.0375, 0.0287, 0.0400, 0.0401, 0.0226, 0.0402, 0.0308, 0.0443, 0.0368,\n",
+      "        0.0282, 0.0328, 0.0215, 0.0290])), ('pretrained_model.layer3.0.bn1.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.0.conv2.weight', tensor([[[[-3.6330e-02, -4.6354e-02, -3.3399e-02],\n",
+      "          [-3.1231e-02, -9.4616e-03, -2.7634e-02],\n",
+      "          [-2.6836e-02, -3.8256e-02, -4.2513e-02]],\n",
+      "\n",
+      "         [[-1.4463e-02, -3.1330e-02, -6.6660e-03],\n",
+      "          [-9.9366e-03, -2.3910e-02, -1.7298e-02],\n",
+      "          [-2.2320e-02, -2.0302e-02, -1.7883e-02]],\n",
+      "\n",
+      "         [[ 9.1230e-03, -4.0786e-03,  1.3997e-02],\n",
+      "          [-1.8442e-02, -7.6107e-03, -1.2786e-02],\n",
+      "          [-3.2848e-03, -1.1183e-02, -5.2490e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 4.1853e-02,  5.1033e-02,  4.1685e-02],\n",
+      "          [ 5.2085e-02,  2.9729e-02,  4.9457e-02],\n",
+      "          [ 3.4872e-02,  4.5166e-02,  3.1715e-02]],\n",
+      "\n",
+      "         [[-7.1745e-03,  1.1128e-02, -1.3097e-02],\n",
+      "          [ 8.1790e-03,  1.0260e-02, -7.3554e-03],\n",
+      "          [-2.1074e-03,  9.0900e-03,  9.3437e-03]],\n",
+      "\n",
+      "         [[-1.5423e-02, -7.5277e-03, -1.4441e-02],\n",
+      "          [ 3.3483e-02,  1.6514e-02,  2.6752e-02],\n",
+      "          [ 2.6619e-02,  4.0044e-02,  1.9302e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-8.1979e-03,  2.7520e-04, -1.2366e-03],\n",
+      "          [ 9.2544e-04,  1.5314e-03, -7.8363e-03],\n",
+      "          [-2.3080e-04, -5.6562e-03,  1.0296e-02]],\n",
+      "\n",
+      "         [[-6.1256e-03, -6.7121e-03, -1.1463e-02],\n",
+      "          [ 5.5552e-03, -1.0195e-02, -1.0389e-02],\n",
+      "          [ 3.4573e-03,  2.1754e-04, -8.0891e-03]],\n",
+      "\n",
+      "         [[-1.2479e-02, -1.6478e-02, -9.7831e-03],\n",
+      "          [-2.3607e-03, -6.9814e-03, -1.2328e-02],\n",
+      "          [-1.4511e-02, -1.1929e-02, -1.0163e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-5.8668e-03,  1.5575e-02,  9.1311e-03],\n",
+      "          [-2.1334e-03,  3.0153e-03,  6.9505e-03],\n",
+      "          [-2.0799e-03, -2.2340e-03, -6.3542e-03]],\n",
+      "\n",
+      "         [[ 4.6871e-03,  3.1293e-03,  8.5749e-03],\n",
+      "          [ 1.4643e-02,  2.9633e-03,  2.2466e-02],\n",
+      "          [ 5.3215e-03,  2.4384e-03,  1.3139e-02]],\n",
+      "\n",
+      "         [[-9.0997e-03, -1.8576e-02, -8.0957e-03],\n",
+      "          [-1.6060e-02, -1.2202e-02, -1.3583e-02],\n",
+      "          [-3.1005e-02, -2.3910e-02,  6.9498e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.1285e-02, -5.5100e-03,  1.0024e-02],\n",
+      "          [ 1.0157e-02,  2.5349e-02,  1.8742e-02],\n",
+      "          [-2.5811e-03,  7.7032e-03,  1.2992e-02]],\n",
+      "\n",
+      "         [[ 1.1615e-02, -5.0839e-03, -2.1059e-03],\n",
+      "          [-1.3400e-03, -2.1173e-02, -1.6748e-02],\n",
+      "          [-5.7454e-05, -1.9942e-02, -1.0612e-02]],\n",
+      "\n",
+      "         [[ 1.9097e-02,  1.2325e-02,  6.5311e-03],\n",
+      "          [ 1.3373e-02,  4.5338e-03, -2.3851e-03],\n",
+      "          [ 2.0462e-02,  1.2620e-02,  2.2747e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-7.5480e-03,  1.4024e-02,  2.3438e-03],\n",
+      "          [ 7.6505e-03,  2.9060e-02,  8.3661e-03],\n",
+      "          [-9.8359e-03,  4.7214e-03,  4.4931e-04]],\n",
+      "\n",
+      "         [[-6.1501e-03,  6.9322e-03,  1.8985e-03],\n",
+      "          [ 3.9613e-03,  1.8003e-03, -4.7054e-03],\n",
+      "          [ 6.2448e-04,  9.2019e-03, -2.6933e-03]],\n",
+      "\n",
+      "         [[ 6.6709e-03,  8.9864e-03,  2.2375e-02],\n",
+      "          [ 1.8094e-02,  3.7046e-02,  2.3953e-02],\n",
+      "          [ 1.4685e-02,  3.2922e-02,  1.8954e-02]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-4.1806e-03,  1.1629e-02, -6.4605e-04],\n",
+      "          [-1.4537e-02, -1.3084e-02, -8.2785e-03],\n",
+      "          [-4.1658e-04, -9.2190e-03,  3.5089e-04]],\n",
+      "\n",
+      "         [[ 3.5241e-04,  1.8911e-02,  2.1632e-02],\n",
+      "          [-2.6469e-03, -2.1419e-03, -1.6037e-02],\n",
+      "          [ 7.4589e-03,  7.4497e-03,  2.4735e-03]],\n",
+      "\n",
+      "         [[ 2.3036e-03, -3.7402e-03, -5.2980e-03],\n",
+      "          [-9.2429e-03, -1.1322e-02, -1.9090e-02],\n",
+      "          [-8.3585e-03, -9.5076e-03, -3.1626e-04]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-6.5705e-04,  1.3018e-02,  6.7900e-03],\n",
+      "          [-4.2345e-03, -1.3188e-02, -9.2938e-03],\n",
+      "          [-3.4757e-03,  8.3005e-03,  1.2263e-02]],\n",
+      "\n",
+      "         [[ 1.5553e-02,  1.7174e-03, -4.6414e-03],\n",
+      "          [-1.0774e-02, -2.3908e-02, -1.3000e-02],\n",
+      "          [ 2.6031e-02,  2.6942e-02,  6.4218e-03]],\n",
+      "\n",
+      "         [[-4.9203e-03, -9.0027e-03,  4.6007e-03],\n",
+      "          [-1.2173e-02,  3.4991e-04,  7.2332e-03],\n",
+      "          [ 3.4157e-03,  3.9219e-03, -8.9780e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.2039e-02,  6.2236e-04, -3.4079e-03],\n",
+      "          [ 9.3365e-03,  5.1583e-03,  5.8938e-03],\n",
+      "          [ 2.4776e-02,  4.7657e-03,  1.6074e-03]],\n",
+      "\n",
+      "         [[-7.9679e-03, -1.9803e-02, -1.5689e-02],\n",
+      "          [-1.1388e-02, -9.1407e-03, -3.2506e-02],\n",
+      "          [-4.9890e-03, -2.6098e-02, -2.9600e-02]],\n",
+      "\n",
+      "         [[ 2.0059e-02,  1.6075e-02,  1.9449e-02],\n",
+      "          [ 1.6439e-02,  1.5791e-02,  2.3181e-02],\n",
+      "          [ 5.8082e-03, -1.1078e-02, -1.5140e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-2.6932e-03, -3.3388e-03, -6.6122e-03],\n",
+      "          [ 8.2864e-04,  3.4781e-03, -8.4613e-03],\n",
+      "          [ 3.6778e-03,  3.3961e-03,  4.8171e-03]],\n",
+      "\n",
+      "         [[-5.5397e-03, -1.6527e-02, -3.8015e-03],\n",
+      "          [ 1.4217e-02,  1.5188e-02,  7.7889e-03],\n",
+      "          [ 5.4792e-03,  1.4013e-02, -3.4091e-03]],\n",
+      "\n",
+      "         [[-8.4707e-03, -2.0883e-02, -1.2109e-02],\n",
+      "          [ 5.1630e-03,  8.0970e-03, -8.7103e-03],\n",
+      "          [ 1.1161e-02,  6.2294e-03,  8.3588e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.0092e-02,  4.5236e-03, -5.7466e-04],\n",
+      "          [ 8.7003e-03,  1.2520e-02, -1.4957e-02],\n",
+      "          [ 1.7966e-02,  9.1830e-03, -3.5684e-03]],\n",
+      "\n",
+      "         [[-4.0438e-03,  8.5961e-05, -3.0548e-03],\n",
+      "          [ 1.7927e-03,  1.2553e-03,  1.1254e-02],\n",
+      "          [-4.8909e-03, -2.9521e-03, -3.2625e-03]],\n",
+      "\n",
+      "         [[ 3.1406e-03,  1.6109e-03, -1.9163e-02],\n",
+      "          [-6.9513e-03, -8.7525e-03,  8.7680e-04],\n",
+      "          [-1.8315e-02, -1.0585e-02,  5.6403e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-4.1802e-04,  6.4434e-03,  6.8383e-03],\n",
+      "          [-1.8858e-03,  1.4368e-02,  1.1177e-02],\n",
+      "          [-9.2237e-03,  8.0944e-03,  6.2801e-03]],\n",
+      "\n",
+      "         [[ 8.5058e-03,  1.2761e-02,  8.2939e-03],\n",
+      "          [ 7.3859e-03,  1.4164e-02,  2.0221e-02],\n",
+      "          [ 1.9221e-03,  5.2507e-03,  1.8139e-02]],\n",
+      "\n",
+      "         [[-8.0814e-03,  2.1810e-02,  2.5418e-02],\n",
+      "          [-3.9163e-03, -7.4055e-03,  2.5399e-02],\n",
+      "          [-2.7668e-02, -1.5392e-03,  2.8663e-02]]]])), ('pretrained_model.layer3.0.bn2.weight', tensor([0.1421, 0.1932, 0.1834, 0.1438, 0.1489, 0.1459, 0.1767, 0.1543, 0.1608,\n",
+      "        0.1485, 0.1691, 0.2225, 0.1686, 0.1656, 0.1528, 0.1891, 0.1699, 0.1839,\n",
+      "        0.1876, 0.1912, 0.1615, 0.1751, 0.1745, 0.1606, 0.1969, 0.1636, 0.1759,\n",
+      "        0.2043, 0.1414, 0.1090, 0.1824, 0.1503, 0.1569, 0.1532, 0.1258, 0.2082,\n",
+      "        0.1648, 0.2352, 0.1881, 0.1691, 0.1270, 0.3092, 0.2505, 0.1624, 0.1690,\n",
+      "        0.1641, 0.1574, 0.1596, 0.1622, 0.2441, 0.1237, 0.1904, 0.1997, 0.1604,\n",
+      "        0.1623, 0.1659, 0.2014, 0.1668, 0.2023, 0.1586, 0.1667, 0.1835, 0.1529,\n",
+      "        0.1450, 0.1991, 0.1495, 0.1617, 0.1443, 0.1621, 0.1879, 0.1788, 0.1656,\n",
+      "        0.1063, 0.1299, 0.1867, 0.1924, 0.1803, 0.1779, 0.1405, 0.1884, 0.1581,\n",
+      "        0.2226, 0.1557, 0.1350, 0.1891, 0.3289, 0.2200, 0.1552, 0.1534, 0.1642,\n",
+      "        0.2080, 0.1812, 0.1438, 0.1780, 0.1754, 0.1747, 0.2007, 0.2207, 0.1716,\n",
+      "        0.1939, 0.2311, 0.1827, 0.1879, 0.1144, 0.1808, 0.2213, 0.1619, 0.1199,\n",
+      "        0.2153, 0.2009, 0.2272, 0.1640, 0.1815, 0.1856, 0.2272, 0.1971, 0.1918,\n",
+      "        0.1968, 0.1311, 0.1739, 0.1445, 0.1750, 0.1601, 0.1807, 0.1454, 0.1847,\n",
+      "        0.1856, 0.1799, 0.1603, 0.1405, 0.1801, 0.1903, 0.2535, 0.1890, 0.2141,\n",
+      "        0.2571, 0.1816, 0.1569, 0.1641, 0.1535, 0.1207, 0.1607, 0.1366, 0.1805,\n",
+      "        0.1262, 0.1315, 0.1312, 0.1684, 0.1927, 0.1719, 0.1538, 0.1768, 0.1601,\n",
+      "        0.1844, 0.2049, 0.1571, 0.1922, 0.1708, 0.1464, 0.1957, 0.1932, 0.1496,\n",
+      "        0.1646, 0.1433, 0.1116, 0.1737, 0.1648, 0.2078, 0.1492, 0.1773, 0.1321,\n",
+      "        0.1539, 0.1934, 0.1549, 0.1597, 0.1789, 0.1485, 0.1814, 0.1901, 0.1786,\n",
+      "        0.1413, 0.1464, 0.1668, 0.1815, 0.1929, 0.1725, 0.1990, 0.1873, 0.1540,\n",
+      "        0.1671, 0.2073, 0.1953, 0.1703, 0.1635, 0.1803, 0.1525, 0.1803, 0.1959,\n",
+      "        0.1735, 0.2596, 0.1681, 0.1385, 0.1584, 0.2029, 0.1617, 0.2353, 0.1745,\n",
+      "        0.1758, 0.1991, 0.1601, 0.1634, 0.2021, 0.2209, 0.1772, 0.1922, 0.2410,\n",
+      "        0.2153, 0.1134, 0.1479, 0.1673, 0.1662, 0.1742, 0.2018, 0.1734, 0.2263,\n",
+      "        0.2119, 0.1679, 0.1926, 0.1956, 0.1205, 0.1615, 0.2459, 0.1941, 0.2417,\n",
+      "        0.1849, 0.1353, 0.1775, 0.1916, 0.1499, 0.2077, 0.2508, 0.1844, 0.1975,\n",
+      "        0.1612, 0.1568, 0.1924, 0.2047, 0.1665, 0.1970, 0.1939, 0.1586, 0.1915,\n",
+      "        0.2136, 0.2036, 0.1480, 0.1871])), ('pretrained_model.layer3.0.bn2.bias', tensor([ 0.0800, -0.0679, -0.0194,  0.1297, -0.0429,  0.0963,  0.0144,  0.1558,\n",
+      "         0.0108,  0.0207,  0.1225, -0.0882,  0.1396, -0.0607, -0.0419,  0.0614,\n",
+      "         0.0456, -0.0494,  0.1598,  0.0940,  0.2842,  0.1138, -0.0022,  0.1252,\n",
+      "        -0.0518, -0.0765, -0.0404, -0.0363,  0.0401,  0.1047,  0.2713,  0.1649,\n",
+      "         0.0750,  0.2258,  0.1954,  0.0361, -0.0021, -0.0358, -0.0146, -0.0173,\n",
+      "         0.1402, -0.1270,  0.0441, -0.0250,  0.0430,  0.0925,  0.1902,  0.0368,\n",
+      "         0.1782, -0.0102,  0.0997,  0.1057, -0.0697,  0.1558, -0.0219, -0.0030,\n",
+      "        -0.0270,  0.0684, -0.0059,  0.0005, -0.0185, -0.0332,  0.1290,  0.1493,\n",
+      "         0.0170,  0.1743,  0.2042,  0.1539,  0.0413, -0.0222,  0.0952,  0.1771,\n",
+      "         0.1697,  0.0525, -0.0535, -0.0673,  0.0407, -0.0020,  0.0869, -0.0303,\n",
+      "         0.1083,  0.0712,  0.0462,  0.1403, -0.0373, -0.0986,  0.1062, -0.0404,\n",
+      "         0.1904, -0.1100,  0.0412,  0.0632,  0.1080,  0.0141,  0.0338, -0.0258,\n",
+      "         0.0847,  0.0178, -0.0650,  0.0142, -0.0603,  0.0131, -0.0512,  0.1417,\n",
+      "        -0.0606,  0.0960, -0.0052,  0.0381,  0.0439,  0.0554, -0.1264, -0.0237,\n",
+      "        -0.0704, -0.0954,  0.1462, -0.1034, -0.0342, -0.0237,  0.0429,  0.0839,\n",
+      "         0.0473, -0.0165,  0.0378,  0.0962,  0.0968,  0.1391, -0.0626, -0.0981,\n",
+      "         0.0529,  0.1697,  0.0701,  0.1641,  0.0035,  0.0856, -0.0472, -0.0599,\n",
+      "        -0.0064,  0.0839, -0.0122,  0.1121,  0.1282, -0.0021, -0.0128,  0.0455,\n",
+      "         0.1260,  0.0880,  0.0529, -0.0075, -0.0483,  0.0355, -0.0417,  0.0226,\n",
+      "        -0.0240,  0.1286,  0.0376,  0.1056, -0.0533, -0.0132,  0.0543, -0.0438,\n",
+      "         0.0234,  0.1707,  0.1606,  0.2397,  0.1103, -0.0464,  0.1488, -0.0445,\n",
+      "         0.0646, -0.0344,  0.1166,  0.0567,  0.0566,  0.0259,  0.2053, -0.0203,\n",
+      "         0.1509,  0.0668,  0.0717,  0.0444,  0.2234,  0.1788, -0.0472,  0.0568,\n",
+      "         0.0620,  0.1091, -0.0266,  0.1795,  0.0240,  0.2726,  0.1356, -0.0410,\n",
+      "         0.1073,  0.1337, -0.0746,  0.0452,  0.0256, -0.0384,  0.1169, -0.1392,\n",
+      "         0.1568,  0.0575,  0.1024,  0.2535, -0.0207, -0.0094, -0.0350, -0.0193,\n",
+      "        -0.0241, -0.0772,  0.0075, -0.0936, -0.0156,  0.1305,  0.0990, -0.0226,\n",
+      "         0.0405,  0.1858,  0.1348, -0.0660,  0.1003, -0.0497, -0.0840, -0.0375,\n",
+      "         0.0665,  0.0493,  0.0886,  0.0133,  0.1380,  0.0888,  0.1204, -0.0038,\n",
+      "        -0.0242, -0.0637, -0.0263,  0.1857, -0.0142,  0.1497, -0.0284,  0.1232,\n",
+      "        -0.0380,  0.0816, -0.0121,  0.0718, -0.0401, -0.0905,  0.0754, -0.0789,\n",
+      "         0.0118,  0.0160, -0.0450, -0.0215,  0.0623, -0.1409,  0.0026, -0.0398])), ('pretrained_model.layer3.0.bn2.running_mean', tensor([ 5.4582e-02, -1.8795e-01, -1.1202e-01,  7.3832e-03, -3.3769e-02,\n",
+      "        -9.4274e-02, -4.5480e-02,  9.7157e-02,  1.5736e-02,  1.2238e-02,\n",
+      "         2.9860e-01, -1.8651e-01,  6.2785e-03,  8.8299e-02,  6.1526e-03,\n",
+      "         5.2436e-02,  9.2356e-02, -7.3656e-02,  2.2926e-03, -8.3955e-02,\n",
+      "         1.8891e-02, -1.5409e-01,  8.8201e-03,  6.3064e-02, -1.5861e-01,\n",
+      "        -4.7927e-02, -6.2785e-02,  7.3004e-03,  4.7240e-02,  7.9627e-02,\n",
+      "         2.6229e-02, -6.6852e-03,  1.7252e-02, -1.2011e-01, -2.2568e-02,\n",
+      "        -2.9823e-02, -1.9890e-02,  1.1452e-01, -1.2074e-01, -5.5421e-02,\n",
+      "         5.6881e-03, -1.3177e-01, -4.2894e-02,  6.7756e-03, -2.5838e-02,\n",
+      "         6.9689e-02, -2.5556e-02,  6.9694e-06,  1.6473e-02, -2.1863e-01,\n",
+      "        -6.5683e-02,  1.0485e-03, -3.7785e-03, -1.4868e-01,  9.0225e-02,\n",
+      "        -4.6680e-02, -1.5515e-01, -2.9595e-02, -3.9032e-02,  6.2532e-02,\n",
+      "        -8.6396e-02, -9.8901e-02, -1.8212e-03, -1.2506e-01, -9.9307e-02,\n",
+      "         1.7635e-01, -7.9947e-02,  1.3960e-01,  3.6936e-02, -1.4343e-01,\n",
+      "        -4.4200e-02,  5.4156e-02,  1.6211e-02,  6.9194e-02, -6.9538e-02,\n",
+      "        -1.6002e-01, -2.6292e-02, -8.5771e-02,  6.3867e-02, -1.1485e-02,\n",
+      "         4.1457e-02, -5.0882e-02, -1.0998e-01,  3.7668e-02, -3.0306e-02,\n",
+      "        -1.1205e-01,  4.7842e-03, -1.0027e-01,  6.0648e-02, -2.0223e-02,\n",
+      "        -1.3321e-01, -4.4094e-03,  1.0892e-02, -6.0690e-03, -1.1090e-02,\n",
+      "        -3.1217e-02, -7.3520e-02, -9.4567e-02, -8.6781e-02, -5.5992e-02,\n",
+      "        -5.2225e-02,  6.8655e-02,  7.2767e-05,  2.1100e-02,  3.4316e-02,\n",
+      "        -7.1909e-02, -1.3650e-01, -2.6165e-03, -2.3368e-01, -1.4721e-02,\n",
+      "        -1.1632e-01,  3.8770e-02, -5.5445e-02, -2.6940e-02, -4.5213e-03,\n",
+      "        -8.8233e-02,  3.2148e-02, -6.6313e-02, -1.0677e-01, -1.3899e-01,\n",
+      "        -5.6061e-02,  9.9262e-02, -4.5311e-02,  3.4127e-03,  8.5652e-02,\n",
+      "        -7.0868e-02, -8.4612e-02, -4.7987e-02, -3.1615e-02, -8.1750e-02,\n",
+      "        -3.4310e-03,  7.8359e-02, -7.0896e-02, -4.5436e-02, -2.1357e-01,\n",
+      "        -3.6245e-02,  7.6025e-03,  2.5328e-02, -6.6976e-02,  4.5236e-02,\n",
+      "         3.5025e-02, -1.1620e-01,  3.6253e-03,  1.6178e-02,  4.8298e-02,\n",
+      "        -3.8150e-03, -8.7686e-02, -1.8093e-01, -9.8740e-03,  6.0162e-02,\n",
+      "        -2.1246e-02, -3.4091e-02,  3.5558e-02,  2.1085e-01, -1.7355e-01,\n",
+      "         2.2440e-02, -1.2351e-01, -1.1490e-01, -7.4544e-02, -1.1605e-01,\n",
+      "         5.6282e-02, -1.1387e-01,  9.9155e-03,  3.6513e-02, -4.6532e-02,\n",
+      "        -1.4063e-02, -1.6061e-01, -7.5282e-02, -1.1143e-01,  6.4656e-02,\n",
+      "         1.5261e-01, -1.2660e-01, -1.4097e-01, -1.3757e-02, -3.1650e-02,\n",
+      "        -1.7964e-01, -3.2116e-02,  1.4916e-02, -1.1561e-01, -1.1344e-01,\n",
+      "        -8.9703e-02,  1.2572e-01, -4.0565e-02,  4.0124e-02, -3.4165e-02,\n",
+      "         1.0544e-01, -8.5497e-03,  1.0148e-02,  1.2800e-01,  4.0833e-02,\n",
+      "         3.2521e-02, -4.3250e-02, -1.3405e-02, -8.0300e-02, -6.3719e-02,\n",
+      "         1.2867e-01, -1.3937e-01, -9.1251e-02,  3.0931e-02, -1.5413e-01,\n",
+      "        -9.7638e-02,  2.2970e-02, -9.3778e-02, -7.0152e-03, -2.2353e-02,\n",
+      "         4.8419e-02,  1.7249e-02, -4.9950e-02, -9.7705e-02, -8.5008e-02,\n",
+      "        -7.9042e-03, -7.2321e-02,  6.7696e-02, -3.4803e-02,  1.3141e-02,\n",
+      "        -1.9470e-01, -3.6916e-03,  5.5588e-02,  1.4355e-01, -8.1886e-04,\n",
+      "        -2.1604e-02, -6.4718e-02, -9.2923e-02, -4.8383e-02, -1.1776e-01,\n",
+      "        -9.0476e-02, -1.4727e-01,  1.5425e-03, -3.1071e-04, -6.4592e-02,\n",
+      "        -4.7418e-02,  4.0690e-02,  1.1629e-01, -6.0501e-02, -9.2268e-02,\n",
+      "         8.2998e-03, -5.7077e-02,  5.4509e-02, -4.5998e-02, -4.0556e-02,\n",
+      "         1.3618e-01, -1.3394e-02,  8.3219e-02, -1.4035e-01,  8.9633e-03,\n",
+      "        -8.1774e-02, -9.5965e-02, -7.5319e-02, -7.4941e-02, -9.1091e-02,\n",
+      "        -3.7366e-02, -3.2880e-02,  7.4148e-02, -1.3120e-01, -3.0540e-02,\n",
+      "        -2.1833e-03])), ('pretrained_model.layer3.0.bn2.running_var', tensor([0.0244, 0.0458, 0.0539, 0.0328, 0.0197, 0.0516, 0.0178, 0.0228, 0.0295,\n",
+      "        0.0240, 0.0301, 0.0367, 0.0259, 0.0282, 0.0143, 0.0325, 0.0319, 0.0206,\n",
+      "        0.0378, 0.0394, 0.0401, 0.0253, 0.0192, 0.0274, 0.0188, 0.0165, 0.0341,\n",
+      "        0.0241, 0.0274, 0.0270, 0.0332, 0.0257, 0.0361, 0.0251, 0.0164, 0.0375,\n",
+      "        0.0219, 0.0280, 0.0358, 0.0169, 0.0226, 0.0367, 0.0434, 0.0183, 0.0209,\n",
+      "        0.0195, 0.0208, 0.0205, 0.0331, 0.0329, 0.0321, 0.0344, 0.0264, 0.0373,\n",
+      "        0.0373, 0.0148, 0.0253, 0.0260, 0.0190, 0.0205, 0.0199, 0.0197, 0.0253,\n",
+      "        0.0239, 0.0319, 0.0260, 0.0316, 0.0199, 0.0300, 0.0202, 0.0262, 0.0340,\n",
+      "        0.0179, 0.0201, 0.0219, 0.0334, 0.0262, 0.0314, 0.0210, 0.0277, 0.0243,\n",
+      "        0.0353, 0.0292, 0.0219, 0.0257, 0.0453, 0.0546, 0.0229, 0.0315, 0.0187,\n",
+      "        0.0335, 0.0312, 0.0323, 0.0209, 0.0172, 0.0143, 0.0307, 0.0771, 0.0159,\n",
+      "        0.0211, 0.0353, 0.0298, 0.0211, 0.0345, 0.0171, 0.0472, 0.0165, 0.0171,\n",
+      "        0.0360, 0.0382, 0.0276, 0.0286, 0.0385, 0.0208, 0.0357, 0.0183, 0.0167,\n",
+      "        0.0322, 0.0282, 0.0242, 0.0311, 0.0205, 0.0166, 0.0295, 0.0335, 0.0322,\n",
+      "        0.0166, 0.0200, 0.0217, 0.0201, 0.0337, 0.0397, 0.0759, 0.0339, 0.0576,\n",
+      "        0.0246, 0.0284, 0.0218, 0.0137, 0.0200, 0.0450, 0.0280, 0.0152, 0.0255,\n",
+      "        0.0309, 0.0244, 0.0156, 0.0216, 0.0217, 0.0373, 0.0311, 0.0237, 0.0315,\n",
+      "        0.0302, 0.0358, 0.0226, 0.0238, 0.0186, 0.0293, 0.0239, 0.0358, 0.0184,\n",
+      "        0.0237, 0.0359, 0.0184, 0.0176, 0.0255, 0.0219, 0.0393, 0.0187, 0.0197,\n",
+      "        0.0210, 0.0318, 0.0156, 0.0305, 0.0410, 0.0196, 0.0283, 0.0198, 0.0684,\n",
+      "        0.0254, 0.0243, 0.0193, 0.0264, 0.0278, 0.0242, 0.0301, 0.0404, 0.0353,\n",
+      "        0.0334, 0.0480, 0.0261, 0.0427, 0.0319, 0.0158, 0.0193, 0.0142, 0.0338,\n",
+      "        0.0702, 0.0358, 0.0339, 0.0190, 0.0356, 0.0368, 0.0221, 0.0411, 0.0244,\n",
+      "        0.0194, 0.0211, 0.0154, 0.0190, 0.0493, 0.0304, 0.0314, 0.0342, 0.0354,\n",
+      "        0.0212, 0.0278, 0.0288, 0.0125, 0.0201, 0.0179, 0.0365, 0.0178, 0.0279,\n",
+      "        0.0418, 0.0194, 0.0220, 0.0360, 0.0237, 0.0377, 0.0967, 0.0248, 0.0360,\n",
+      "        0.0323, 0.0194, 0.0180, 0.0362, 0.0184, 0.0268, 0.0935, 0.0269, 0.0342,\n",
+      "        0.0308, 0.0217, 0.0185, 0.0308, 0.0191, 0.0337, 0.0389, 0.0188, 0.0291,\n",
+      "        0.0387, 0.0326, 0.0255, 0.0222])), ('pretrained_model.layer3.0.bn2.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.0.conv3.weight', tensor([[[[ 0.0018]],\n",
+      "\n",
+      "         [[ 0.0199]],\n",
+      "\n",
+      "         [[ 0.0474]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0062]],\n",
+      "\n",
+      "         [[-0.0152]],\n",
+      "\n",
+      "         [[-0.0262]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0079]],\n",
+      "\n",
+      "         [[-0.0045]],\n",
+      "\n",
+      "         [[ 0.0149]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0019]],\n",
+      "\n",
+      "         [[-0.0023]],\n",
+      "\n",
+      "         [[-0.0094]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0012]],\n",
+      "\n",
+      "         [[-0.0030]],\n",
+      "\n",
+      "         [[-0.0216]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0003]],\n",
+      "\n",
+      "         [[-0.0304]],\n",
+      "\n",
+      "         [[ 0.0307]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-0.0043]],\n",
+      "\n",
+      "         [[-0.0057]],\n",
+      "\n",
+      "         [[-0.0160]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0125]],\n",
+      "\n",
+      "         [[-0.0236]],\n",
+      "\n",
+      "         [[ 0.0217]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0228]],\n",
+      "\n",
+      "         [[-0.0028]],\n",
+      "\n",
+      "         [[-0.0139]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0081]],\n",
+      "\n",
+      "         [[-0.0175]],\n",
+      "\n",
+      "         [[-0.0159]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0291]],\n",
+      "\n",
+      "         [[ 0.0050]],\n",
+      "\n",
+      "         [[-0.0283]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0091]],\n",
+      "\n",
+      "         [[ 0.0017]],\n",
+      "\n",
+      "         [[-0.0167]]]])), ('pretrained_model.layer3.0.bn3.weight', tensor([0.1619, 0.1158, 0.0806,  ..., 0.0804, 0.1853, 0.1179])), ('pretrained_model.layer3.0.bn3.bias', tensor([-0.0295, -0.0129, -0.0327,  ...,  0.0092,  0.0048,  0.0125])), ('pretrained_model.layer3.0.bn3.running_mean', tensor([ 0.0126, -0.0652, -0.0209,  ..., -0.0850, -0.0434,  0.0531])), ('pretrained_model.layer3.0.bn3.running_var', tensor([0.0044, 0.0024, 0.0011,  ..., 0.0021, 0.0067, 0.0066])), ('pretrained_model.layer3.0.bn3.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.0.downsample.0.weight', tensor([[[[ 0.0264]],\n",
+      "\n",
+      "         [[ 0.0200]],\n",
+      "\n",
+      "         [[ 0.0141]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0149]],\n",
+      "\n",
+      "         [[ 0.0444]],\n",
+      "\n",
+      "         [[-0.0258]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0049]],\n",
+      "\n",
+      "         [[ 0.0026]],\n",
+      "\n",
+      "         [[-0.0125]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0070]],\n",
+      "\n",
+      "         [[-0.0165]],\n",
+      "\n",
+      "         [[-0.0004]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0260]],\n",
+      "\n",
+      "         [[-0.0173]],\n",
+      "\n",
+      "         [[-0.0020]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0110]],\n",
+      "\n",
+      "         [[-0.0032]],\n",
+      "\n",
+      "         [[-0.0008]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-0.0033]],\n",
+      "\n",
+      "         [[-0.0124]],\n",
+      "\n",
+      "         [[-0.0094]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0038]],\n",
+      "\n",
+      "         [[ 0.0068]],\n",
+      "\n",
+      "         [[ 0.0507]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0106]],\n",
+      "\n",
+      "         [[-0.0160]],\n",
+      "\n",
+      "         [[-0.0081]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0035]],\n",
+      "\n",
+      "         [[ 0.0268]],\n",
+      "\n",
+      "         [[ 0.0605]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0336]],\n",
+      "\n",
+      "         [[-0.0083]],\n",
+      "\n",
+      "         [[ 0.0426]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0240]],\n",
+      "\n",
+      "         [[ 0.0128]],\n",
+      "\n",
+      "         [[ 0.0077]]]])), ('pretrained_model.layer3.0.downsample.1.weight', tensor([0.0875, 0.0803, 0.0674,  ..., 0.0901, 0.0738, 0.1563])), ('pretrained_model.layer3.0.downsample.1.bias', tensor([-0.0295, -0.0129, -0.0327,  ...,  0.0092,  0.0048,  0.0125])), ('pretrained_model.layer3.0.downsample.1.running_mean', tensor([ 0.0624, -0.0064, -0.0359,  ..., -0.1335,  0.0155,  0.0907])), ('pretrained_model.layer3.0.downsample.1.running_var', tensor([0.0103, 0.0043, 0.0023,  ..., 0.0082, 0.0059, 0.0185])), ('pretrained_model.layer3.0.downsample.1.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.1.conv1.weight', tensor([[[[-0.0028]],\n",
+      "\n",
+      "         [[-0.0149]],\n",
+      "\n",
+      "         [[ 0.0028]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0063]],\n",
+      "\n",
+      "         [[-0.0049]],\n",
+      "\n",
+      "         [[ 0.0098]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0047]],\n",
+      "\n",
+      "         [[-0.0240]],\n",
+      "\n",
+      "         [[-0.0027]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0097]],\n",
+      "\n",
+      "         [[-0.0108]],\n",
+      "\n",
+      "         [[-0.0099]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0012]],\n",
+      "\n",
+      "         [[ 0.0088]],\n",
+      "\n",
+      "         [[ 0.0054]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0081]],\n",
+      "\n",
+      "         [[-0.0059]],\n",
+      "\n",
+      "         [[-0.0144]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-0.0081]],\n",
+      "\n",
+      "         [[-0.0071]],\n",
+      "\n",
+      "         [[-0.0091]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0177]],\n",
+      "\n",
+      "         [[ 0.0080]],\n",
+      "\n",
+      "         [[-0.0068]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0083]],\n",
+      "\n",
+      "         [[-0.0093]],\n",
+      "\n",
+      "         [[-0.0027]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0008]],\n",
+      "\n",
+      "         [[-0.0126]],\n",
+      "\n",
+      "         [[ 0.0233]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0053]],\n",
+      "\n",
+      "         [[ 0.0070]],\n",
+      "\n",
+      "         [[ 0.0052]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0087]],\n",
+      "\n",
+      "         [[-0.0006]],\n",
+      "\n",
+      "         [[ 0.0067]]]])), ('pretrained_model.layer3.1.bn1.weight', tensor([0.1192, 0.0973, 0.1158, 0.1119, 0.1581, 0.1199, 0.1136, 0.1429, 0.1730,\n",
+      "        0.1087, 0.1445, 0.1455, 0.1520, 0.1349, 0.1240, 0.1376, 0.2637, 0.1381,\n",
+      "        0.1863, 0.1158, 0.1172, 0.1780, 0.1170, 0.1406, 0.1386, 0.1391, 0.0781,\n",
+      "        0.1116, 0.2082, 0.0835, 0.1265, 0.1719, 0.1225, 0.1149, 0.1676, 0.2017,\n",
+      "        0.1584, 0.1606, 0.1624, 0.1978, 0.1833, 0.1724, 0.1305, 0.1781, 0.1628,\n",
+      "        0.1632, 0.1610, 0.1250, 0.1460, 0.1398, 0.1355, 0.1752, 0.1781, 0.1085,\n",
+      "        0.1264, 0.1452, 0.1916, 0.1594, 0.1578, 0.1527, 0.2549, 0.2684, 0.1917,\n",
+      "        0.1153, 0.1579, 0.1635, 0.1145, 0.1757, 0.1074, 0.1743, 0.1502, 0.1402,\n",
+      "        0.1722, 0.1762, 0.1531, 0.1410, 0.1968, 0.1565, 0.1922, 0.2383, 0.1428,\n",
+      "        0.1432, 0.2932, 0.1396, 0.1720, 0.1915, 0.1470, 0.1510, 0.1434, 0.1580,\n",
+      "        0.2447, 0.1629, 0.1469, 0.1785, 0.1898, 0.1821, 0.1321, 0.1730, 0.1780,\n",
+      "        0.1759, 0.1276, 0.1447, 0.1458, 0.1497, 0.1430, 0.1029, 0.1549, 0.1810,\n",
+      "        0.2044, 0.1217, 0.1929, 0.2510, 0.1581, 0.1903, 0.1316, 0.1911, 0.1618,\n",
+      "        0.2203, 0.1669, 0.1528, 0.1319, 0.1349, 0.1310, 0.1692, 0.1150, 0.1501,\n",
+      "        0.1217, 0.1566, 0.1137, 0.1860, 0.1760, 0.1429, 0.1485, 0.1211, 0.1483,\n",
+      "        0.1429, 0.1868, 0.1373, 0.1475, 0.1880, 0.1665, 0.1455, 0.1139, 0.1499,\n",
+      "        0.1211, 0.1606, 0.2207, 0.0962, 0.1333, 0.1455, 0.1882, 0.1588, 0.1869,\n",
+      "        0.1092, 0.1220, 0.2137, 0.1827, 0.1523, 0.1785, 0.1343, 0.1767, 0.1415,\n",
+      "        0.1614, 0.2095, 0.1463, 0.1647, 0.1672, 0.1307, 0.2278, 0.2061, 0.1543,\n",
+      "        0.2398, 0.1173, 0.1463, 0.1479, 0.1694, 0.1178, 0.0800, 0.1436, 0.1631,\n",
+      "        0.1563, 0.1427, 0.1651, 0.1181, 0.1423, 0.1596, 0.1781, 0.1627, 0.1898,\n",
+      "        0.1546, 0.1813, 0.1704, 0.1579, 0.1529, 0.1275, 0.1090, 0.1539, 0.1906,\n",
+      "        0.1684, 0.1677, 0.1958, 0.1543, 0.1357, 0.1497, 0.3673, 0.1406, 0.1148,\n",
+      "        0.1515, 0.0894, 0.1469, 0.1566, 0.1511, 0.1146, 0.1108, 0.1971, 0.1878,\n",
+      "        0.1375, 0.1383, 0.1507, 0.1387, 0.2147, 0.1785, 0.2049, 0.1692, 0.1721,\n",
+      "        0.1819, 0.1399, 0.1577, 0.1596, 0.1583, 0.1802, 0.1347, 0.1677, 0.1690,\n",
+      "        0.1822, 0.1920, 0.1593, 0.1702, 0.1249, 0.1340, 0.1243, 0.1427, 0.1679,\n",
+      "        0.1692, 0.1217, 0.1232, 0.1717, 0.2076, 0.1410, 0.1648, 0.1320, 0.1655,\n",
+      "        0.1639, 0.1712, 0.1223, 0.1678])), ('pretrained_model.layer3.1.bn1.bias', tensor([ 7.7820e-02,  1.1834e-01,  3.7195e-02,  3.4512e-02, -2.4213e-02,\n",
+      "         3.6923e-02,  4.0750e-02, -6.7601e-03, -5.0154e-02,  8.6398e-02,\n",
+      "         4.5960e-02, -1.5934e-01,  2.8674e-02, -4.8251e-02,  7.8088e-03,\n",
+      "        -4.8376e-02, -6.3571e-02, -1.7521e-02, -1.4780e-02, -1.7530e-02,\n",
+      "        -3.3979e-02, -8.4060e-02,  9.2803e-02,  1.4228e-02,  5.9141e-02,\n",
+      "        -3.5980e-02,  1.4840e-01,  6.3174e-02, -7.5515e-02,  1.0630e-01,\n",
+      "         1.0059e-02, -4.3142e-03, -6.0658e-03,  7.8749e-02, -6.6082e-02,\n",
+      "        -5.7530e-02, -3.0011e-02, -3.9341e-02,  2.9391e-02, -1.7517e-02,\n",
+      "        -3.8389e-02,  1.5939e-02,  2.1453e-02, -5.1984e-02, -9.0420e-02,\n",
+      "        -7.4248e-02,  1.6789e-02,  6.7935e-02, -1.3850e-02,  3.6633e-02,\n",
+      "        -2.4452e-02, -7.1307e-03, -9.0498e-04,  6.7190e-02, -1.3344e-02,\n",
+      "        -2.3743e-02, -1.0577e-01, -4.3328e-02,  5.3871e-02,  9.9525e-04,\n",
+      "        -7.5755e-02, -9.0132e-02, -1.0619e-02, -4.8383e-05, -2.7019e-02,\n",
+      "        -1.0971e-01,  3.1822e-03, -9.6958e-03, -3.6042e-02, -3.8424e-02,\n",
+      "         3.2420e-02,  2.6894e-02, -3.5612e-02, -8.4191e-02,  2.2562e-04,\n",
+      "        -1.0398e-03, -1.2613e-01, -9.3539e-02, -6.0901e-02, -8.8504e-02,\n",
+      "        -4.9889e-02,  2.9590e-02, -3.9876e-02, -3.4258e-02, -4.8381e-02,\n",
+      "        -1.2974e-01,  1.9613e-03, -9.9827e-02,  1.8371e-02,  3.1215e-02,\n",
+      "        -1.1760e-01, -4.0493e-02, -3.3483e-02, -6.1892e-02, -5.1434e-02,\n",
+      "        -6.3227e-02,  6.9152e-02, -8.5428e-02, -5.3110e-02, -1.0489e-01,\n",
+      "         3.7589e-02, -5.8015e-04, -1.0777e-02, -1.7753e-01,  4.7541e-02,\n",
+      "         5.7080e-02,  9.2783e-03, -4.5023e-02, -1.3223e-01, -1.5785e-02,\n",
+      "        -2.1523e-02, -1.3287e-02,  1.2141e-02, -3.3841e-02, -3.4394e-02,\n",
+      "        -3.1480e-02,  8.2929e-02, -8.1775e-02, -3.5104e-02, -3.8411e-02,\n",
+      "         3.3349e-02, -5.7138e-02, -4.5657e-02, -5.1503e-02,  1.5164e-02,\n",
+      "        -1.7699e-02, -1.7873e-02, -7.0779e-02,  2.4732e-02, -9.4127e-02,\n",
+      "        -9.5998e-03,  2.8164e-02, -1.7261e-02,  1.8449e-02,  3.1091e-02,\n",
+      "         4.5968e-02, -3.8807e-02,  4.4120e-02, -1.4411e-02,  3.6914e-02,\n",
+      "        -5.0838e-02,  5.4204e-03, -1.8382e-03,  5.3908e-02, -4.8633e-02,\n",
+      "         1.8396e-01, -1.6037e-02,  5.8472e-02,  3.8289e-02, -1.4970e-02,\n",
+      "        -2.9156e-02, -7.9774e-02, -1.2027e-01,  7.3711e-02,  7.8263e-02,\n",
+      "         1.0783e-03, -9.7968e-02,  4.8648e-02, -3.4502e-02,  3.6341e-02,\n",
+      "        -1.2594e-01, -4.7056e-03, -4.6231e-02, -6.1437e-02, -5.8364e-02,\n",
+      "         2.2945e-02, -6.8821e-02, -3.1773e-02, -1.4727e-01, -6.2617e-02,\n",
+      "         6.5670e-02, -1.1345e-01, -5.8598e-02, -1.4372e-02, -1.9956e-02,\n",
+      "        -1.0548e-02,  5.5883e-02,  1.6712e-01,  1.7808e-02, -6.4009e-03,\n",
+      "         1.3248e-02, -5.7497e-02,  6.9011e-02,  6.2325e-02,  1.9191e-02,\n",
+      "        -2.2450e-02, -5.8470e-02, -3.0150e-02, -8.8326e-02,  2.1363e-02,\n",
+      "        -2.2445e-02, -4.3592e-02, -3.0950e-02,  1.0158e-02,  5.9077e-02,\n",
+      "         5.6631e-02,  5.4359e-02, -3.5757e-02,  4.3226e-03, -6.1921e-02,\n",
+      "         2.3004e-02, -7.4803e-02,  4.2507e-02,  3.5616e-02, -1.1488e-01,\n",
+      "         9.1607e-03,  8.5935e-02, -2.9924e-02,  9.9389e-02,  4.5239e-02,\n",
+      "         4.2009e-02, -1.4399e-01,  4.7484e-02, -8.6142e-03, -5.7177e-02,\n",
+      "        -8.9066e-02, -4.4874e-02, -3.8492e-02, -5.2471e-02,  1.2354e-01,\n",
+      "        -6.4575e-02, -3.7816e-02, -5.3572e-02, -2.2413e-02,  1.9345e-02,\n",
+      "        -1.2138e-01,  7.9662e-02, -2.4764e-02, -3.3146e-02, -8.8421e-03,\n",
+      "        -5.1448e-02, -2.4157e-02,  7.6447e-03, -3.6638e-02, -1.5077e-01,\n",
+      "        -1.1418e-01, -5.6315e-02, -4.2313e-02, -8.2729e-03,  5.1366e-02,\n",
+      "         3.1105e-02, -3.8537e-03, -4.8317e-02, -3.1870e-02, -2.0022e-02,\n",
+      "        -3.6291e-04, -7.3766e-03, -1.0897e-01, -4.2893e-02,  1.1558e-02,\n",
+      "         9.2940e-02, -7.8594e-02, -5.8332e-02, -3.9663e-02,  5.9280e-02,\n",
+      "        -1.1212e-02])), ('pretrained_model.layer3.1.bn1.running_mean', tensor([-1.2175e-01, -1.3464e-01, -3.6876e-02, -4.7980e-02, -1.0965e-01,\n",
+      "         4.2393e-04, -1.2100e-01,  4.2765e-02, -1.1105e-02, -2.1714e-01,\n",
+      "        -1.0890e-01, -1.0862e-01, -1.4181e-01, -8.8077e-02, -8.7558e-02,\n",
+      "         7.8357e-02, -1.5285e-01,  2.0664e-02,  5.8817e-02, -1.0551e-01,\n",
+      "        -2.1511e-01, -8.0171e-02,  6.1218e-02, -4.6125e-02,  4.1653e-01,\n",
+      "        -5.1450e-02,  4.4524e-02,  2.4342e-02, -6.6745e-02, -7.4419e-02,\n",
+      "        -9.5177e-02, -5.0088e-02,  1.7304e-02, -2.3690e-02,  8.9507e-02,\n",
+      "         2.1031e-02, -6.3732e-03,  3.5115e-02,  7.4140e-02,  3.9415e-02,\n",
+      "         8.9143e-03, -8.1760e-03, -1.2531e-01,  1.4979e-01,  6.8754e-02,\n",
+      "        -2.2757e-02, -3.8128e-02,  6.1466e-02,  1.4223e-01, -1.1082e-01,\n",
+      "         6.1228e-02, -7.8754e-02, -4.0362e-02, -6.2259e-02,  4.1896e-02,\n",
+      "        -1.5471e-01, -9.2457e-02, -1.0629e-01, -6.5997e-02,  3.0957e-02,\n",
+      "        -2.9659e-02, -1.8338e-02, -3.4837e-01, -2.7009e-01, -1.1283e-01,\n",
+      "        -1.0571e-01, -3.1244e-02,  5.5626e-02, -1.9204e-01, -7.3819e-02,\n",
+      "         7.4506e-02, -5.5337e-02, -3.7830e-02, -5.6534e-02, -1.1830e-01,\n",
+      "        -5.6428e-02, -1.0665e-01, -7.1757e-02, -6.9898e-02,  8.1028e-03,\n",
+      "        -4.6150e-02,  8.1263e-02, -2.4029e-01, -1.2400e-01, -7.9339e-02,\n",
+      "        -6.0410e-02, -3.4460e-02, -4.9582e-02, -1.4120e-01,  2.8830e-02,\n",
+      "        -1.5302e-02,  9.4323e-03,  2.3049e-02, -8.6305e-02, -5.5316e-02,\n",
+      "        -3.1402e-02, -6.3484e-02, -1.6662e-02,  2.8137e-02, -2.2428e-01,\n",
+      "        -5.6898e-02, -4.4041e-02, -8.3331e-03,  4.6821e-03, -6.3661e-02,\n",
+      "         5.7197e-02, -2.8898e-01, -7.3370e-02, -1.1844e-02,  1.4479e-02,\n",
+      "         1.8166e-01, -1.6248e-01, -7.3072e-02, -2.4029e-02, -5.9588e-02,\n",
+      "         8.8057e-03,  6.0243e-02, -4.3779e-02,  5.6881e-03, -1.1982e-01,\n",
+      "        -1.1621e-01, -4.2138e-02, -1.3219e-01,  1.3500e-01, -1.2031e-01,\n",
+      "        -3.0932e-02, -7.7760e-02, -4.0215e-02, -1.8922e-01, -1.0395e-01,\n",
+      "         1.7789e-02, -1.4935e-01, -8.3043e-03,  4.6181e-02, -8.1267e-02,\n",
+      "         1.1680e-01, -1.8714e-01, -1.0345e-01, -1.3860e-01, -3.2544e-02,\n",
+      "        -7.3347e-02, -1.2889e-01, -4.8420e-02,  8.1060e-02,  6.4135e-02,\n",
+      "        -7.2791e-01, -3.7941e-02, -3.6256e-02, -3.5356e-01,  4.3900e-03,\n",
+      "        -1.1720e-01, -4.8610e-02, -7.0323e-02,  1.0026e-01,  7.3716e-03,\n",
+      "        -6.0494e-02, -9.1401e-03, -4.5420e-02,  3.5213e-02, -1.6330e-01,\n",
+      "        -5.2925e-02, -4.0491e-02, -2.0687e-01,  1.1423e-01, -8.3231e-02,\n",
+      "         2.2030e-02,  1.6268e-05, -2.3792e-01, -4.2481e-03,  1.7060e-01,\n",
+      "        -9.9057e-02, -1.0749e-01,  1.0274e-01, -1.4470e-01, -3.0764e-02,\n",
+      "        -1.5777e-02,  5.5494e-02,  1.3139e-01, -5.2529e-02, -1.2014e-02,\n",
+      "        -4.1651e-02, -4.1636e-02, -2.2379e-02, -1.4930e-01,  3.5868e-03,\n",
+      "         9.2857e-02,  4.7137e-02,  4.2110e-02, -1.2041e-01, -1.6558e-03,\n",
+      "         7.5796e-02, -6.6220e-03, -8.1452e-02,  1.0420e-01, -1.7307e-01,\n",
+      "        -1.1930e-01,  6.5614e-02,  1.3141e-02,  3.7632e-02,  2.2682e-02,\n",
+      "         1.2150e-01,  3.6942e-02, -6.8816e-02,  8.5992e-02,  1.4057e-01,\n",
+      "        -1.5532e-01,  7.3425e-03, -2.3825e-02, -4.0686e-02,  6.4841e-02,\n",
+      "         4.1420e-02,  5.8968e-02, -3.7453e-02, -7.1636e-02,  1.3774e-01,\n",
+      "        -5.8641e-02, -5.6800e-02, -4.4853e-02,  1.4749e-02, -3.4925e-01,\n",
+      "         2.8443e-02, -1.4730e-02,  9.3933e-02, -9.6360e-02, -7.5609e-03,\n",
+      "         1.1392e-01, -6.3128e-01, -9.9243e-02,  2.3791e-02, -1.7183e-02,\n",
+      "        -3.6477e-03, -9.4171e-02, -4.2628e-02, -5.1335e-02, -7.1827e-02,\n",
+      "        -3.4204e-02,  1.7131e-03,  4.7451e-02, -4.2790e-02, -1.1932e-01,\n",
+      "         9.5512e-03,  2.4458e-02, -1.4540e-01,  6.7772e-02,  7.6086e-02,\n",
+      "        -5.7821e-02, -9.6718e-02, -5.7133e-02, -7.0074e-02,  7.5917e-02,\n",
+      "         1.2382e-01,  1.9430e-02,  5.7702e-02, -1.1278e-01,  1.5580e-03,\n",
+      "         2.0987e-02])), ('pretrained_model.layer3.1.bn1.running_var', tensor([0.0196, 0.0164, 0.0124, 0.0158, 0.0072, 0.0115, 0.0222, 0.0352, 0.0157,\n",
+      "        0.0155, 0.0223, 0.0059, 0.0227, 0.0103, 0.0162, 0.0129, 0.0223, 0.0134,\n",
+      "        0.0133, 0.0157, 0.0126, 0.0143, 0.0251, 0.0152, 0.0297, 0.0111, 0.0133,\n",
+      "        0.0135, 0.0101, 0.0243, 0.0136, 0.0261, 0.0209, 0.0250, 0.0101, 0.0236,\n",
+      "        0.0168, 0.0171, 0.0210, 0.0211, 0.0172, 0.0200, 0.0146, 0.0235, 0.0136,\n",
+      "        0.0122, 0.0130, 0.0147, 0.0216, 0.0275, 0.0141, 0.0194, 0.0160, 0.0119,\n",
+      "        0.0110, 0.0203, 0.0156, 0.0134, 0.0242, 0.0113, 0.0227, 0.0209, 0.0874,\n",
+      "        0.0179, 0.0169, 0.0097, 0.0130, 0.0298, 0.0088, 0.0157, 0.0096, 0.0116,\n",
+      "        0.0127, 0.0082, 0.0126, 0.0113, 0.0128, 0.0076, 0.0113, 0.0192, 0.0123,\n",
+      "        0.0144, 0.0253, 0.0184, 0.0165, 0.0222, 0.0100, 0.0083, 0.0230, 0.0316,\n",
+      "        0.0116, 0.0089, 0.0138, 0.0134, 0.0107, 0.0194, 0.0130, 0.0105, 0.0091,\n",
+      "        0.0124, 0.0256, 0.0118, 0.0093, 0.0137, 0.0106, 0.0114, 0.0326, 0.0221,\n",
+      "        0.0163, 0.0126, 0.0193, 0.0275, 0.0117, 0.0131, 0.0167, 0.0182, 0.0359,\n",
+      "        0.0118, 0.0121, 0.0206, 0.0190, 0.0109, 0.0099, 0.0138, 0.0224, 0.0149,\n",
+      "        0.0205, 0.0195, 0.0207, 0.0152, 0.0116, 0.0203, 0.0163, 0.0133, 0.0233,\n",
+      "        0.0129, 0.0133, 0.0140, 0.0140, 0.0233, 0.0194, 0.0203, 0.0095, 0.0233,\n",
+      "        0.0155, 0.0813, 0.0216, 0.0184, 0.0435, 0.0198, 0.0174, 0.0097, 0.0121,\n",
+      "        0.0081, 0.0134, 0.0281, 0.0126, 0.0180, 0.0109, 0.0140, 0.0122, 0.0110,\n",
+      "        0.0152, 0.0148, 0.0117, 0.0114, 0.0157, 0.0154, 0.0153, 0.0217, 0.0302,\n",
+      "        0.0181, 0.0105, 0.0111, 0.0118, 0.0213, 0.0137, 0.0235, 0.0233, 0.0091,\n",
+      "        0.0105, 0.0127, 0.0143, 0.0149, 0.0129, 0.0156, 0.0175, 0.0180, 0.0119,\n",
+      "        0.0125, 0.0135, 0.0127, 0.0150, 0.0158, 0.0222, 0.0122, 0.0181, 0.0137,\n",
+      "        0.0304, 0.0105, 0.0209, 0.0185, 0.0209, 0.0215, 0.0898, 0.0203, 0.0216,\n",
+      "        0.0218, 0.0193, 0.0235, 0.0178, 0.0128, 0.0211, 0.0141, 0.0190, 0.0088,\n",
+      "        0.0120, 0.0162, 0.0093, 0.0324, 0.0125, 0.0085, 0.0181, 0.0152, 0.0290,\n",
+      "        0.0129, 0.0801, 0.0118, 0.0113, 0.0129, 0.0089, 0.0153, 0.0128, 0.0120,\n",
+      "        0.0125, 0.0129, 0.0073, 0.0147, 0.0139, 0.0118, 0.0109, 0.0175, 0.0104,\n",
+      "        0.0101, 0.0111, 0.0114, 0.0239, 0.0089, 0.0128, 0.0149, 0.0128, 0.0097,\n",
+      "        0.0138, 0.0119, 0.0115, 0.0247])), ('pretrained_model.layer3.1.bn1.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.1.conv2.weight', tensor([[[[-6.4488e-03,  4.9459e-03, -6.7920e-03],\n",
+      "          [-2.5714e-03, -4.0076e-03,  8.7364e-03],\n",
+      "          [ 1.2346e-04, -6.7336e-03, -3.1249e-03]],\n",
+      "\n",
+      "         [[ 2.7398e-02,  3.5208e-02,  7.4535e-03],\n",
+      "          [ 2.7618e-03,  1.5082e-03, -9.4342e-03],\n",
+      "          [-1.2707e-02, -2.9921e-02, -1.1407e-02]],\n",
+      "\n",
+      "         [[-5.9812e-03,  3.7107e-03, -2.8098e-03],\n",
+      "          [-1.5781e-02, -2.7587e-03, -4.5474e-03],\n",
+      "          [ 1.1276e-02,  1.1212e-02,  1.1678e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.4709e-02,  6.1852e-03,  3.8528e-03],\n",
+      "          [-1.3322e-02, -4.7547e-04,  1.6645e-02],\n",
+      "          [ 1.4523e-02,  1.7893e-02,  1.9183e-02]],\n",
+      "\n",
+      "         [[ 4.4648e-03,  9.6855e-03,  7.5364e-03],\n",
+      "          [ 1.6857e-03,  8.0401e-03,  3.2963e-04],\n",
+      "          [-1.9085e-03,  4.8538e-03, -9.1060e-03]],\n",
+      "\n",
+      "         [[-2.8190e-02, -2.6060e-02, -1.2886e-02],\n",
+      "          [-1.3968e-02, -3.6524e-03,  2.1057e-03],\n",
+      "          [ 5.0852e-03,  2.7312e-02,  1.8478e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-7.8120e-03, -4.5045e-03, -4.8618e-03],\n",
+      "          [ 9.1012e-03,  5.4572e-03,  1.1865e-03],\n",
+      "          [-2.5975e-02, -3.4785e-02, -2.1428e-02]],\n",
+      "\n",
+      "         [[-2.0696e-03,  1.3099e-02, -1.1019e-02],\n",
+      "          [-1.1174e-02,  1.0379e-02, -8.0546e-03],\n",
+      "          [-2.9721e-03,  8.1861e-03,  8.5144e-03]],\n",
+      "\n",
+      "         [[-8.4064e-03, -1.4856e-02, -1.2584e-02],\n",
+      "          [ 5.6948e-03,  9.7515e-03, -1.2227e-02],\n",
+      "          [ 5.1332e-03,  1.9928e-02,  6.5920e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 5.1385e-03, -2.8949e-02, -9.0633e-03],\n",
+      "          [ 1.0461e-02,  1.7493e-03,  3.4384e-03],\n",
+      "          [ 1.3945e-02,  2.2548e-02,  1.8707e-02]],\n",
+      "\n",
+      "         [[ 9.0936e-03,  1.1668e-02,  1.0021e-02],\n",
+      "          [ 1.4613e-02,  1.2328e-02,  1.7954e-02],\n",
+      "          [-5.2674e-03,  5.9674e-03,  8.5170e-03]],\n",
+      "\n",
+      "         [[-2.1628e-02, -2.3978e-02, -3.6584e-02],\n",
+      "          [-3.2805e-02, -4.5771e-02, -4.9015e-02],\n",
+      "          [-4.8321e-02, -8.1465e-02, -6.4789e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.3447e-02, -3.5261e-02, -3.5947e-02],\n",
+      "          [ 5.6159e-03,  1.3077e-03, -1.6401e-03],\n",
+      "          [ 4.4316e-02,  5.1907e-02,  4.0235e-02]],\n",
+      "\n",
+      "         [[-2.3490e-05,  1.8837e-02,  1.0283e-02],\n",
+      "          [-9.2933e-03,  8.3066e-03,  1.0238e-02],\n",
+      "          [-1.2317e-02, -8.5466e-03, -8.6669e-03]],\n",
+      "\n",
+      "         [[ 8.7895e-03,  3.7180e-03, -3.1364e-03],\n",
+      "          [ 4.2821e-03,  7.4071e-03, -1.8846e-03],\n",
+      "          [-1.1871e-02, -2.1726e-02, -1.7198e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.5848e-02,  3.5303e-02,  3.7897e-02],\n",
+      "          [-1.0342e-02,  2.6708e-03,  9.8834e-03],\n",
+      "          [-3.2336e-02, -3.2169e-02, -1.6427e-02]],\n",
+      "\n",
+      "         [[-4.8245e-04,  8.7962e-03,  1.2805e-02],\n",
+      "          [-1.0196e-02, -1.9955e-03,  2.0556e-03],\n",
+      "          [-1.7177e-02, -7.4728e-03, -1.1672e-02]],\n",
+      "\n",
+      "         [[-8.8918e-03, -1.7576e-02, -1.8255e-02],\n",
+      "          [ 1.0124e-02, -2.4729e-03, -5.7377e-03],\n",
+      "          [ 1.1612e-02, -4.7507e-04,  1.0022e-02]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 5.4094e-04,  3.9745e-03, -2.4475e-03],\n",
+      "          [ 9.7063e-03,  1.4555e-02,  1.1354e-02],\n",
+      "          [ 1.3292e-03,  1.7380e-02,  1.6752e-02]],\n",
+      "\n",
+      "         [[-4.5943e-03, -2.7793e-03, -1.7422e-03],\n",
+      "          [-8.5531e-03, -8.2651e-03,  1.2539e-03],\n",
+      "          [-7.6203e-04,  7.1374e-03,  2.6042e-03]],\n",
+      "\n",
+      "         [[ 4.6843e-03,  2.3834e-03, -3.9050e-04],\n",
+      "          [ 1.6904e-02,  5.1629e-03, -2.8460e-03],\n",
+      "          [ 2.0511e-02,  9.1969e-03, -1.5255e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.7838e-02, -7.4709e-03, -1.6306e-02],\n",
+      "          [-1.7687e-03,  8.0149e-03, -5.0743e-03],\n",
+      "          [-1.2067e-02, -2.4272e-02, -2.8586e-02]],\n",
+      "\n",
+      "         [[ 2.0258e-02,  7.3826e-03,  4.9536e-03],\n",
+      "          [ 2.4247e-03,  1.7224e-02,  3.5084e-03],\n",
+      "          [ 5.1902e-03,  1.2994e-02,  1.5962e-03]],\n",
+      "\n",
+      "         [[ 1.0311e-03, -1.3425e-03,  5.4795e-03],\n",
+      "          [-1.9914e-02, -1.4388e-02, -6.9036e-03],\n",
+      "          [ 7.6863e-03,  3.0148e-03, -1.4506e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 9.9574e-03,  1.7552e-03,  5.4933e-03],\n",
+      "          [-1.4227e-02,  2.4590e-03, -8.3008e-03],\n",
+      "          [ 4.4071e-03,  3.3883e-03,  5.2760e-03]],\n",
+      "\n",
+      "         [[ 4.8845e-03,  4.7015e-03,  2.3634e-03],\n",
+      "          [-5.6175e-03, -2.2257e-02, -4.2561e-03],\n",
+      "          [ 1.6401e-02, -4.5747e-03,  1.1884e-02]],\n",
+      "\n",
+      "         [[-1.1264e-02, -7.1716e-03, -8.0250e-04],\n",
+      "          [-4.7196e-03, -1.5128e-02,  2.0174e-03],\n",
+      "          [ 9.2146e-03,  8.2989e-03,  1.1737e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.0792e-02,  2.6631e-03,  1.4120e-02],\n",
+      "          [ 1.6159e-02, -2.8319e-03,  4.4582e-03],\n",
+      "          [ 1.2572e-02,  8.1029e-03,  1.1599e-02]],\n",
+      "\n",
+      "         [[-1.2300e-02, -1.6465e-02, -2.2472e-02],\n",
+      "          [-7.8383e-03, -5.9581e-03, -9.4469e-03],\n",
+      "          [-2.9012e-03, -2.1318e-02, -9.8390e-03]],\n",
+      "\n",
+      "         [[ 4.7225e-03,  1.5399e-02,  1.3405e-02],\n",
+      "          [ 1.0541e-02,  2.6206e-02,  1.3642e-02],\n",
+      "          [-1.1752e-02, -9.7531e-04, -1.4528e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-2.9930e-04,  2.1970e-03,  1.8699e-03],\n",
+      "          [-9.3808e-03,  2.1978e-02,  8.5920e-03],\n",
+      "          [-9.3981e-03,  1.1670e-02, -9.3218e-03]],\n",
+      "\n",
+      "         [[ 8.7588e-03,  3.1755e-03, -9.7515e-04],\n",
+      "          [ 3.7908e-02,  4.6116e-03, -1.7731e-02],\n",
+      "          [ 2.5673e-02,  1.1107e-03, -2.4445e-03]],\n",
+      "\n",
+      "         [[-3.0950e-03, -1.4194e-02, -5.6576e-03],\n",
+      "          [-9.9668e-03, -9.2302e-03,  1.0715e-02],\n",
+      "          [ 1.8230e-03,  2.8947e-03,  1.9296e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.1765e-02, -1.7506e-02, -1.9129e-02],\n",
+      "          [ 5.5315e-02, -9.4018e-03, -4.2725e-02],\n",
+      "          [ 2.8330e-02, -1.1687e-02, -3.0888e-02]],\n",
+      "\n",
+      "         [[-1.7910e-03,  7.4535e-03,  1.7591e-02],\n",
+      "          [ 1.7147e-03,  5.6017e-03,  2.2394e-02],\n",
+      "          [-9.4235e-03,  6.1880e-03,  1.6254e-02]],\n",
+      "\n",
+      "         [[ 1.7892e-03, -9.7737e-03, -1.7086e-02],\n",
+      "          [ 1.4876e-02,  2.4201e-03, -1.2594e-02],\n",
+      "          [ 1.3544e-02, -8.2509e-03, -4.3070e-03]]]])), ('pretrained_model.layer3.1.bn2.weight', tensor([0.1681, 0.2043, 0.1904, 0.1538, 0.1883, 0.1611, 0.1893, 0.1791, 0.2237,\n",
+      "        0.1755, 0.1446, 0.3514, 0.1135, 0.1460, 0.2295, 0.2077, 0.1660, 0.1617,\n",
+      "        0.1526, 0.1857, 0.2227, 0.1978, 0.2139, 0.1823, 0.1880, 0.1844, 0.2074,\n",
+      "        0.2051, 0.4243, 0.2449, 0.1514, 0.1766, 0.1849, 0.2138, 0.2277, 0.1031,\n",
+      "        0.1559, 0.1691, 0.2268, 0.2062, 0.2210, 0.2209, 0.1995, 0.2355, 0.2613,\n",
+      "        0.1876, 0.1904, 0.2559, 0.1507, 0.1689, 0.1749, 0.2280, 0.1980, 0.1692,\n",
+      "        0.2255, 0.4082, 0.1649, 0.1658, 0.1278, 0.1273, 0.2026, 0.1566, 0.1960,\n",
+      "        0.1890, 0.2154, 0.2124, 0.1172, 0.1521, 0.1626, 0.1835, 0.1135, 0.2117,\n",
+      "        0.1996, 0.1671, 0.2173, 0.2204, 0.1211, 0.1424, 0.1582, 0.1512, 0.1865,\n",
+      "        0.1502, 0.2010, 0.1269, 0.3775, 0.1989, 0.1716, 0.2055, 0.2056, 0.1696,\n",
+      "        0.1846, 0.2407, 0.2193, 0.1593, 0.1509, 0.1764, 0.2205, 0.1913, 0.1969,\n",
+      "        0.1696, 0.2010, 0.2214, 0.1740, 0.2145, 0.2587, 0.2331, 0.2102, 0.1827,\n",
+      "        0.1896, 0.1607, 0.1310, 0.2213, 0.2021, 0.2233, 0.1184, 0.1840, 0.1279,\n",
+      "        0.2227, 0.1521, 0.2099, 0.1859, 0.1437, 0.1601, 0.2138, 0.1630, 0.3015,\n",
+      "        0.1708, 0.2301, 0.1215, 0.2429, 0.2331, 0.1996, 0.1839, 0.1668, 0.1665,\n",
+      "        0.1571, 0.1752, 0.3044, 0.1516, 0.1706, 0.1687, 0.1599, 0.1549, 0.2160,\n",
+      "        0.1725, 0.1570, 0.1963, 0.2065, 0.1316, 0.1707, 0.1742, 0.1593, 0.1670,\n",
+      "        0.1837, 0.1533, 0.1592, 0.1633, 0.1205, 0.1684, 0.1703, 0.1913, 0.1363,\n",
+      "        0.3117, 0.2218, 0.1724, 0.2134, 0.2055, 0.1988, 0.1140, 0.1758, 0.1901,\n",
+      "        0.1772, 0.1644, 0.1789, 0.1898, 0.2312, 0.1859, 0.1234, 0.1431, 0.1897,\n",
+      "        0.2471, 0.1197, 0.1706, 0.2154, 0.2242, 0.2522, 0.1380, 0.2218, 0.1330,\n",
+      "        0.1230, 0.1190, 0.1390, 0.2321, 0.1631, 0.1878, 0.1863, 0.1808, 0.1549,\n",
+      "        0.1442, 0.1069, 0.2181, 0.1355, 0.2692, 0.2846, 0.1620, 0.1794, 0.1758,\n",
+      "        0.1528, 0.1894, 0.1727, 0.2205, 0.1819, 0.1952, 0.2591, 0.2212, 0.2237,\n",
+      "        0.2420, 0.1300, 0.2294, 0.1187, 0.1242, 0.1622, 0.2032, 0.1323, 0.1910,\n",
+      "        0.1984, 0.1730, 0.2724, 0.1937, 0.1699, 0.2187, 0.1602, 0.1104, 0.1863,\n",
+      "        0.1791, 0.1850, 0.1937, 0.2359, 0.2013, 0.1851, 0.1583, 0.1522, 0.1657,\n",
+      "        0.1526, 0.1945, 0.1328, 0.1501, 0.1883, 0.1756, 0.1616, 0.2132, 0.2477,\n",
+      "        0.1187, 0.2687, 0.1713, 0.1964])), ('pretrained_model.layer3.1.bn2.bias', tensor([-0.0836, -0.0465, -0.0438, -0.0393, -0.0975,  0.1150, -0.1078, -0.0922,\n",
+      "        -0.2363, -0.0875, -0.0160, -0.3863, -0.0563, -0.0339, -0.0433,  0.0098,\n",
+      "        -0.0025, -0.0496, -0.0660, -0.0880, -0.0626, -0.0843, -0.0749, -0.0607,\n",
+      "        -0.0694,  0.0037, -0.0784,  0.0148, -0.3324, -0.0752,  0.0726, -0.0791,\n",
+      "        -0.0857, -0.0901, -0.0916,  0.0766, -0.0143, -0.0552, -0.0139, -0.0882,\n",
+      "        -0.0510, -0.0550, -0.0373, -0.0785, -0.0795, -0.0850, -0.0911, -0.1689,\n",
+      "        -0.1289,  0.0561,  0.0500, -0.0906, -0.0369, -0.0238, -0.0859, -0.3670,\n",
+      "        -0.0944, -0.1116, -0.0053, -0.0111, -0.0719,  0.0514, -0.0234, -0.0300,\n",
+      "        -0.1195, -0.0984, -0.0120, -0.0135,  0.0089, -0.0590,  0.0150, -0.0960,\n",
+      "        -0.0899, -0.0262, -0.1334,  0.0099,  0.0103,  0.0905, -0.0204,  0.0587,\n",
+      "        -0.0392, -0.0430, -0.0714,  0.0241, -0.0759, -0.0289,  0.0657, -0.0921,\n",
+      "        -0.0756,  0.0585, -0.0575, -0.1464, -0.0789,  0.0506,  0.0727, -0.1028,\n",
+      "        -0.1011, -0.1132, -0.0262,  0.0055, -0.0811, -0.0687, -0.0945, -0.0874,\n",
+      "        -0.0984, -0.1072, -0.0877, -0.0398, -0.1708, -0.0513,  0.0115, -0.1064,\n",
+      "        -0.1200, -0.0676,  0.0465, -0.0587,  0.1706,  0.2438,  0.0217, -0.0405,\n",
+      "        -0.0496, -0.0554, -0.0319, -0.0598,  0.0456, -0.3123, -0.0840, -0.1381,\n",
+      "         0.0890, -0.0527, -0.0875, -0.0946, -0.0845, -0.1904, -0.0452, -0.0745,\n",
+      "        -0.0326, -0.2280, -0.0563, -0.0226,  0.0374,  0.2030, -0.0430, -0.0463,\n",
+      "         0.0046,  0.0454, -0.0894, -0.0728, -0.0353, -0.0567, -0.0214, -0.0767,\n",
+      "         0.0022, -0.0401, -0.0179, -0.0375,  0.0310,  0.0153, -0.0208,  0.0656,\n",
+      "        -0.0701,  0.0788, -0.1711, -0.0883, -0.0618, -0.1348, -0.0428, -0.1891,\n",
+      "         0.0364, -0.0794, -0.0446, -0.0352, -0.0754,  0.0049, -0.0612, -0.0975,\n",
+      "        -0.1257,  0.0484, -0.0197, -0.0378, -0.0249, -0.0232, -0.0506, -0.0922,\n",
+      "        -0.0921, -0.1445, -0.0216, -0.0910, -0.0239, -0.0229,  0.1770, -0.0212,\n",
+      "        -0.0873, -0.0122, -0.0375, -0.0608, -0.1171,  0.0555,  0.0604,  0.0894,\n",
+      "        -0.0863, -0.1664, -0.0999, -0.0800, -0.0070, -0.0464, -0.0717,  0.0174,\n",
+      "        -0.1305, -0.1391, -0.0582, -0.0523, -0.0847, -0.0996, -0.0865, -0.0573,\n",
+      "        -0.0299,  0.0209, -0.1141,  0.0495, -0.0007, -0.1130, -0.0633,  0.0114,\n",
+      "        -0.0979, -0.0698,  0.0173, -0.1294, -0.0573, -0.1244, -0.0606, -0.0411,\n",
+      "         0.0887, -0.0860, -0.1084, -0.0596, -0.0899, -0.0660, -0.1035, -0.1030,\n",
+      "         0.0251, -0.0253, -0.0397, -0.0051, -0.0999,  0.0830, -0.0085, -0.0044,\n",
+      "        -0.0849, -0.0327, -0.0882, -0.1392,  0.0213, -0.1995, -0.1325, -0.1038])), ('pretrained_model.layer3.1.bn2.running_mean', tensor([ 1.7165e-01, -1.0428e-01, -8.8727e-03, -4.1204e-02,  7.1586e-03,\n",
+      "         1.3151e-01, -9.1335e-02,  4.9985e-01, -1.1983e-01, -1.0972e-02,\n",
+      "         1.1991e-02,  1.0272e-01,  1.0785e-01, -6.1742e-02, -1.3297e-01,\n",
+      "         5.5100e-02,  1.1159e-01, -8.6415e-02, -9.0435e-03, -2.2232e-01,\n",
+      "         4.9337e-02,  1.9741e-02, -7.8093e-02, -9.0465e-02, -5.4904e-02,\n",
+      "         5.9840e-02, -1.1201e-01,  4.2602e-02,  9.3057e-02, -7.7230e-01,\n",
+      "         1.6799e-01,  3.0912e-02, -1.9953e-02, -3.9762e-03,  1.7162e-01,\n",
+      "         2.1037e-01,  2.0745e-02, -1.2686e-01, -2.5226e-01, -2.6669e-04,\n",
+      "        -1.0797e-01, -8.1415e-02,  1.8134e-03, -9.4901e-02, -2.9595e-02,\n",
+      "         6.3540e-02, -1.9104e-02, -2.5031e-03, -5.6162e-02,  5.0156e-02,\n",
+      "         1.1735e-01, -1.0279e-01,  6.2472e-02, -1.3077e-01, -8.2106e-02,\n",
+      "        -4.2029e-01, -5.0900e-02, -8.7375e-02,  7.1770e-02,  1.8007e-02,\n",
+      "        -1.0590e-01, -2.9060e-02,  4.4960e-02,  3.7329e-02, -1.5201e-01,\n",
+      "        -8.1670e-02,  2.0483e-02,  1.1867e-01,  5.7765e-02, -8.7763e-02,\n",
+      "        -3.2886e-02, -3.5287e-02, -4.2497e-02, -4.2942e-03, -2.5978e-03,\n",
+      "         7.5316e-03,  1.0982e-01,  1.9264e-01,  3.5367e-02,  2.2644e-01,\n",
+      "        -4.5391e-03,  1.5215e-01, -2.3690e-02, -1.1459e-01, -1.2156e-01,\n",
+      "        -9.9582e-02,  2.5566e-01, -1.1092e-01, -6.3886e-02, -5.5539e-02,\n",
+      "         1.6921e-02,  2.2352e-01, -8.4063e-03,  6.7673e-02, -4.7941e-02,\n",
+      "         1.1530e-01, -7.5626e-02, -9.1757e-02,  1.5400e-02,  2.8028e-02,\n",
+      "         1.0494e-01, -6.1014e-02, -4.1956e-02, -1.6357e-02, -6.7088e-02,\n",
+      "        -5.1025e-02, -1.0495e-01, -1.3856e-01,  9.1652e-02,  3.6206e-02,\n",
+      "         1.2513e-02, -8.5966e-02, -1.3736e-01, -8.8427e-02,  8.0441e-02,\n",
+      "        -1.9316e-02,  5.3282e-01, -4.1873e-01,  4.2585e-02,  3.8562e-02,\n",
+      "        -2.0333e-02, -4.8241e-02,  2.6796e-02, -1.1138e-01, -2.0313e-01,\n",
+      "        -9.5912e-02, -5.1088e-02, -2.5949e-02, -1.7608e-01, -3.2473e-02,\n",
+      "        -4.6136e-02, -6.4030e-02,  5.0775e-02, -5.9225e-02, -1.0056e-01,\n",
+      "        -8.2802e-02,  5.2282e-02, -2.0182e-01,  1.5904e-01, -2.4265e-01,\n",
+      "         2.9679e-02,  4.7763e-01,  1.7561e-02, -5.9793e-02,  1.1728e-01,\n",
+      "         9.0171e-02, -1.1981e-01, -2.1576e-01, -1.1556e-01, -1.7417e-01,\n",
+      "         5.1300e-02,  5.2349e-03,  1.4784e-02,  3.3835e-02,  1.7120e-01,\n",
+      "         5.2595e-03, -1.4579e-01, -1.5307e-01, -5.6553e-02, -2.2299e-01,\n",
+      "        -3.4979e-02, -1.4663e-01, -4.7092e-02, -3.8042e-02, -1.4279e-01,\n",
+      "        -1.5644e-01, -1.9826e-02, -5.8088e-02,  6.2527e-02,  1.4041e-01,\n",
+      "        -9.2324e-02,  3.4011e-02, -2.3681e-02,  2.0449e-02, -1.5991e-01,\n",
+      "        -3.2465e-02, -2.6915e-02, -6.7518e-02, -4.7309e-03,  9.3854e-02,\n",
+      "        -8.9531e-01, -2.3707e-01, -1.4793e-02, -7.3487e-02, -1.6031e-02,\n",
+      "         1.6650e-01, -1.7371e-01, -6.7983e-02,  7.2415e-03, -6.1315e-02,\n",
+      "         2.0595e-01, -8.5400e-02, -3.3249e-02, -1.3197e-02, -4.8563e-02,\n",
+      "        -1.9534e-02, -1.0123e-01,  1.7789e-02, -1.6880e-01,  4.9338e-02,\n",
+      "        -6.3263e-02, -1.0491e-01, -1.4364e-01, -1.2636e-02,  7.1875e-02,\n",
+      "        -1.7264e-02, -2.5602e-03,  5.1017e-02,  8.0430e-03, -7.0965e-02,\n",
+      "         5.4034e-03,  4.8686e-02, -5.8720e-02,  9.1407e-02, -2.1835e-02,\n",
+      "        -7.0607e-02,  8.7950e-02, -9.0917e-02, -9.5874e-02,  1.2163e-01,\n",
+      "        -2.7653e-02, -5.2224e-02, -4.0432e-02, -8.3105e-02, -5.1745e-02,\n",
+      "        -4.3558e-02,  7.2352e-02, -1.1395e-01, -1.5850e-01,  8.4645e-02,\n",
+      "        -1.2677e-01, -6.9192e-02,  2.1972e-01, -3.1530e-02, -2.0272e-01,\n",
+      "         5.4277e-03, -6.8627e-02,  2.1245e-02, -1.8427e-02, -2.9953e-02,\n",
+      "        -2.2413e-01,  3.5067e-02, -2.1458e-02, -1.8186e-02, -2.6018e-02,\n",
+      "         2.5123e-02, -9.6924e-02,  6.5033e-02, -1.6278e-01,  8.1953e-02,\n",
+      "         8.5281e-02, -1.3582e-01,  6.2580e-02, -2.7500e-01, -4.1883e-02,\n",
+      "         4.5058e-02])), ('pretrained_model.layer3.1.bn2.running_var', tensor([0.0169, 0.0250, 0.0161, 0.0126, 0.0099, 0.0319, 0.0185, 0.0297, 0.0177,\n",
+      "        0.0139, 0.0194, 0.0431, 0.0139, 0.0144, 0.0404, 0.0348, 0.0152, 0.0178,\n",
+      "        0.0129, 0.0192, 0.0296, 0.0281, 0.0131, 0.0208, 0.0228, 0.0302, 0.0189,\n",
+      "        0.0310, 0.0807, 0.0524, 0.0341, 0.0170, 0.0152, 0.0251, 0.0225, 0.0214,\n",
+      "        0.0097, 0.0109, 0.0279, 0.0197, 0.0173, 0.0319, 0.0204, 0.0322, 0.0264,\n",
+      "        0.0167, 0.0197, 0.0180, 0.0111, 0.0239, 0.0353, 0.0224, 0.0161, 0.0141,\n",
+      "        0.0313, 0.0825, 0.0096, 0.0155, 0.0183, 0.0102, 0.0145, 0.0188, 0.0239,\n",
+      "        0.0155, 0.0201, 0.0357, 0.0099, 0.0272, 0.0287, 0.0130, 0.0137, 0.0244,\n",
+      "        0.0185, 0.0342, 0.0199, 0.0295, 0.0205, 0.0296, 0.0194, 0.0263, 0.0189,\n",
+      "        0.0202, 0.0165, 0.0152, 0.0458, 0.0482, 0.0398, 0.0245, 0.0142, 0.0354,\n",
+      "        0.0120, 0.0166, 0.0325, 0.0139, 0.0222, 0.0180, 0.0206, 0.0113, 0.0156,\n",
+      "        0.0185, 0.0182, 0.0161, 0.0129, 0.0220, 0.0231, 0.0280, 0.0216, 0.0216,\n",
+      "        0.0147, 0.0117, 0.0147, 0.0169, 0.0160, 0.0268, 0.0174, 0.0153, 0.0231,\n",
+      "        0.0551, 0.0302, 0.0246, 0.0195, 0.0087, 0.0155, 0.0140, 0.0168, 0.0205,\n",
+      "        0.0136, 0.0313, 0.0126, 0.0293, 0.0128, 0.0153, 0.0167, 0.0177, 0.0143,\n",
+      "        0.0080, 0.0175, 0.0246, 0.0236, 0.0188, 0.0230, 0.0213, 0.0156, 0.0231,\n",
+      "        0.0156, 0.0225, 0.0138, 0.0246, 0.0227, 0.0147, 0.0135, 0.0122, 0.0216,\n",
+      "        0.0254, 0.0219, 0.0138, 0.0375, 0.0143, 0.0140, 0.0341, 0.0250, 0.0277,\n",
+      "        0.0226, 0.0266, 0.0145, 0.0150, 0.0247, 0.0114, 0.0205, 0.0240, 0.0161,\n",
+      "        0.0273, 0.0217, 0.0184, 0.0168, 0.0257, 0.0120, 0.0228, 0.0165, 0.0148,\n",
+      "        0.0598, 0.0114, 0.0149, 0.0304, 0.0313, 0.0190, 0.0124, 0.0273, 0.0170,\n",
+      "        0.0124, 0.0170, 0.0171, 0.0202, 0.0092, 0.0233, 0.0142, 0.0136, 0.0202,\n",
+      "        0.0239, 0.0154, 0.0229, 0.0172, 0.0279, 0.0401, 0.0135, 0.0138, 0.0131,\n",
+      "        0.0101, 0.0209, 0.0141, 0.0266, 0.0208, 0.0178, 0.0235, 0.0230, 0.0376,\n",
+      "        0.0219, 0.0126, 0.0247, 0.0195, 0.0149, 0.0142, 0.0101, 0.0285, 0.0142,\n",
+      "        0.0280, 0.0150, 0.0260, 0.0160, 0.0299, 0.0427, 0.0142, 0.0207, 0.0229,\n",
+      "        0.0150, 0.0158, 0.0148, 0.0282, 0.0248, 0.0131, 0.0201, 0.0161, 0.0147,\n",
+      "        0.0180, 0.0181, 0.0274, 0.0134, 0.0167, 0.0135, 0.0134, 0.0225, 0.0174,\n",
+      "        0.0199, 0.0290, 0.0156, 0.0163])), ('pretrained_model.layer3.1.bn2.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.1.conv3.weight', tensor([[[[-0.0103]],\n",
+      "\n",
+      "         [[ 0.0257]],\n",
+      "\n",
+      "         [[ 0.0079]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0052]],\n",
+      "\n",
+      "         [[ 0.0028]],\n",
+      "\n",
+      "         [[-0.0127]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0080]],\n",
+      "\n",
+      "         [[-0.0004]],\n",
+      "\n",
+      "         [[-0.0201]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0064]],\n",
+      "\n",
+      "         [[-0.0074]],\n",
+      "\n",
+      "         [[ 0.0082]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0132]],\n",
+      "\n",
+      "         [[-0.0012]],\n",
+      "\n",
+      "         [[-0.0080]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0236]],\n",
+      "\n",
+      "         [[ 0.0054]],\n",
+      "\n",
+      "         [[-0.0007]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0267]],\n",
+      "\n",
+      "         [[-0.0139]],\n",
+      "\n",
+      "         [[ 0.0082]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0466]],\n",
+      "\n",
+      "         [[-0.0192]],\n",
+      "\n",
+      "         [[ 0.0380]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0072]],\n",
+      "\n",
+      "         [[ 0.0079]],\n",
+      "\n",
+      "         [[-0.0168]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0265]],\n",
+      "\n",
+      "         [[-0.0010]],\n",
+      "\n",
+      "         [[-0.0080]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0212]],\n",
+      "\n",
+      "         [[ 0.0196]],\n",
+      "\n",
+      "         [[ 0.0030]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0177]],\n",
+      "\n",
+      "         [[-0.0058]],\n",
+      "\n",
+      "         [[ 0.0023]]]])), ('pretrained_model.layer3.1.bn3.weight', tensor([0.0433, 0.0857, 0.0961,  ..., 0.1396, 0.1287, 0.1553])), ('pretrained_model.layer3.1.bn3.bias', tensor([-0.0808, -0.0219, -0.0114,  ..., -0.0181, -0.0828, -0.1049])), ('pretrained_model.layer3.1.bn3.running_mean', tensor([-0.0383,  0.0091, -0.0042,  ...,  0.0019,  0.0017, -0.0449])), ('pretrained_model.layer3.1.bn3.running_var', tensor([0.0007, 0.0010, 0.0014,  ..., 0.0019, 0.0016, 0.0017])), ('pretrained_model.layer3.1.bn3.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.2.conv1.weight', tensor([[[[-0.0018]],\n",
+      "\n",
+      "         [[-0.0358]],\n",
+      "\n",
+      "         [[-0.0020]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0391]],\n",
+      "\n",
+      "         [[-0.0340]],\n",
+      "\n",
+      "         [[-0.0138]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0111]],\n",
+      "\n",
+      "         [[-0.0005]],\n",
+      "\n",
+      "         [[ 0.0091]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0461]],\n",
+      "\n",
+      "         [[-0.0026]],\n",
+      "\n",
+      "         [[ 0.0216]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0051]],\n",
+      "\n",
+      "         [[-0.0282]],\n",
+      "\n",
+      "         [[ 0.0138]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0096]],\n",
+      "\n",
+      "         [[-0.0197]],\n",
+      "\n",
+      "         [[ 0.0297]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0045]],\n",
+      "\n",
+      "         [[ 0.0086]],\n",
+      "\n",
+      "         [[ 0.0051]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0087]],\n",
+      "\n",
+      "         [[-0.0192]],\n",
+      "\n",
+      "         [[ 0.0046]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0099]],\n",
+      "\n",
+      "         [[-0.0093]],\n",
+      "\n",
+      "         [[-0.0019]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0076]],\n",
+      "\n",
+      "         [[-0.0130]],\n",
+      "\n",
+      "         [[ 0.0313]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0259]],\n",
+      "\n",
+      "         [[ 0.0128]],\n",
+      "\n",
+      "         [[ 0.0039]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0200]],\n",
+      "\n",
+      "         [[ 0.0172]],\n",
+      "\n",
+      "         [[-0.0072]]]])), ('pretrained_model.layer3.2.bn1.weight', tensor([0.2163, 0.1826, 0.1111, 0.1268, 0.1817, 0.1514, 0.1736, 0.1703, 0.1483,\n",
+      "        0.1836, 0.1205, 0.1431, 0.0906, 0.1195, 0.1772, 0.1191, 0.1780, 0.1500,\n",
+      "        0.1354, 0.1611, 0.1464, 0.1755, 0.1788, 0.1577, 0.2428, 0.2371, 0.1695,\n",
+      "        0.1546, 0.1421, 0.1917, 0.1526, 0.1311, 0.1041, 0.1399, 0.1636, 0.1299,\n",
+      "        0.1797, 0.1244, 0.1851, 0.1666, 0.1245, 0.1747, 0.0926, 0.1649, 0.1541,\n",
+      "        0.1642, 0.1522, 0.1956, 0.1183, 0.1475, 0.1740, 0.2021, 0.1675, 0.2166,\n",
+      "        0.1098, 0.1357, 0.1574, 0.0961, 0.1614, 0.1408, 0.1480, 0.1740, 0.1806,\n",
+      "        0.1467, 0.2599, 0.1028, 0.1168, 0.1300, 0.1445, 0.1601, 0.1283, 0.2244,\n",
+      "        0.1743, 0.1545, 0.1681, 0.1423, 0.1319, 0.1025, 0.1701, 0.1591, 0.1756,\n",
+      "        0.1363, 0.1946, 0.1334, 0.1517, 0.1281, 0.2017, 0.0883, 0.1527, 0.2718,\n",
+      "        0.1252, 0.1583, 0.1530, 0.1416, 0.1563, 0.1579, 0.1253, 0.1692, 0.1140,\n",
+      "        0.2044, 0.1640, 0.1247, 0.1913, 0.1358, 0.1387, 0.2160, 0.0977, 0.1021,\n",
+      "        0.1504, 0.1363, 0.1484, 0.1667, 0.1529, 0.1034, 0.1621, 0.1699, 0.1536,\n",
+      "        0.0995, 0.0912, 0.1343, 0.1537, 0.1635, 0.1510, 0.1434, 0.1525, 0.1343,\n",
+      "        0.1296, 0.1338, 0.1524, 0.1415, 0.1637, 0.1650, 0.1479, 0.1302, 0.1451,\n",
+      "        0.1606, 0.1633, 0.1502, 0.1449, 0.1500, 0.1652, 0.1900, 0.1473, 0.1302,\n",
+      "        0.1409, 0.1448, 0.1639, 0.1591, 0.1921, 0.1360, 0.1347, 0.1281, 0.1541,\n",
+      "        0.1732, 0.1469, 0.1507, 0.1483, 0.1434, 0.1405, 0.1428, 0.1164, 0.1719,\n",
+      "        0.1474, 0.1383, 0.1672, 0.2091, 0.1567, 0.1769, 0.1357, 0.1262, 0.0788,\n",
+      "        0.1545, 0.1787, 0.1503, 0.1387, 0.1307, 0.1848, 0.1760, 0.1402, 0.1496,\n",
+      "        0.2221, 0.1391, 0.1624, 0.1366, 0.1891, 0.1405, 0.1789, 0.1518, 0.1613,\n",
+      "        0.1416, 0.1324, 0.1715, 0.1643, 0.1403, 0.1614, 0.1538, 0.1936, 0.1399,\n",
+      "        0.1348, 0.2008, 0.1294, 0.1314, 0.1560, 0.2086, 0.1753, 0.1525, 0.1784,\n",
+      "        0.1698, 0.2062, 0.1490, 0.2048, 0.1575, 0.1666, 0.1361, 0.1420, 0.1319,\n",
+      "        0.1666, 0.1428, 0.1775, 0.1607, 0.1620, 0.1535, 0.1242, 0.1444, 0.1372,\n",
+      "        0.1687, 0.1472, 0.1168, 0.1624, 0.1055, 0.1026, 0.1676, 0.1290, 0.1702,\n",
+      "        0.1889, 0.1280, 0.1495, 0.1577, 0.1765, 0.1481, 0.1459, 0.1837, 0.1732,\n",
+      "        0.1987, 0.1954, 0.1769, 0.1211, 0.1704, 0.1436, 0.1093, 0.1377, 0.1797,\n",
+      "        0.1516, 0.1638, 0.1388, 0.1833])), ('pretrained_model.layer3.2.bn1.bias', tensor([-0.0907, -0.2106,  0.0473,  0.0528, -0.1139, -0.1062, -0.1009, -0.1103,\n",
+      "        -0.0113, -0.0965, -0.0644, -0.0601,  0.1023,  0.0567, -0.0385, -0.0026,\n",
+      "        -0.0862, -0.1203, -0.0140, -0.0842, -0.0729, -0.1006,  0.0463, -0.0684,\n",
+      "        -0.1884, -0.1439, -0.0579, -0.0069, -0.0145, -0.1550, -0.1447, -0.0405,\n",
+      "         0.0879, -0.0047, -0.0276,  0.0264, -0.0395,  0.0342, -0.1238, -0.0260,\n",
+      "         0.0383, -0.0952,  0.0361, -0.0755, -0.0419,  0.0230, -0.0734, -0.1435,\n",
+      "         0.0546,  0.0015, -0.0850, -0.0992, -0.1369, -0.1178,  0.0051,  0.0240,\n",
+      "        -0.1053,  0.1136, -0.0951, -0.0619, -0.0530, -0.0390, -0.1084, -0.0221,\n",
+      "        -0.0280,  0.0414,  0.1056, -0.0488, -0.0477, -0.1264,  0.0018, -0.2854,\n",
+      "        -0.0328, -0.0462, -0.0299, -0.1062, -0.0159, -0.0517, -0.0780, -0.0065,\n",
+      "        -0.0310,  0.0249,  0.0361,  0.0453, -0.1126,  0.0488, -0.1347,  0.0460,\n",
+      "        -0.0223, -0.0579,  0.0251, -0.0747, -0.0353, -0.0315, -0.1141, -0.0771,\n",
+      "        -0.0150, -0.1229, -0.0619, -0.1400, -0.1389, -0.0624, -0.0884, -0.0891,\n",
+      "        -0.0046, -0.1963, -0.0120,  0.0574, -0.0265, -0.0761, -0.0358, -0.1197,\n",
+      "         0.0182,  0.0820, -0.0905, -0.0276, -0.0863,  0.0961,  0.0771, -0.0070,\n",
+      "        -0.0538, -0.0420,  0.0191, -0.0087, -0.0349, -0.0124,  0.0148, -0.0773,\n",
+      "        -0.0562, -0.0638, -0.0621, -0.0109,  0.0138, -0.0812, -0.0394, -0.0570,\n",
+      "        -0.0735,  0.0049, -0.0454, -0.0809, -0.0509, -0.0994, -0.0011, -0.1059,\n",
+      "        -0.0738, -0.0053, -0.0507, -0.0951, -0.1162,  0.0270, -0.0020, -0.0174,\n",
+      "         0.0134, -0.1191, -0.0075, -0.1261, -0.0758, -0.0184, -0.0986, -0.0386,\n",
+      "         0.0160, -0.1458, -0.0835, -0.0437, -0.1592, -0.1262, -0.0490, -0.1582,\n",
+      "        -0.0093,  0.0392,  0.0393, -0.0251, -0.1169,  0.0072,  0.0085, -0.0181,\n",
+      "        -0.0188, -0.0904,  0.0527, -0.0239, -0.0678, -0.0517, -0.0998, -0.0061,\n",
+      "        -0.0429,  0.0005, -0.1098, -0.0484, -0.0762, -0.1056, -0.0803, -0.0964,\n",
+      "        -0.0972, -0.0179, -0.0914, -0.0266, -0.1549,  0.0752,  0.0457, -0.1473,\n",
+      "        -0.0833,  0.0205,  0.0152, -0.0965, -0.0369, -0.0739, -0.0465, -0.0227,\n",
+      "        -0.1312,  0.0095, -0.1467, -0.0083, -0.1151, -0.0017, -0.0615, -0.0665,\n",
+      "        -0.1550,  0.0031, -0.1179,  0.0319, -0.0465, -0.0426,  0.0311, -0.0148,\n",
+      "         0.1092, -0.0532, -0.0349, -0.0239, -0.0717,  0.0408,  0.0284, -0.1227,\n",
+      "         0.0401, -0.0480, -0.0888,  0.0516, -0.0755, -0.1184, -0.0771, -0.0863,\n",
+      "        -0.0051, -0.1087, -0.0609, -0.0908, -0.1306,  0.0342, -0.0006, -0.1048,\n",
+      "        -0.0351,  0.0917, -0.0882, -0.0710,  0.0748, -0.0718, -0.0148, -0.0790])), ('pretrained_model.layer3.2.bn1.running_mean', tensor([-0.0238,  0.0638, -0.0049, -0.0214, -0.0749, -0.0626, -0.0239, -0.0659,\n",
+      "        -0.0347, -0.0820,  0.0257, -0.0674, -0.0983, -0.0895, -0.0461, -0.0734,\n",
+      "        -0.1225, -0.0730, -0.0804, -0.1363, -0.0292, -0.0955, -0.0716, -0.0304,\n",
+      "        -0.1714, -0.0410, -0.0780, -0.0932, -0.0467, -0.1137, -0.0194, -0.0235,\n",
+      "        -0.0263, -0.1033, -0.0945, -0.0330, -0.0276, -0.0288,  0.0826,  0.0319,\n",
+      "        -0.1034, -0.0827, -0.0036, -0.0094, -0.0647, -0.0726, -0.0067,  0.0453,\n",
+      "        -0.0791,  0.0021, -0.0631, -0.1055, -0.0006, -0.0118,  0.0618,  0.0096,\n",
+      "        -0.0370, -0.0279,  0.0040, -0.0536,  0.0558,  0.0115, -0.0053,  0.0512,\n",
+      "        -0.0173, -0.0489, -0.0960, -0.0417, -0.0311, -0.0800, -0.0070, -0.0244,\n",
+      "         0.0407, -0.0395, -0.0746, -0.0521, -0.0846, -0.0341, -0.0687, -0.0660,\n",
+      "        -0.0972,  0.0799, -0.0486, -0.0217, -0.0304, -0.0665, -0.0480,  0.0127,\n",
+      "        -0.0211, -0.0277, -0.0979, -0.0335, -0.0044, -0.0497, -0.0945,  0.0081,\n",
+      "        -0.0952, -0.0543,  0.0178, -0.0923, -0.0465, -0.0872, -0.0047, -0.0219,\n",
+      "         0.0498,  0.0589, -0.0205, -0.1676, -0.0693,  0.0326, -0.1242, -0.0570,\n",
+      "        -0.0295,  0.0456, -0.0031,  0.0147, -0.0308, -0.1296, -0.0497, -0.0529,\n",
+      "        -0.0307,  0.0062, -0.1780, -0.0380, -0.1386, -0.1054, -0.1543, -0.0130,\n",
+      "         0.0456, -0.0243,  0.0124, -0.0556,  0.0225,  0.0273,  0.0153,  0.0509,\n",
+      "        -0.0580, -0.0937, -0.0183, -0.0220, -0.0461, -0.0763,  0.0084,  0.0192,\n",
+      "         0.0091, -0.0875, -0.0147,  0.0409,  0.0571, -0.0087, -0.0985,  0.0294,\n",
+      "        -0.0122, -0.0659, -0.0538,  0.0046, -0.0276,  0.0191, -0.0452, -0.0469,\n",
+      "        -0.0114, -0.0856, -0.0312, -0.0093,  0.0468, -0.0024, -0.0242,  0.0041,\n",
+      "         0.0134, -0.1557, -0.0040, -0.0250, -0.1539,  0.0408, -0.0154, -0.0374,\n",
+      "        -0.1901,  0.0142,  0.0167, -0.1461, -0.0514, -0.0730, -0.0406, -0.0710,\n",
+      "        -0.0077, -0.0296, -0.0942, -0.0217, -0.0128, -0.0631, -0.1154,  0.0006,\n",
+      "         0.0411, -0.1164, -0.0551, -0.0174,  0.0589, -0.0875,  0.0055,  0.0182,\n",
+      "        -0.0230, -0.1258, -0.1209, -0.0851,  0.0088, -0.0641, -0.0306, -0.1045,\n",
+      "        -0.1058, -0.0720, -0.1052, -0.1233,  0.0177, -0.0567, -0.0403, -0.0798,\n",
+      "         0.0271, -0.0836, -0.0754, -0.0887, -0.0643,  0.0150,  0.0265, -0.0205,\n",
+      "         0.0347,  0.0263, -0.0082,  0.0151, -0.0046, -0.0382, -0.0102, -0.0710,\n",
+      "        -0.1163,  0.0290,  0.1198, -0.1086, -0.0456, -0.0632, -0.1151, -0.0470,\n",
+      "        -0.0724, -0.0869,  0.0492,  0.0014, -0.0453, -0.0500, -0.0989, -0.0215,\n",
+      "        -0.0544, -0.0318, -0.0055, -0.0949, -0.1612, -0.0599, -0.0436,  0.0297])), ('pretrained_model.layer3.2.bn1.running_var', tensor([0.0133, 0.0078, 0.0122, 0.0164, 0.0108, 0.0064, 0.0120, 0.0129, 0.0103,\n",
+      "        0.0091, 0.0085, 0.0101, 0.0132, 0.0090, 0.0198, 0.0110, 0.0148, 0.0086,\n",
+      "        0.0103, 0.0083, 0.0066, 0.0112, 0.0121, 0.0063, 0.0146, 0.0106, 0.0122,\n",
+      "        0.0135, 0.0133, 0.0090, 0.0057, 0.0089, 0.0107, 0.0116, 0.0146, 0.0107,\n",
+      "        0.0151, 0.0147, 0.0086, 0.0150, 0.0246, 0.0232, 0.0136, 0.0070, 0.0088,\n",
+      "        0.0165, 0.0105, 0.0073, 0.0104, 0.0102, 0.0112, 0.0119, 0.0067, 0.0186,\n",
+      "        0.0125, 0.0182, 0.0061, 0.0121, 0.0113, 0.0077, 0.0150, 0.0143, 0.0106,\n",
+      "        0.0178, 0.0218, 0.0132, 0.0117, 0.0118, 0.0099, 0.0105, 0.0189, 0.0147,\n",
+      "        0.0142, 0.0103, 0.0107, 0.0057, 0.0091, 0.0116, 0.0145, 0.0122, 0.0129,\n",
+      "        0.0170, 0.0297, 0.0122, 0.0064, 0.0223, 0.0093, 0.0138, 0.0147, 0.0209,\n",
+      "        0.0151, 0.0088, 0.0132, 0.0092, 0.0064, 0.0053, 0.0082, 0.0076, 0.0085,\n",
+      "        0.0124, 0.0089, 0.0079, 0.0102, 0.0088, 0.0173, 0.0156, 0.0147, 0.0135,\n",
+      "        0.0107, 0.0120, 0.0127, 0.0088, 0.0132, 0.0094, 0.0093, 0.0096, 0.0111,\n",
+      "        0.0103, 0.0161, 0.0119, 0.0131, 0.0144, 0.0145, 0.0137, 0.0120, 0.0105,\n",
+      "        0.0126, 0.0078, 0.0072, 0.0078, 0.0080, 0.0143, 0.0158, 0.0085, 0.0065,\n",
+      "        0.0112, 0.0078, 0.0100, 0.0091, 0.0145, 0.0116, 0.0119, 0.0116, 0.0070,\n",
+      "        0.0126, 0.0086, 0.0077, 0.0106, 0.0089, 0.0148, 0.0139, 0.0121, 0.0098,\n",
+      "        0.0093, 0.0123, 0.0080, 0.0123, 0.0130, 0.0097, 0.0081, 0.0136, 0.0084,\n",
+      "        0.0058, 0.0081, 0.0063, 0.0130, 0.0112, 0.0106, 0.0135, 0.0135, 0.0110,\n",
+      "        0.0114, 0.0097, 0.0168, 0.0158, 0.0100, 0.0101, 0.0083, 0.0111, 0.0107,\n",
+      "        0.0096, 0.0071, 0.0109, 0.0086, 0.0154, 0.0089, 0.0121, 0.0086, 0.0070,\n",
+      "        0.0061, 0.0103, 0.0152, 0.0090, 0.0106, 0.0078, 0.0094, 0.0105, 0.0102,\n",
+      "        0.0265, 0.0180, 0.0051, 0.0098, 0.0135, 0.0088, 0.0085, 0.0107, 0.0095,\n",
+      "        0.0120, 0.0078, 0.0102, 0.0192, 0.0075, 0.0076, 0.0087, 0.0057, 0.0053,\n",
+      "        0.0106, 0.0128, 0.0066, 0.0151, 0.0119, 0.0096, 0.0134, 0.0141, 0.0201,\n",
+      "        0.0134, 0.0126, 0.0105, 0.0136, 0.0077, 0.0098, 0.0098, 0.0188, 0.0131,\n",
+      "        0.0133, 0.0153, 0.0079, 0.0116, 0.0104, 0.0138, 0.0088, 0.0102, 0.0189,\n",
+      "        0.0160, 0.0128, 0.0175, 0.0094, 0.0126, 0.0139, 0.0123, 0.0107, 0.0121,\n",
+      "        0.0270, 0.0091, 0.0089, 0.0129])), ('pretrained_model.layer3.2.bn1.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.2.conv2.weight', tensor([[[[-0.0072, -0.0195, -0.0058],\n",
+      "          [ 0.0010,  0.0141,  0.0007],\n",
+      "          [ 0.0130,  0.0193,  0.0202]],\n",
+      "\n",
+      "         [[ 0.0044,  0.0028, -0.0012],\n",
+      "          [ 0.0063,  0.0193,  0.0089],\n",
+      "          [-0.0032,  0.0081, -0.0016]],\n",
+      "\n",
+      "         [[ 0.0103,  0.0170,  0.0123],\n",
+      "          [-0.0230, -0.0317, -0.0120],\n",
+      "          [ 0.0191,  0.0370,  0.0174]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0329, -0.0224, -0.0177],\n",
+      "          [-0.0240, -0.0079,  0.0156],\n",
+      "          [ 0.0004,  0.0389,  0.0139]],\n",
+      "\n",
+      "         [[ 0.0140,  0.0223,  0.0244],\n",
+      "          [ 0.0008, -0.0007,  0.0229],\n",
+      "          [-0.0100, -0.0184,  0.0154]],\n",
+      "\n",
+      "         [[ 0.0642,  0.0280, -0.0508],\n",
+      "          [ 0.0920,  0.0059, -0.0933],\n",
+      "          [ 0.0771, -0.0016, -0.0700]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0016, -0.0013, -0.0078],\n",
+      "          [ 0.0064,  0.0342,  0.0049],\n",
+      "          [-0.0059, -0.0023, -0.0070]],\n",
+      "\n",
+      "         [[-0.0029,  0.0042,  0.0110],\n",
+      "          [-0.0198, -0.0042, -0.0116],\n",
+      "          [-0.0138, -0.0185, -0.0143]],\n",
+      "\n",
+      "         [[-0.0077, -0.0018,  0.0042],\n",
+      "          [-0.0041, -0.0016,  0.0116],\n",
+      "          [ 0.0007,  0.0067,  0.0169]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0084, -0.0122, -0.0004],\n",
+      "          [-0.0146, -0.0058, -0.0030],\n",
+      "          [-0.0260, -0.0190, -0.0129]],\n",
+      "\n",
+      "         [[ 0.0139,  0.0117,  0.0140],\n",
+      "          [ 0.0369,  0.0100,  0.0291],\n",
+      "          [ 0.0232,  0.0226,  0.0128]],\n",
+      "\n",
+      "         [[ 0.0235,  0.0040, -0.0117],\n",
+      "          [ 0.0134,  0.0034, -0.0201],\n",
+      "          [ 0.0269,  0.0086, -0.0191]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0082, -0.0048, -0.0079],\n",
+      "          [ 0.0086, -0.0044,  0.0103],\n",
+      "          [ 0.0072,  0.0021,  0.0197]],\n",
+      "\n",
+      "         [[-0.0124, -0.0186, -0.0148],\n",
+      "          [-0.0080, -0.0092, -0.0086],\n",
+      "          [ 0.0032,  0.0019, -0.0090]],\n",
+      "\n",
+      "         [[-0.0050, -0.0114, -0.0017],\n",
+      "          [-0.0005, -0.0050,  0.0047],\n",
+      "          [-0.0152, -0.0103, -0.0022]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0166,  0.0284, -0.0013],\n",
+      "          [-0.0035,  0.0059, -0.0020],\n",
+      "          [-0.0352, -0.0188,  0.0115]],\n",
+      "\n",
+      "         [[-0.0053, -0.0071, -0.0088],\n",
+      "          [-0.0098, -0.0042, -0.0048],\n",
+      "          [-0.0006, -0.0007,  0.0102]],\n",
+      "\n",
+      "         [[-0.0063, -0.0050, -0.0113],\n",
+      "          [-0.0146, -0.0006,  0.0050],\n",
+      "          [-0.0006,  0.0024,  0.0143]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0098, -0.0117,  0.0004],\n",
+      "          [ 0.0060, -0.0297,  0.0085],\n",
+      "          [ 0.0094, -0.0022,  0.0079]],\n",
+      "\n",
+      "         [[ 0.0042,  0.0042,  0.0046],\n",
+      "          [ 0.0161,  0.0087,  0.0149],\n",
+      "          [-0.0050, -0.0044, -0.0056]],\n",
+      "\n",
+      "         [[ 0.0067, -0.0112,  0.0022],\n",
+      "          [ 0.0050, -0.0201, -0.0057],\n",
+      "          [-0.0017, -0.0079, -0.0143]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0005, -0.0334,  0.0038],\n",
+      "          [-0.0029, -0.0139,  0.0090],\n",
+      "          [ 0.0026, -0.0121,  0.0024]],\n",
+      "\n",
+      "         [[ 0.0114, -0.0307, -0.0032],\n",
+      "          [-0.0049, -0.0309, -0.0049],\n",
+      "          [ 0.0172, -0.0120,  0.0070]],\n",
+      "\n",
+      "         [[-0.0055,  0.0012,  0.0111],\n",
+      "          [-0.0110, -0.0058,  0.0158],\n",
+      "          [-0.0006, -0.0059,  0.0022]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0236,  0.0213,  0.0277],\n",
+      "          [ 0.0341,  0.0174,  0.0132],\n",
+      "          [ 0.0063,  0.0080, -0.0132]],\n",
+      "\n",
+      "         [[-0.0278, -0.0204,  0.0090],\n",
+      "          [-0.0365, -0.0399,  0.0226],\n",
+      "          [-0.0273, -0.0473, -0.0170]],\n",
+      "\n",
+      "         [[-0.0080, -0.0007,  0.0024],\n",
+      "          [-0.0118, -0.0096,  0.0205],\n",
+      "          [-0.0098, -0.0127, -0.0019]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0128, -0.0095, -0.0076],\n",
+      "          [-0.0094, -0.0031,  0.0061],\n",
+      "          [-0.0062, -0.0043,  0.0263]],\n",
+      "\n",
+      "         [[ 0.0025, -0.0054, -0.0214],\n",
+      "          [ 0.0067,  0.0029, -0.0104],\n",
+      "          [-0.0023, -0.0107, -0.0073]],\n",
+      "\n",
+      "         [[-0.0035, -0.0018,  0.0049],\n",
+      "          [ 0.0041, -0.0022,  0.0045],\n",
+      "          [ 0.0099, -0.0053, -0.0086]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0042, -0.0133, -0.0083],\n",
+      "          [ 0.0021, -0.0363, -0.0024],\n",
+      "          [ 0.0100, -0.0137,  0.0042]],\n",
+      "\n",
+      "         [[-0.0265, -0.0159, -0.0148],\n",
+      "          [-0.0287, -0.0217, -0.0250],\n",
+      "          [-0.0244, -0.0204, -0.0267]],\n",
+      "\n",
+      "         [[-0.0167, -0.0028,  0.0039],\n",
+      "          [-0.0177, -0.0052,  0.0104],\n",
+      "          [-0.0228, -0.0061,  0.0083]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0048,  0.0133, -0.0100],\n",
+      "          [-0.0124, -0.0033, -0.0174],\n",
+      "          [-0.0206, -0.0239,  0.0040]],\n",
+      "\n",
+      "         [[-0.0096,  0.0099, -0.0143],\n",
+      "          [-0.0329,  0.0096, -0.0183],\n",
+      "          [-0.0347, -0.0061, -0.0141]],\n",
+      "\n",
+      "         [[-0.0134, -0.0039,  0.0029],\n",
+      "          [-0.0175, -0.0233,  0.0084],\n",
+      "          [-0.0076, -0.0042,  0.0252]]]])), ('pretrained_model.layer3.2.bn2.weight', tensor([0.1338, 0.1932, 0.1959, 0.1724, 0.2084, 0.2090, 0.1505, 0.1883, 0.1155,\n",
+      "        0.1734, 0.1647, 0.1752, 0.1939, 0.1070, 0.1759, 0.1787, 0.2021, 0.2705,\n",
+      "        0.2052, 0.1365, 0.2151, 0.2148, 0.1280, 0.1294, 0.1676, 0.2409, 0.1582,\n",
+      "        0.1815, 0.1028, 0.2139, 0.1753, 0.2292, 0.2040, 0.2446, 0.1906, 0.1913,\n",
+      "        0.2128, 0.1386, 0.1484, 0.2195, 0.1745, 0.1693, 0.1633, 0.1829, 0.1966,\n",
+      "        0.1781, 0.2127, 0.2056, 0.1936, 0.1417, 0.1320, 0.2104, 0.1716, 0.1687,\n",
+      "        0.1868, 0.2057, 0.1902, 0.2311, 0.2097, 0.1074, 0.2179, 0.1816, 0.1412,\n",
+      "        0.1395, 0.1372, 0.1565, 0.2395, 0.1759, 0.1704, 0.1855, 0.1951, 0.1583,\n",
+      "        0.1258, 0.1845, 0.1970, 0.1716, 0.2252, 0.2119, 0.1777, 0.2192, 0.1319,\n",
+      "        0.1309, 0.1994, 0.1792, 0.1657, 0.1479, 0.1859, 0.1813, 0.1927, 0.1704,\n",
+      "        0.1956, 0.2082, 0.1934, 0.1864, 0.1544, 0.1950, 0.2001, 0.2346, 0.1430,\n",
+      "        0.1954, 0.1825, 0.2258, 0.1664, 0.2065, 0.1770, 0.2169, 0.1702, 0.2202,\n",
+      "        0.1675, 0.2116, 0.1997, 0.1806, 0.1776, 0.1742, 0.1353, 0.1038, 0.2285,\n",
+      "        0.2113, 0.1336, 0.2107, 0.2160, 0.2031, 0.1550, 0.1617, 0.1839, 0.1244,\n",
+      "        0.2072, 0.1518, 0.1693, 0.1930, 0.1882, 0.2107, 0.1651, 0.2229, 0.1625,\n",
+      "        0.1096, 0.2091, 0.1932, 0.1694, 0.2209, 0.1582, 0.1690, 0.2208, 0.0996,\n",
+      "        0.1964, 0.1905, 0.1944, 0.0872, 0.2012, 0.1760, 0.1887, 0.1992, 0.1767,\n",
+      "        0.1858, 0.1851, 0.1754, 0.2252, 0.1823, 0.1748, 0.1948, 0.2500, 0.1584,\n",
+      "        0.1470, 0.1902, 0.1772, 0.1896, 0.2139, 0.2084, 0.2008, 0.1807, 0.1881,\n",
+      "        0.1985, 0.1722, 0.2065, 0.2006, 0.1718, 0.1939, 0.1417, 0.1713, 0.1242,\n",
+      "        0.1944, 0.1914, 0.2268, 0.1438, 0.2102, 0.2014, 0.2005, 0.2032, 0.1504,\n",
+      "        0.2332, 0.2082, 0.1087, 0.1789, 0.1635, 0.1360, 0.2263, 0.2438, 0.1955,\n",
+      "        0.1739, 0.1738, 0.2256, 0.2219, 0.1495, 0.1832, 0.1429, 0.1086, 0.1455,\n",
+      "        0.2214, 0.2048, 0.1492, 0.1570, 0.1702, 0.1195, 0.1395, 0.1520, 0.1978,\n",
+      "        0.2126, 0.2599, 0.2395, 0.1836, 0.1321, 0.1920, 0.2142, 0.2072, 0.1366,\n",
+      "        0.1576, 0.2247, 0.1559, 0.1739, 0.1851, 0.1804, 0.1964, 0.2495, 0.1949,\n",
+      "        0.1819, 0.2009, 0.2092, 0.1658, 0.1303, 0.3217, 0.1922, 0.2052, 0.1779,\n",
+      "        0.1884, 0.1966, 0.2001, 0.1899, 0.2182, 0.2280, 0.2205, 0.1534, 0.1391,\n",
+      "        0.1387, 0.1850, 0.1604, 0.1550])), ('pretrained_model.layer3.2.bn2.bias', tensor([ 1.4578e-01, -2.5935e-02, -1.5520e-01, -2.9111e-02, -1.1310e-01,\n",
+      "        -1.1280e-01,  9.3339e-02, -2.0799e-02, -2.8673e-02, -9.3710e-02,\n",
+      "        -4.4499e-02, -7.6599e-02, -1.2632e-01, -1.5487e-02, -1.2713e-01,\n",
+      "        -3.7403e-02, -1.4496e-01, -7.7838e-02, -1.4241e-01, -4.7940e-02,\n",
+      "        -7.4396e-02, -1.0710e-01,  8.9318e-02,  2.5084e-02, -8.3252e-02,\n",
+      "        -1.3378e-01, -5.7707e-02, -6.3785e-02,  9.1650e-02, -1.0172e-01,\n",
+      "        -1.1552e-01, -8.8282e-02, -1.3934e-01, -1.5999e-01, -1.0132e-01,\n",
+      "        -1.6251e-01, -7.3823e-02, -2.3477e-02,  1.1767e-02, -9.3871e-02,\n",
+      "        -6.0838e-02, -1.5234e-01, -7.5215e-02, -1.3104e-01, -1.2691e-01,\n",
+      "        -8.3622e-02, -1.4448e-01, -1.2226e-01, -1.2826e-01,  3.9191e-02,\n",
+      "         5.8780e-03, -8.7241e-02, -1.0295e-01, -2.0124e-02, -8.3593e-02,\n",
+      "         2.9453e-02, -1.4917e-01, -3.7150e-02, -7.8015e-02,  6.5263e-02,\n",
+      "        -1.0501e-01, -5.7661e-02,  3.2825e-02,  1.0336e-01,  1.0095e-01,\n",
+      "         1.9843e-02, -1.2495e-01, -1.9005e-02, -9.9027e-02, -9.5107e-02,\n",
+      "        -1.7422e-01, -1.0737e-01, -8.0365e-02, -3.8924e-02, -8.4820e-02,\n",
+      "        -1.1096e-01, -1.0219e-01, -2.2152e-01, -2.1467e-02, -9.5545e-02,\n",
+      "         5.2427e-02,  1.3703e-02, -1.7546e-01, -7.6013e-02, -1.2803e-01,\n",
+      "         1.6472e-01, -4.8868e-03, -1.5806e-01, -9.0457e-02, -1.6188e-01,\n",
+      "        -1.4811e-01, -2.0295e-01, -1.5642e-01, -5.5260e-02,  7.5807e-02,\n",
+      "        -5.3290e-02, -1.0742e-01, -6.4050e-02,  1.1832e-02, -2.5614e-02,\n",
+      "        -7.1891e-02, -3.4767e-02, -8.0724e-02, -3.7606e-02, -1.0650e-01,\n",
+      "        -1.2210e-01, -1.5388e-01, -1.2951e-01, -1.2852e-01, -1.4040e-01,\n",
+      "        -1.5853e-01, -8.1109e-02, -9.0626e-02, -8.5343e-02,  1.9027e-01,\n",
+      "         1.6285e-01, -1.0383e-01, -1.5754e-01,  5.0403e-02, -6.2886e-02,\n",
+      "        -1.3240e-01, -1.6408e-01, -6.9415e-02, -1.0303e-01, -1.1345e-01,\n",
+      "         7.5035e-02, -3.4482e-02,  3.6842e-02, -3.0313e-02, -7.1677e-02,\n",
+      "        -9.9149e-02, -1.3366e-01, -8.5091e-02, -9.5587e-02,  4.4187e-02,\n",
+      "         7.1789e-02,  2.1317e-06, -6.3100e-02,  1.6066e-02, -1.5398e-01,\n",
+      "        -1.1006e-01, -3.1944e-02, -5.8356e-02,  1.0257e-01, -5.0561e-02,\n",
+      "        -1.6382e-01, -9.5915e-02,  1.3655e-01, -8.9655e-02, -8.8530e-02,\n",
+      "        -3.9713e-02, -1.5168e-01, -9.2041e-02, -1.0635e-01, -7.9378e-02,\n",
+      "        -1.3784e-01, -9.4022e-02, -1.0091e-01, -3.0334e-02, -1.2465e-01,\n",
+      "        -1.0490e-01, -1.1587e-01, -6.6947e-02, -4.0450e-02, -1.4605e-01,\n",
+      "        -9.2123e-02, -8.8985e-02, -9.6340e-02, -5.9284e-02, -7.2070e-02,\n",
+      "        -1.3851e-01, -8.2367e-02, -9.3035e-02, -1.0607e-01, -2.4664e-02,\n",
+      "        -3.6846e-02, -6.0710e-02,  2.2828e-02, -4.6809e-02, -1.5541e-02,\n",
+      "        -6.8724e-02, -8.9645e-02, -1.2001e-01, -2.7410e-02, -7.3332e-02,\n",
+      "        -5.3380e-02, -1.2796e-01, -5.6725e-02,  1.0864e-01, -1.0930e-01,\n",
+      "        -8.7421e-02,  6.9975e-02, -1.3000e-01, -4.7309e-02,  2.4513e-03,\n",
+      "        -9.6163e-02, -1.6379e-01, -1.1424e-01, -8.0653e-02, -6.3961e-02,\n",
+      "        -3.9364e-02, -1.3695e-01, -1.0675e-01, -7.0551e-02,  2.5879e-02,\n",
+      "         4.9733e-02,  3.2969e-02, -1.1203e-01, -1.1836e-01,  5.2564e-02,\n",
+      "         2.2644e-01, -1.1556e-01,  8.4768e-03,  3.6028e-02,  4.2190e-02,\n",
+      "        -1.3706e-01, -1.1165e-01, -7.1828e-02, -9.5637e-02, -1.1305e-01,\n",
+      "        -3.8640e-02, -1.2279e-01, -7.0408e-02, -1.7851e-02, -7.0393e-04,\n",
+      "        -1.7919e-02, -1.1907e-01,  1.6175e-03, -9.7948e-02, -9.9073e-02,\n",
+      "        -1.1750e-01, -1.0134e-01, -4.5339e-02, -1.0470e-01, -1.3396e-01,\n",
+      "        -1.0806e-01, -1.0665e-01, -3.7070e-03,  1.6015e-02, -1.8163e-01,\n",
+      "        -1.4775e-01, -1.1308e-01, -1.1337e-01, -4.5786e-02, -3.5786e-02,\n",
+      "        -1.6940e-01, -7.9230e-02, -1.0351e-01, -1.0966e-01, -7.7266e-02,\n",
+      "         3.6550e-03,  2.9207e-02,  1.1157e-01, -1.1111e-01, -1.9069e-02,\n",
+      "         3.6381e-03])), ('pretrained_model.layer3.2.bn2.running_mean', tensor([ 2.7692e-03, -1.5691e-01, -2.0626e-02, -3.8847e-02, -1.0930e-01,\n",
+      "        -9.1125e-02, -1.2123e-01,  4.8677e-03, -1.5430e-01, -2.5788e-02,\n",
+      "         1.5082e-01,  6.7548e-05, -8.5364e-02, -1.2175e-01, -8.5784e-02,\n",
+      "        -4.5598e-02, -6.4813e-02,  1.0821e-01, -4.9326e-02, -4.4293e-02,\n",
+      "        -6.0541e-02, -3.0027e-02, -7.5077e-02, -9.1331e-02, -9.8887e-02,\n",
+      "        -1.3845e-01, -1.2087e-01, -1.7709e-01, -2.0331e-01, -6.8145e-02,\n",
+      "        -3.8113e-02, -1.1552e-01, -1.2330e-01, -1.2339e-01, -6.3976e-02,\n",
+      "         9.8205e-02, -1.3366e-02, -7.6111e-02, -1.7806e-02, -1.9414e-01,\n",
+      "        -3.3790e-02,  3.9077e-03, -8.7817e-02, -1.4468e-01, -1.2557e-01,\n",
+      "        -1.9148e-02, -1.5639e-01, -6.2678e-02, -1.9563e-01, -7.9490e-03,\n",
+      "        -1.1627e-01,  6.4568e-02, -1.1053e-01, -8.5236e-02, -8.1524e-02,\n",
+      "        -5.3443e-02, -3.9539e-03, -5.9092e-02, -7.2996e-02, -7.7435e-02,\n",
+      "        -8.3399e-02, -9.2974e-02,  6.7426e-02, -7.4548e-02, -1.3597e-02,\n",
+      "        -4.0504e-02, -1.0398e-01,  2.0931e-02, -6.5535e-02, -1.0023e-01,\n",
+      "        -1.0205e-01, -7.7889e-02, -7.0282e-02,  1.3561e-02, -1.1227e-01,\n",
+      "        -2.8348e-02, -1.6923e-02, -3.0664e-01,  9.4189e-02,  1.9984e-01,\n",
+      "         4.7937e-02,  5.4325e-03, -1.0541e-01, -9.3411e-02, -7.5858e-02,\n",
+      "        -1.4402e-01,  1.9392e-02, -4.8497e-02, -8.3681e-02, -6.5899e-02,\n",
+      "        -8.9489e-02, -1.5555e-01, -1.2981e-02, -3.5982e-02,  1.0841e-01,\n",
+      "        -1.1288e-01, -3.8838e-02, -5.9042e-02,  7.2256e-02,  3.3881e-02,\n",
+      "        -1.5696e-02, -5.3135e-02, -4.7960e-02, -8.4161e-02,  2.2359e-02,\n",
+      "         1.3290e-01, -5.9982e-02, -1.0010e-01,  1.5672e-02, -7.9551e-02,\n",
+      "         6.4775e-03, -8.4350e-03, -7.1331e-02,  6.3110e-03, -1.3256e-01,\n",
+      "         1.1074e-01, -4.6702e-02, -9.8271e-02,  1.3396e-02, -7.7720e-02,\n",
+      "        -1.2723e-01, -8.4287e-02, -7.1767e-02, -1.0203e-02, -1.2396e-02,\n",
+      "        -1.6446e-01, -1.2418e-01,  6.8876e-02, -1.7427e-02, -1.0787e-01,\n",
+      "        -6.1773e-02, -1.7630e-01, -1.1819e-01, -7.7056e-02,  6.3044e-02,\n",
+      "        -1.1004e-01, -2.4283e-02, -1.4966e-01,  1.7598e-02, -4.8144e-03,\n",
+      "        -1.1442e-01, -2.4435e-02, -1.1539e-01,  1.3729e-01, -2.7671e-02,\n",
+      "        -8.1562e-03, -1.5249e-02, -8.6365e-02, -9.4405e-02, -3.0966e-02,\n",
+      "         5.5564e-04, -7.9341e-02, -3.8012e-02, -7.3531e-02, -7.8537e-02,\n",
+      "        -1.7753e-01, -8.1904e-02, -1.5169e-02,  9.5183e-02, -7.8522e-02,\n",
+      "        -7.8265e-02, -6.2188e-02, -4.9036e-02, -5.7151e-02, -4.1814e-02,\n",
+      "        -4.1571e-02, -9.6273e-02, -1.3739e-01, -6.0986e-02,  5.1082e-03,\n",
+      "        -7.6083e-02, -6.5036e-02, -1.0920e-01, -1.2752e-01, -5.1362e-02,\n",
+      "         3.2165e-02, -5.2494e-02,  4.4679e-02,  7.5390e-02, -5.1592e-02,\n",
+      "        -4.4641e-02, -1.1472e-02, -1.0270e-01, -4.9042e-02, -1.0575e-01,\n",
+      "        -7.0294e-02, -2.4357e-02, -1.4789e-02,  1.1150e-01, -7.2803e-02,\n",
+      "         2.1720e-02,  4.7852e-02, -1.1108e-01, -8.9014e-02, -5.5782e-02,\n",
+      "        -1.1719e-01,  3.0767e-02, -9.6644e-02, -1.0933e-01, -3.9728e-02,\n",
+      "         4.0020e-03, -3.1629e-02, -1.1248e-02, -7.8687e-02, -5.4189e-02,\n",
+      "        -2.5463e-02,  1.0780e-01,  4.8768e-04, -6.0590e-02, -2.6813e-02,\n",
+      "         3.4811e-01, -5.3060e-02, -8.8804e-03, -1.4711e-01, -5.1361e-02,\n",
+      "        -6.1423e-02, -1.7122e-02, -1.4089e-01, -9.7451e-02, -3.1320e-02,\n",
+      "        -2.3651e-02, -6.1605e-02, -1.8534e-01, -3.5802e-02, -7.4685e-03,\n",
+      "        -1.1949e-01, -1.2742e-01, -6.4053e-02,  5.9707e-03, -4.7644e-03,\n",
+      "        -1.7200e-02, -5.2477e-02, -1.2097e-01, -6.9165e-02, -2.7949e-02,\n",
+      "        -1.2830e-01, -1.4364e-01, -4.2366e-02, -6.6078e-02, -1.8929e-01,\n",
+      "        -1.1461e-01, -6.4932e-02, -1.0333e-01,  2.6169e-02, -1.4231e-02,\n",
+      "        -4.9886e-02, -3.6900e-02, -1.7319e-02, -1.4941e-01, -1.5363e-02,\n",
+      "        -1.9323e-02, -1.4598e-01, -3.7737e-02, -1.0978e-01,  4.6939e-02,\n",
+      "        -9.2746e-02])), ('pretrained_model.layer3.2.bn2.running_var', tensor([0.0140, 0.0096, 0.0128, 0.0076, 0.0187, 0.0168, 0.0250, 0.0098, 0.0084,\n",
+      "        0.0155, 0.0152, 0.0107, 0.0134, 0.0089, 0.0109, 0.0146, 0.0094, 0.0131,\n",
+      "        0.0195, 0.0089, 0.0181, 0.0160, 0.0111, 0.0170, 0.0147, 0.0308, 0.0097,\n",
+      "        0.0128, 0.0174, 0.0206, 0.0099, 0.0424, 0.0128, 0.0252, 0.0162, 0.0118,\n",
+      "        0.0161, 0.0096, 0.0128, 0.0268, 0.0191, 0.0140, 0.0093, 0.0104, 0.0093,\n",
+      "        0.0149, 0.0218, 0.0109, 0.0166, 0.0110, 0.0084, 0.0094, 0.0098, 0.0089,\n",
+      "        0.0111, 0.0207, 0.0086, 0.0161, 0.0198, 0.0112, 0.0243, 0.0114, 0.0111,\n",
+      "        0.0169, 0.0191, 0.0097, 0.0173, 0.0095, 0.0098, 0.0141, 0.0112, 0.0099,\n",
+      "        0.0091, 0.0126, 0.0226, 0.0136, 0.0135, 0.0115, 0.0175, 0.0177, 0.0145,\n",
+      "        0.0077, 0.0156, 0.0098, 0.0104, 0.0311, 0.0127, 0.0097, 0.0109, 0.0118,\n",
+      "        0.0135, 0.0103, 0.0146, 0.0174, 0.0354, 0.0079, 0.0103, 0.0192, 0.0162,\n",
+      "        0.0154, 0.0203, 0.0176, 0.0087, 0.0179, 0.0135, 0.0152, 0.0114, 0.0203,\n",
+      "        0.0063, 0.0137, 0.0188, 0.0108, 0.0100, 0.0087, 0.0168, 0.0184, 0.0220,\n",
+      "        0.0162, 0.0139, 0.0117, 0.0199, 0.0097, 0.0111, 0.0082, 0.0092, 0.0101,\n",
+      "        0.0164, 0.0128, 0.0167, 0.0106, 0.0125, 0.0208, 0.0076, 0.0162, 0.0144,\n",
+      "        0.0152, 0.0187, 0.0185, 0.0149, 0.0158, 0.0113, 0.0128, 0.0184, 0.0131,\n",
+      "        0.0098, 0.0107, 0.0118, 0.0174, 0.0149, 0.0108, 0.0209, 0.0141, 0.0161,\n",
+      "        0.0116, 0.0112, 0.0098, 0.0254, 0.0109, 0.0209, 0.0178, 0.0267, 0.0111,\n",
+      "        0.0116, 0.0131, 0.0072, 0.0067, 0.0159, 0.0315, 0.0172, 0.0136, 0.0109,\n",
+      "        0.0174, 0.0087, 0.0124, 0.0155, 0.0202, 0.0221, 0.0127, 0.0142, 0.0139,\n",
+      "        0.0137, 0.0187, 0.0158, 0.0085, 0.0193, 0.0120, 0.0088, 0.0155, 0.0323,\n",
+      "        0.0156, 0.0118, 0.0138, 0.0152, 0.0094, 0.0085, 0.0398, 0.0117, 0.0116,\n",
+      "        0.0084, 0.0130, 0.0223, 0.0184, 0.0105, 0.0106, 0.0133, 0.0119, 0.0195,\n",
+      "        0.0201, 0.0187, 0.0166, 0.0315, 0.0089, 0.0135, 0.0103, 0.0107, 0.0158,\n",
+      "        0.0173, 0.0285, 0.0163, 0.0082, 0.0120, 0.0147, 0.0115, 0.0196, 0.0144,\n",
+      "        0.0099, 0.0162, 0.0086, 0.0081, 0.0133, 0.0117, 0.0183, 0.0334, 0.0171,\n",
+      "        0.0101, 0.0195, 0.0181, 0.0097, 0.0132, 0.0280, 0.0156, 0.0110, 0.0118,\n",
+      "        0.0112, 0.0130, 0.0109, 0.0161, 0.0160, 0.0187, 0.0145, 0.0175, 0.0130,\n",
+      "        0.0188, 0.0125, 0.0164, 0.0149])), ('pretrained_model.layer3.2.bn2.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.2.conv3.weight', tensor([[[[-0.0207]],\n",
+      "\n",
+      "         [[ 0.0010]],\n",
+      "\n",
+      "         [[ 0.0156]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0359]],\n",
+      "\n",
+      "         [[ 0.0025]],\n",
+      "\n",
+      "         [[-0.0039]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0031]],\n",
+      "\n",
+      "         [[-0.0176]],\n",
+      "\n",
+      "         [[-0.0240]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0132]],\n",
+      "\n",
+      "         [[-0.0164]],\n",
+      "\n",
+      "         [[-0.0052]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0120]],\n",
+      "\n",
+      "         [[-0.0136]],\n",
+      "\n",
+      "         [[-0.0172]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0149]],\n",
+      "\n",
+      "         [[ 0.0194]],\n",
+      "\n",
+      "         [[ 0.0268]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-0.0335]],\n",
+      "\n",
+      "         [[ 0.0317]],\n",
+      "\n",
+      "         [[ 0.0028]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0098]],\n",
+      "\n",
+      "         [[-0.0074]],\n",
+      "\n",
+      "         [[ 0.0304]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0084]],\n",
+      "\n",
+      "         [[-0.0486]],\n",
+      "\n",
+      "         [[-0.0043]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0015]],\n",
+      "\n",
+      "         [[-0.0006]],\n",
+      "\n",
+      "         [[ 0.0094]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0184]],\n",
+      "\n",
+      "         [[ 0.0010]],\n",
+      "\n",
+      "         [[-0.0059]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0206]],\n",
+      "\n",
+      "         [[-0.0136]],\n",
+      "\n",
+      "         [[-0.0107]]]])), ('pretrained_model.layer3.2.bn3.weight', tensor([0.0831, 0.0722, 0.1234,  ..., 0.0937, 0.0705, 0.0404])), ('pretrained_model.layer3.2.bn3.bias', tensor([ 0.0186, -0.0563, -0.0148,  ..., -0.0596, -0.0788, -0.0395])), ('pretrained_model.layer3.2.bn3.running_mean', tensor([ 0.0058, -0.0254, -0.0062,  ...,  0.0262, -0.0335, -0.0129])), ('pretrained_model.layer3.2.bn3.running_var', tensor([0.0019, 0.0005, 0.0012,  ..., 0.0010, 0.0008, 0.0005])), ('pretrained_model.layer3.2.bn3.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.3.conv1.weight', tensor([[[[-2.8043e-02]],\n",
+      "\n",
+      "         [[-7.2030e-03]],\n",
+      "\n",
+      "         [[ 4.3708e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-2.8954e-02]],\n",
+      "\n",
+      "         [[ 1.8737e-02]],\n",
+      "\n",
+      "         [[-2.0323e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-9.0584e-05]],\n",
+      "\n",
+      "         [[ 5.2253e-03]],\n",
+      "\n",
+      "         [[ 7.6347e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.0067e-02]],\n",
+      "\n",
+      "         [[-1.9078e-02]],\n",
+      "\n",
+      "         [[ 9.1102e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 7.1736e-03]],\n",
+      "\n",
+      "         [[-1.3804e-03]],\n",
+      "\n",
+      "         [[ 1.4581e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.8788e-02]],\n",
+      "\n",
+      "         [[-1.9121e-02]],\n",
+      "\n",
+      "         [[-2.1431e-03]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-8.5499e-03]],\n",
+      "\n",
+      "         [[-1.2001e-03]],\n",
+      "\n",
+      "         [[ 4.5207e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 3.5035e-02]],\n",
+      "\n",
+      "         [[ 3.1800e-04]],\n",
+      "\n",
+      "         [[ 2.7254e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 3.5104e-03]],\n",
+      "\n",
+      "         [[-7.0615e-03]],\n",
+      "\n",
+      "         [[ 1.9655e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-4.9902e-04]],\n",
+      "\n",
+      "         [[-1.0668e-02]],\n",
+      "\n",
+      "         [[-1.3565e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 4.3382e-03]],\n",
+      "\n",
+      "         [[ 8.8731e-03]],\n",
+      "\n",
+      "         [[-5.5130e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.3107e-02]],\n",
+      "\n",
+      "         [[-1.4823e-03]],\n",
+      "\n",
+      "         [[ 1.2097e-02]]]])), ('pretrained_model.layer3.3.bn1.weight', tensor([0.2397, 0.1817, 0.1624, 0.1557, 0.2137, 0.1942, 0.1705, 0.1769, 0.1918,\n",
+      "        0.1757, 0.2007, 0.1251, 0.1576, 0.2177, 0.1705, 0.1365, 0.1477, 0.1640,\n",
+      "        0.1622, 0.2138, 0.1798, 0.1749, 0.1128, 0.1809, 0.1537, 0.2125, 0.2047,\n",
+      "        0.1796, 0.1418, 0.2053, 0.1564, 0.1655, 0.1776, 0.1661, 0.1229, 0.1511,\n",
+      "        0.1283, 0.1596, 0.1003, 0.1546, 0.1903, 0.1900, 0.1361, 0.1694, 0.2144,\n",
+      "        0.1588, 0.2388, 0.1639, 0.1269, 0.1327, 0.2037, 0.1325, 0.1557, 0.1827,\n",
+      "        0.1569, 0.1579, 0.1606, 0.1489, 0.1926, 0.2179, 0.1774, 0.1427, 0.1118,\n",
+      "        0.1944, 0.1225, 0.1553, 0.1905, 0.1134, 0.2165, 0.1298, 0.1606, 0.1797,\n",
+      "        0.1565, 0.1294, 0.1779, 0.2040, 0.1532, 0.1288, 0.1642, 0.1609, 0.1571,\n",
+      "        0.1314, 0.1679, 0.1605, 0.1853, 0.1472, 0.1839, 0.1414, 0.2387, 0.1675,\n",
+      "        0.1703, 0.1434, 0.1018, 0.1485, 0.2132, 0.1646, 0.1705, 0.1004, 0.1884,\n",
+      "        0.1783, 0.1856, 0.1472, 0.1769, 0.1759, 0.1332, 0.2151, 0.1186, 0.1485,\n",
+      "        0.1397, 0.1782, 0.2108, 0.1460, 0.1653, 0.1118, 0.2167, 0.1690, 0.1072,\n",
+      "        0.1487, 0.2274, 0.1316, 0.1564, 0.1758, 0.1685, 0.2026, 0.1890, 0.1365,\n",
+      "        0.1471, 0.1386, 0.1484, 0.1874, 0.1692, 0.2156, 0.1510, 0.1417, 0.1177,\n",
+      "        0.1692, 0.1442, 0.1590, 0.1569, 0.2161, 0.1789, 0.1440, 0.1151, 0.1372,\n",
+      "        0.1228, 0.1576, 0.2172, 0.1707, 0.1470, 0.1454, 0.1237, 0.1542, 0.2079,\n",
+      "        0.1201, 0.1778, 0.1590, 0.1062, 0.1526, 0.1508, 0.1527, 0.1939, 0.1802,\n",
+      "        0.1117, 0.1811, 0.1718, 0.1550, 0.1608, 0.1996, 0.1076, 0.1775, 0.1717,\n",
+      "        0.1584, 0.1940, 0.1903, 0.1365, 0.1421, 0.1070, 0.1521, 0.1397, 0.1829,\n",
+      "        0.1867, 0.1689, 0.1308, 0.2082, 0.1191, 0.1359, 0.1425, 0.2289, 0.1192,\n",
+      "        0.1427, 0.1448, 0.1725, 0.1862, 0.1455, 0.1794, 0.1844, 0.1696, 0.2095,\n",
+      "        0.1534, 0.1287, 0.1519, 0.1264, 0.1406, 0.1327, 0.1233, 0.1752, 0.1553,\n",
+      "        0.1714, 0.2298, 0.1398, 0.1588, 0.2032, 0.1522, 0.1800, 0.2301, 0.1467,\n",
+      "        0.1394, 0.1781, 0.1297, 0.2178, 0.2205, 0.1542, 0.1517, 0.1643, 0.1647,\n",
+      "        0.1270, 0.1710, 0.1946, 0.1606, 0.2399, 0.1898, 0.1977, 0.2272, 0.1682,\n",
+      "        0.1216, 0.0862, 0.1398, 0.1662, 0.1345, 0.1380, 0.1614, 0.1157, 0.1283,\n",
+      "        0.1092, 0.1322, 0.1813, 0.3052, 0.1791, 0.1690, 0.1318, 0.1620, 0.1086,\n",
+      "        0.1539, 0.1711, 0.1913, 0.1707])), ('pretrained_model.layer3.3.bn1.bias', tensor([-1.2373e-01, -1.0724e-01, -1.2873e-01, -1.3301e-01, -1.6007e-01,\n",
+      "        -1.7066e-01, -1.0591e-01, -1.1015e-01, -8.6811e-02, -5.5925e-02,\n",
+      "        -1.8032e-01,  4.6183e-02, -8.3816e-02, -1.7863e-01, -8.4941e-02,\n",
+      "        -5.7124e-02, -3.0462e-02, -1.3476e-01, -5.7268e-02, -4.4528e-02,\n",
+      "        -8.4135e-02, -1.7501e-01,  9.3543e-02, -1.1753e-01, -1.5231e-01,\n",
+      "        -1.3717e-01, -1.6089e-01, -9.9757e-02, -1.6584e-02, -2.0688e-01,\n",
+      "        -2.4868e-02, -1.4878e-01, -3.5597e-02, -4.6184e-02, -8.4845e-03,\n",
+      "        -5.1464e-02, -5.5006e-03, -7.1775e-02,  6.1648e-02,  8.3623e-04,\n",
+      "        -1.4491e-01, -1.5919e-01, -7.6983e-02, -1.3220e-02, -1.5867e-01,\n",
+      "        -1.4242e-01, -1.3538e-01, -8.3151e-03,  4.7396e-02,  7.9772e-05,\n",
+      "        -9.8456e-02, -4.3029e-02, -4.3493e-02, -1.1971e-01, -5.9654e-02,\n",
+      "        -1.0016e-01, -4.8219e-02,  3.6690e-02, -1.2404e-01, -9.1022e-02,\n",
+      "        -9.4733e-02, -3.3497e-02,  1.1286e-02, -1.2301e-01,  5.0807e-02,\n",
+      "        -1.8670e-02, -1.0718e-01,  1.8043e-02, -1.1055e-01,  1.9140e-03,\n",
+      "        -1.0740e-01, -1.1531e-01, -5.9680e-02, -9.7069e-02, -1.1266e-01,\n",
+      "        -1.1615e-01, -3.6651e-02,  5.8421e-03, -9.2414e-02, -1.3832e-01,\n",
+      "        -1.2813e-01, -3.5214e-02, -4.9291e-02, -1.6574e-01, -4.9768e-02,\n",
+      "        -1.1693e-02, -6.3267e-02,  7.0314e-03, -4.5905e-02, -1.6241e-01,\n",
+      "        -1.4893e-01, -1.1032e-03,  3.9523e-02, -2.4066e-02, -1.2533e-01,\n",
+      "        -1.1806e-01, -9.8041e-02,  1.1777e-01, -1.0662e-01, -7.2198e-02,\n",
+      "        -1.9294e-01, -1.0729e-01, -8.1460e-02, -5.4530e-02,  4.3886e-03,\n",
+      "        -1.3236e-01,  4.4829e-03, -1.8954e-02, -1.2880e-01, -5.1821e-02,\n",
+      "        -1.9651e-01, -4.8995e-02, -9.3800e-02,  6.0175e-02, -2.3863e-01,\n",
+      "         2.7771e-02,  1.0045e-01, -1.1799e-01, -1.0154e-01, -1.9660e-02,\n",
+      "        -1.7324e-01, -1.0746e-01, -1.4074e-01, -1.3524e-01, -1.1376e-01,\n",
+      "         2.5687e-03, -8.3719e-02, -8.8160e-02, -5.8980e-02, -9.2938e-02,\n",
+      "        -8.8626e-02, -1.0123e-01, -7.3791e-02,  4.6856e-02,  2.5354e-03,\n",
+      "        -1.2050e-01, -8.3482e-02, -1.3966e-01, -7.5458e-02, -4.2288e-02,\n",
+      "        -9.1415e-02, -8.9590e-03,  5.1772e-02, -6.5380e-02,  2.4666e-02,\n",
+      "        -6.5635e-02, -1.8515e-01, -5.0822e-02, -1.0584e-01, -1.0266e-01,\n",
+      "        -8.9432e-02, -8.7537e-02, -1.9585e-01,  4.5117e-04, -6.2161e-02,\n",
+      "        -9.7602e-02,  1.3190e-02, -1.5806e-02, -1.1961e-01, -2.4958e-01,\n",
+      "        -2.2510e-01, -1.9280e-02,  5.7206e-02, -1.0183e-01, -1.2953e-01,\n",
+      "         5.2064e-02, -8.2754e-02, -2.6321e-01,  3.4550e-02, -1.5843e-01,\n",
+      "        -1.0084e-01, -7.4253e-02, -1.0011e-01, -1.6193e-01, -1.0938e-01,\n",
+      "        -6.8923e-02,  5.9609e-02, -3.3275e-02, -1.2887e-01, -9.8722e-02,\n",
+      "        -9.9927e-02, -1.3366e-01, -5.3671e-02, -1.9291e-01,  7.0328e-02,\n",
+      "        -1.1506e-01, -1.3758e-01, -1.2127e-01,  6.2536e-03, -4.3576e-02,\n",
+      "        -1.0991e-01, -8.7407e-02, -2.1978e-02, -8.5150e-02, -1.3188e-01,\n",
+      "        -1.3265e-01, -1.1708e-01, -1.1615e-01, -1.3941e-01, -6.3351e-02,\n",
+      "        -4.9455e-02, -5.7609e-02, -5.1404e-02, -8.7597e-02,  1.2217e-02,\n",
+      "        -1.3732e-01, -8.8519e-02, -6.1257e-02, -1.1861e-01, -1.0636e-01,\n",
+      "        -7.7092e-02, -2.6475e-01, -3.4437e-02, -1.3149e-01, -1.4640e-01,\n",
+      "        -9.6033e-03, -5.0112e-02, -1.5091e-01, -2.6409e-02, -1.4658e-01,\n",
+      "        -2.2408e-01, -1.7989e-03, -9.5483e-02,  6.3823e-02, -8.4752e-02,\n",
+      "         2.2471e-02, -1.3668e-01, -1.6185e-01, -1.2743e-01, -9.7816e-02,\n",
+      "        -1.8172e-01, -1.6469e-01, -1.2006e-01,  5.3928e-03,  2.4038e-03,\n",
+      "         8.9355e-02, -1.2173e-01,  6.6054e-03, -1.1608e-01,  6.7937e-02,\n",
+      "        -1.4137e-01,  5.6482e-02,  1.4046e-02, -1.9207e-03, -8.9576e-02,\n",
+      "        -4.8160e-02, -1.4840e-01, -8.6583e-02, -1.4846e-01,  1.4035e-01,\n",
+      "        -1.0468e-01,  3.3002e-02, -1.3272e-01, -7.8985e-02, -1.7270e-01,\n",
+      "        -8.6213e-02])), ('pretrained_model.layer3.3.bn1.running_mean', tensor([-1.6709e-01, -3.8676e-02, -1.0209e-01, -2.8609e-02, -4.7539e-02,\n",
+      "        -5.7100e-02, -3.0899e-02, -8.3623e-02, -6.0697e-02, -9.3271e-02,\n",
+      "        -7.8320e-02, -1.3562e-01, -6.1275e-02, -7.6861e-02, -1.6708e-02,\n",
+      "        -2.7110e-02,  3.3671e-03, -7.9181e-02, -2.0158e-02, -3.9545e-02,\n",
+      "        -1.5451e-02, -4.1543e-03, -1.2264e-01, -6.7560e-02, -7.9893e-02,\n",
+      "        -5.0622e-02, -1.4819e-02, -6.0564e-02, -2.5312e-02,  2.3242e-02,\n",
+      "        -7.6328e-02, -8.9456e-03, -3.5590e-02, -3.3679e-02, -7.6815e-02,\n",
+      "        -3.4260e-02, -3.2094e-02, -4.0595e-02, -2.7782e-02, -7.5856e-02,\n",
+      "        -4.6460e-02,  9.0626e-02, -1.2483e-02, -1.0942e-01, -9.3196e-02,\n",
+      "        -1.9155e-02, -6.4232e-02, -4.8081e-02, -9.8502e-02, -6.3041e-02,\n",
+      "        -2.0493e-03, -4.2223e-02, -3.7896e-02, -9.6857e-02, -8.5239e-02,\n",
+      "        -5.9411e-02, -6.2657e-02, -1.1656e-01, -6.9857e-02, -9.9426e-02,\n",
+      "        -4.2115e-02, -3.5436e-02, -1.2739e-02, -5.3491e-02, -8.4730e-02,\n",
+      "        -6.6930e-02, -1.6454e-01, -2.8354e-02, -1.6158e-01, -2.8215e-02,\n",
+      "        -2.4654e-02,  3.8122e-02, -4.1888e-02,  8.1730e-03,  1.2716e-01,\n",
+      "        -3.7799e-02, -6.4011e-02, -3.4969e-02, -5.0284e-02, -7.4385e-02,\n",
+      "        -6.9428e-04,  2.1817e-02,  1.7944e-02, -5.3754e-02,  7.0706e-03,\n",
+      "        -7.4301e-02, -1.4855e-01, -7.9375e-02, -2.1065e-01, -8.9034e-02,\n",
+      "        -7.9293e-02, -1.1529e-01, -9.4279e-02, -9.2221e-02, -8.8507e-02,\n",
+      "        -5.8790e-02,  5.0243e-03, -7.2222e-02, -7.8423e-02, -1.3816e-01,\n",
+      "         3.2656e-02,  6.3970e-03, -2.9201e-02, -1.1583e-02, -2.2861e-02,\n",
+      "        -1.6130e-01,  3.7598e-02, -1.0420e-01, -5.1908e-02, -7.1652e-02,\n",
+      "        -6.3244e-03, -2.0362e-02, -4.4680e-02,  1.2580e-02, -5.4945e-02,\n",
+      "        -5.3184e-02, -6.4213e-02, -1.0654e-02, -7.2995e-02, -6.1689e-02,\n",
+      "        -7.2252e-03, -7.6321e-02, -4.9214e-02, -3.2552e-02,  2.3198e-02,\n",
+      "        -1.7313e-02,  3.2566e-04,  2.6298e-02, -3.7714e-02, -1.2588e-01,\n",
+      "        -2.3476e-02, -7.4673e-02, -4.8084e-02, -6.5407e-02, -8.9698e-02,\n",
+      "        -9.5617e-02, -3.4669e-02,  3.8040e-02, -1.0845e-01, -8.6890e-02,\n",
+      "        -9.2852e-02,  8.2061e-02, -2.0483e-02, -5.3269e-02, -2.0868e-02,\n",
+      "        -1.5716e-02, -7.4425e-02,  7.5941e-04,  2.3194e-05, -6.2852e-03,\n",
+      "        -4.8880e-02, -9.2218e-02, -6.1527e-02, -3.6986e-02, -1.0035e-02,\n",
+      "        -2.3862e-02, -4.6650e-02,  4.4318e-02, -2.1795e-02, -6.7208e-02,\n",
+      "        -3.7047e-02, -2.0724e-02, -6.9916e-02, -8.5726e-04, -4.2518e-02,\n",
+      "        -1.4598e-01, -3.0092e-02, -2.5706e-02,  6.1274e-03, -2.7843e-02,\n",
+      "        -5.8658e-02, -2.1638e-02, -1.5617e-02, -7.8862e-02, -7.4483e-02,\n",
+      "        -3.4278e-02, -5.2996e-02, -1.3276e-01, -4.1960e-02, -1.0197e-01,\n",
+      "        -5.6121e-02, -3.1903e-02, -8.2326e-02, -4.6620e-03, -5.3889e-02,\n",
+      "        -1.2324e-01, -7.9492e-02, -4.5954e-02, -7.7657e-02,  6.3198e-02,\n",
+      "        -7.0688e-02, -2.1064e-02, -9.0226e-02, -6.7679e-04, -9.8059e-03,\n",
+      "         3.4996e-02, -8.8367e-02, -5.4087e-02,  3.5545e-02, -4.2446e-02,\n",
+      "        -1.0310e-02,  2.2774e-02, -4.2716e-02, -5.2220e-02, -3.2903e-03,\n",
+      "        -7.0454e-02,  1.0576e-02, -1.8417e-02, -1.9393e-01, -2.8000e-02,\n",
+      "        -1.2997e-01,  2.6133e-02, -9.8936e-02, -4.1172e-02, -6.5290e-02,\n",
+      "        -6.8175e-03, -4.6205e-02, -2.2349e-02, -6.7727e-02, -3.6423e-02,\n",
+      "        -1.2203e-01, -7.1957e-02, -1.9870e-02, -3.4005e-02, -8.3882e-02,\n",
+      "        -9.8813e-02,  5.7208e-02, -3.1142e-02, -3.1739e-02, -3.5995e-02,\n",
+      "        -5.2140e-03, -1.2092e-01,  2.2716e-02, -1.0819e-01, -4.4916e-02,\n",
+      "         3.1606e-02, -9.8216e-03, -4.4914e-03,  1.3070e-03, -1.0989e-01,\n",
+      "         3.4024e-02, -5.8118e-02, -5.9594e-02, -1.2723e-02, -3.1233e-02,\n",
+      "        -7.1053e-02, -1.1615e-01, -7.0315e-05, -9.4290e-02,  5.5803e-02,\n",
+      "        -3.1097e-02,  1.7275e-02, -4.6143e-02,  2.6260e-02, -5.0504e-02,\n",
+      "        -3.0908e-02])), ('pretrained_model.layer3.3.bn1.running_var', tensor([0.0117, 0.0103, 0.0100, 0.0060, 0.0095, 0.0084, 0.0111, 0.0095, 0.0122,\n",
+      "        0.0120, 0.0093, 0.0100, 0.0082, 0.0071, 0.0070, 0.0076, 0.0071, 0.0100,\n",
+      "        0.0097, 0.0101, 0.0109, 0.0098, 0.0130, 0.0065, 0.0054, 0.0111, 0.0099,\n",
+      "        0.0073, 0.0127, 0.0075, 0.0119, 0.0070, 0.0119, 0.0090, 0.0075, 0.0107,\n",
+      "        0.0080, 0.0085, 0.0096, 0.0100, 0.0077, 0.0129, 0.0080, 0.0097, 0.0091,\n",
+      "        0.0060, 0.0108, 0.0083, 0.0137, 0.0064, 0.0292, 0.0077, 0.0119, 0.0100,\n",
+      "        0.0103, 0.0094, 0.0090, 0.0117, 0.0080, 0.0095, 0.0071, 0.0088, 0.0111,\n",
+      "        0.0072, 0.0118, 0.0094, 0.0119, 0.0067, 0.0169, 0.0092, 0.0116, 0.0093,\n",
+      "        0.0096, 0.0070, 0.0103, 0.0077, 0.0098, 0.0124, 0.0075, 0.0076, 0.0053,\n",
+      "        0.0087, 0.0091, 0.0080, 0.0109, 0.0119, 0.0139, 0.0109, 0.0233, 0.0091,\n",
+      "        0.0091, 0.0108, 0.0119, 0.0116, 0.0116, 0.0090, 0.0080, 0.0124, 0.0090,\n",
+      "        0.0099, 0.0100, 0.0104, 0.0098, 0.0101, 0.0075, 0.0107, 0.0096, 0.0086,\n",
+      "        0.0093, 0.0117, 0.0104, 0.0117, 0.0079, 0.0139, 0.0111, 0.0106, 0.0106,\n",
+      "        0.0049, 0.0103, 0.0075, 0.0054, 0.0120, 0.0087, 0.0081, 0.0086, 0.0104,\n",
+      "        0.0111, 0.0091, 0.0090, 0.0149, 0.0122, 0.0079, 0.0087, 0.0083, 0.0117,\n",
+      "        0.0101, 0.0076, 0.0104, 0.0093, 0.0122, 0.0130, 0.0080, 0.0092, 0.0073,\n",
+      "        0.0096, 0.0116, 0.0086, 0.0134, 0.0082, 0.0061, 0.0085, 0.0078, 0.0092,\n",
+      "        0.0088, 0.0109, 0.0083, 0.0113, 0.0158, 0.0061, 0.0077, 0.0073, 0.0119,\n",
+      "        0.0079, 0.0103, 0.0084, 0.0122, 0.0080, 0.0067, 0.0146, 0.0083, 0.0093,\n",
+      "        0.0073, 0.0080, 0.0086, 0.0086, 0.0077, 0.0127, 0.0104, 0.0057, 0.0110,\n",
+      "        0.0080, 0.0052, 0.0093, 0.0052, 0.0165, 0.0153, 0.0092, 0.0238, 0.0088,\n",
+      "        0.0080, 0.0066, 0.0084, 0.0142, 0.0076, 0.0048, 0.0099, 0.0102, 0.0081,\n",
+      "        0.0089, 0.0067, 0.0075, 0.0086, 0.0045, 0.0060, 0.0091, 0.0068, 0.0072,\n",
+      "        0.0080, 0.0140, 0.0067, 0.0100, 0.0088, 0.0104, 0.0063, 0.0077, 0.0092,\n",
+      "        0.0093, 0.0084, 0.0101, 0.0107, 0.0109, 0.0102, 0.0057, 0.0114, 0.0073,\n",
+      "        0.0099, 0.0091, 0.0089, 0.0083, 0.0098, 0.0069, 0.0076, 0.0204, 0.0104,\n",
+      "        0.0071, 0.0131, 0.0061, 0.0096, 0.0094, 0.0120, 0.0060, 0.0142, 0.0092,\n",
+      "        0.0051, 0.0091, 0.0073, 0.0131, 0.0168, 0.0090, 0.0218, 0.0069, 0.0093,\n",
+      "        0.0068, 0.0134, 0.0068, 0.0079])), ('pretrained_model.layer3.3.bn1.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.3.conv2.weight', tensor([[[[-1.8803e-02, -1.6340e-02, -1.3997e-02],\n",
+      "          [ 3.6696e-03,  2.8835e-02,  9.5049e-03],\n",
+      "          [ 2.5592e-03,  2.4016e-02,  1.7338e-02]],\n",
+      "\n",
+      "         [[-1.8046e-02, -3.8328e-02, -3.3106e-02],\n",
+      "          [-3.6010e-02, -3.0522e-02, -2.9534e-02],\n",
+      "          [-2.0833e-02, -2.6406e-02, -1.4576e-02]],\n",
+      "\n",
+      "         [[-1.0751e-02, -2.1985e-02, -6.4160e-03],\n",
+      "          [-2.7446e-02, -2.0441e-02,  6.2549e-03],\n",
+      "          [-2.4620e-02, -2.6627e-02,  4.7618e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.2806e-02, -1.4030e-03,  1.6504e-02],\n",
+      "          [-1.3262e-03, -9.6033e-03, -4.7959e-03],\n",
+      "          [-1.5320e-02,  1.5527e-02, -5.8163e-03]],\n",
+      "\n",
+      "         [[-3.2552e-03, -5.0247e-03, -4.5165e-03],\n",
+      "          [-6.1424e-04,  3.6419e-04, -1.5785e-02],\n",
+      "          [ 9.2959e-03,  1.1708e-02, -1.1915e-03]],\n",
+      "\n",
+      "         [[-3.4364e-03, -1.5724e-02, -1.3605e-02],\n",
+      "          [ 3.6422e-03, -1.9433e-03, -6.8014e-03],\n",
+      "          [ 8.4389e-03,  1.0919e-02,  5.7589e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.3899e-02,  2.6692e-02,  9.1438e-03],\n",
+      "          [ 9.0444e-03,  2.0086e-03, -1.5385e-03],\n",
+      "          [ 2.4779e-03,  1.2734e-02,  7.5761e-03]],\n",
+      "\n",
+      "         [[-5.2232e-04,  5.2127e-03,  1.7297e-03],\n",
+      "          [ 7.8149e-03,  1.1013e-02,  5.2983e-03],\n",
+      "          [ 1.8524e-02,  1.8720e-02,  1.2736e-02]],\n",
+      "\n",
+      "         [[ 7.0164e-04,  4.8720e-03,  3.0998e-04],\n",
+      "          [-2.0041e-03,  1.2504e-02,  9.6986e-03],\n",
+      "          [ 4.7990e-04,  1.2773e-02,  1.4939e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 2.5753e-02,  4.8550e-02,  2.2156e-02],\n",
+      "          [-1.0024e-03, -8.2915e-03,  5.0728e-04],\n",
+      "          [ 1.2563e-02,  1.8389e-02,  9.2819e-03]],\n",
+      "\n",
+      "         [[ 6.7024e-03,  3.0199e-02,  6.8206e-03],\n",
+      "          [-1.0586e-02, -1.4727e-02, -2.1793e-02],\n",
+      "          [-7.9549e-03, -2.3417e-02, -2.1433e-02]],\n",
+      "\n",
+      "         [[-1.3194e-02,  9.3586e-03, -1.3908e-02],\n",
+      "          [-1.2910e-03,  3.3267e-02, -7.1413e-03],\n",
+      "          [-7.5327e-03,  3.0146e-03, -1.0301e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.1263e-02,  1.5780e-02,  7.8627e-03],\n",
+      "          [ 9.0100e-03,  1.0718e-02, -8.2925e-03],\n",
+      "          [-3.0248e-02, -2.5757e-02, -1.8679e-02]],\n",
+      "\n",
+      "         [[-4.0846e-03,  9.4344e-03, -1.7889e-02],\n",
+      "          [ 1.1781e-03,  2.3892e-02,  5.8167e-03],\n",
+      "          [ 1.2284e-02,  1.2057e-02,  3.5214e-03]],\n",
+      "\n",
+      "         [[ 5.0065e-03, -1.0580e-02, -2.0933e-02],\n",
+      "          [ 2.5546e-02,  2.9333e-02, -1.8795e-02],\n",
+      "          [-4.7139e-02,  2.8739e-02,  2.3161e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 2.1184e-02,  2.9616e-02,  1.8746e-02],\n",
+      "          [ 2.2116e-02, -7.1971e-03,  6.4072e-03],\n",
+      "          [ 1.8717e-02,  1.0634e-02, -1.7927e-02]],\n",
+      "\n",
+      "         [[ 5.7823e-03,  1.5788e-02, -5.5093e-03],\n",
+      "          [-4.1537e-03, -1.2336e-03, -1.0239e-02],\n",
+      "          [-1.2066e-02, -3.1502e-03, -6.2778e-03]],\n",
+      "\n",
+      "         [[ 1.0706e-02, -2.2922e-02,  2.4885e-03],\n",
+      "          [ 2.4618e-02,  3.4739e-02,  2.6004e-02],\n",
+      "          [ 5.8418e-03,  2.0973e-02,  4.3489e-03]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 3.8096e-03,  1.4118e-02, -7.7493e-03],\n",
+      "          [ 5.8201e-03,  8.7816e-03, -8.1137e-03],\n",
+      "          [-7.7079e-03, -1.2011e-03, -7.4124e-03]],\n",
+      "\n",
+      "         [[-1.1558e-02,  5.4319e-03,  1.1714e-02],\n",
+      "          [ 1.5476e-02,  3.4684e-03, -1.9180e-02],\n",
+      "          [-9.2279e-03, -1.2106e-02,  3.2895e-03]],\n",
+      "\n",
+      "         [[-3.0467e-02, -3.1465e-03, -1.6124e-02],\n",
+      "          [ 1.6656e-03, -5.9728e-05,  3.7414e-04],\n",
+      "          [ 1.1070e-02,  1.6323e-02,  3.7555e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 3.0848e-03,  7.0690e-04, -8.1711e-03],\n",
+      "          [-1.3006e-05,  8.7416e-03, -9.1197e-04],\n",
+      "          [-1.1322e-03,  1.2436e-02,  3.2386e-02]],\n",
+      "\n",
+      "         [[-1.4555e-02, -1.2637e-02,  1.1425e-02],\n",
+      "          [-7.7970e-03, -9.0559e-03,  1.5191e-02],\n",
+      "          [ 4.6668e-03, -1.2459e-02, -5.9486e-03]],\n",
+      "\n",
+      "         [[ 1.8486e-02, -1.6170e-02, -8.4818e-03],\n",
+      "          [-1.1288e-02,  6.6027e-03,  9.2522e-03],\n",
+      "          [-1.1418e-03, -3.8431e-03,  1.6344e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.0163e-02, -1.2042e-02, -3.4837e-03],\n",
+      "          [ 7.2370e-04, -1.0307e-02,  9.3110e-04],\n",
+      "          [ 7.6209e-03, -1.0731e-02,  2.5825e-03]],\n",
+      "\n",
+      "         [[-7.2058e-03, -9.1607e-03, -1.2272e-02],\n",
+      "          [-2.6006e-03, -6.5231e-03, -1.4710e-02],\n",
+      "          [-2.8917e-03,  1.0987e-02, -7.2957e-03]],\n",
+      "\n",
+      "         [[ 3.6798e-02,  7.4354e-03, -3.0339e-03],\n",
+      "          [ 1.8757e-02,  9.3095e-03, -1.4611e-02],\n",
+      "          [-5.3367e-03, -1.7790e-02, -3.0598e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.3736e-02,  1.3367e-03,  2.4378e-03],\n",
+      "          [-9.3669e-03, -9.7187e-03,  2.1499e-03],\n",
+      "          [ 1.4464e-02,  2.5503e-02,  1.0819e-02]],\n",
+      "\n",
+      "         [[-4.8793e-03, -1.3573e-02,  1.7897e-03],\n",
+      "          [-1.7144e-03, -1.4349e-03, -7.2677e-04],\n",
+      "          [-7.9108e-03,  4.3148e-03, -2.2574e-03]],\n",
+      "\n",
+      "         [[-1.2708e-02, -3.9058e-03, -1.1275e-02],\n",
+      "          [-9.8591e-03, -1.0264e-02, -1.4281e-02],\n",
+      "          [ 7.8655e-03,  1.5859e-02, -2.4388e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 4.1839e-04, -2.9585e-02, -5.7635e-04],\n",
+      "          [ 1.6648e-03, -2.3806e-02, -6.9548e-03],\n",
+      "          [ 7.3502e-05, -1.3099e-02,  1.8645e-03]],\n",
+      "\n",
+      "         [[-2.5347e-02, -1.7739e-02, -1.3797e-02],\n",
+      "          [-9.0120e-03,  4.4763e-03, -1.6589e-02],\n",
+      "          [ 8.2485e-03, -7.8553e-03,  2.2009e-03]],\n",
+      "\n",
+      "         [[ 9.9913e-03,  4.3920e-03,  1.7730e-02],\n",
+      "          [ 1.1176e-02, -3.2947e-03,  8.0631e-03],\n",
+      "          [ 1.3846e-03, -2.1688e-02, -1.7992e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-4.3812e-03, -6.5925e-03, -1.6371e-03],\n",
+      "          [ 1.4144e-03, -1.4475e-02, -5.3514e-03],\n",
+      "          [ 2.4761e-03,  3.6403e-03,  1.4365e-02]],\n",
+      "\n",
+      "         [[-5.8408e-03, -1.1457e-02, -7.1591e-03],\n",
+      "          [-9.6329e-03,  3.7813e-03,  1.7547e-03],\n",
+      "          [-1.6484e-03,  4.3027e-03, -3.6102e-04]],\n",
+      "\n",
+      "         [[ 8.2675e-03,  4.8496e-03,  6.8088e-04],\n",
+      "          [-8.0729e-03, -4.8404e-03,  2.6825e-03],\n",
+      "          [ 2.0105e-03,  6.4924e-03,  8.6932e-03]]]])), ('pretrained_model.layer3.3.bn2.weight', tensor([0.1452, 0.1726, 0.1229, 0.2299, 0.1389, 0.1735, 0.1957, 0.1136, 0.2105,\n",
+      "        0.1474, 0.1545, 0.2085, 0.1532, 0.1216, 0.1893, 0.1480, 0.1806, 0.1743,\n",
+      "        0.1792, 0.1963, 0.2059, 0.1566, 0.1797, 0.2005, 0.1807, 0.1764, 0.1448,\n",
+      "        0.1960, 0.1362, 0.1691, 0.1546, 0.1587, 0.1689, 0.1660, 0.2069, 0.1984,\n",
+      "        0.1535, 0.1458, 0.1707, 0.1591, 0.1131, 0.2145, 0.1377, 0.1347, 0.1405,\n",
+      "        0.1802, 0.1793, 0.1393, 0.2006, 0.1555, 0.2136, 0.1391, 0.1734, 0.1687,\n",
+      "        0.1792, 0.1666, 0.1987, 0.1849, 0.1662, 0.2064, 0.2022, 0.2334, 0.2133,\n",
+      "        0.1593, 0.1731, 0.1369, 0.1712, 0.1811, 0.1564, 0.2021, 0.1764, 0.1843,\n",
+      "        0.1896, 0.1866, 0.2089, 0.1714, 0.1321, 0.1023, 0.1668, 0.1667, 0.1771,\n",
+      "        0.1978, 0.1841, 0.1359, 0.1599, 0.1884, 0.2095, 0.1495, 0.2086, 0.1458,\n",
+      "        0.2001, 0.1133, 0.1677, 0.1400, 0.1188, 0.1356, 0.0910, 0.1426, 0.1693,\n",
+      "        0.1716, 0.1646, 0.2188, 0.1464, 0.1594, 0.1705, 0.2087, 0.1914, 0.2252,\n",
+      "        0.1608, 0.1720, 0.1804, 0.1770, 0.1709, 0.1955, 0.1610, 0.2528, 0.1951,\n",
+      "        0.1664, 0.1933, 0.1930, 0.1334, 0.1477, 0.1533, 0.1370, 0.1386, 0.1574,\n",
+      "        0.1764, 0.1444, 0.1800, 0.2055, 0.1836, 0.2009, 0.1536, 0.1691, 0.1654,\n",
+      "        0.1883, 0.1859, 0.1296, 0.1911, 0.1418, 0.1616, 0.1846, 0.1504, 0.2052,\n",
+      "        0.1370, 0.1391, 0.1685, 0.1525, 0.2111, 0.1537, 0.1337, 0.1498, 0.1972,\n",
+      "        0.1867, 0.1761, 0.2117, 0.1625, 0.1898, 0.1969, 0.2112, 0.1274, 0.1717,\n",
+      "        0.1915, 0.1747, 0.1242, 0.1638, 0.1533, 0.1466, 0.1896, 0.1447, 0.1822,\n",
+      "        0.1865, 0.1965, 0.1842, 0.1644, 0.1664, 0.1172, 0.1672, 0.1783, 0.1767,\n",
+      "        0.1479, 0.1814, 0.1693, 0.1853, 0.1639, 0.2131, 0.1832, 0.1539, 0.1941,\n",
+      "        0.2163, 0.2318, 0.1349, 0.1638, 0.1733, 0.1381, 0.1341, 0.2192, 0.1861,\n",
+      "        0.1975, 0.1818, 0.1574, 0.2385, 0.1409, 0.1681, 0.1749, 0.1957, 0.1547,\n",
+      "        0.1936, 0.1604, 0.1952, 0.1866, 0.1475, 0.1906, 0.1740, 0.2052, 0.1756,\n",
+      "        0.1901, 0.1762, 0.1944, 0.1356, 0.1827, 0.1607, 0.1842, 0.2243, 0.1715,\n",
+      "        0.1710, 0.1372, 0.1907, 0.1985, 0.1222, 0.1540, 0.1524, 0.1706, 0.1855,\n",
+      "        0.2198, 0.1204, 0.1621, 0.1143, 0.1661, 0.1697, 0.1841, 0.1800, 0.1591,\n",
+      "        0.1789, 0.1835, 0.1298, 0.1383, 0.2159, 0.1679, 0.1327, 0.1690, 0.1756,\n",
+      "        0.2529, 0.1637, 0.1819, 0.1617])), ('pretrained_model.layer3.3.bn2.bias', tensor([ 3.0876e-02,  1.9470e-02,  7.8268e-02, -4.9443e-02, -2.0211e-03,\n",
+      "        -7.0342e-02, -1.3362e-01,  6.4133e-02, -5.9503e-02, -8.6999e-02,\n",
+      "        -3.2904e-02, -2.4931e-02, -4.2023e-02,  4.4511e-02, -1.0494e-01,\n",
+      "        -9.6763e-02, -3.3581e-02, -5.9504e-02, -6.6236e-02, -6.4603e-02,\n",
+      "        -1.5046e-01, -3.1285e-02, -9.1821e-02, -1.5864e-01, -1.0547e-01,\n",
+      "        -1.1189e-01, -6.0181e-02, -7.6659e-02,  5.5155e-02, -3.5033e-02,\n",
+      "        -5.4778e-02, -1.1517e-01, -1.1275e-01, -8.1236e-02, -1.7937e-01,\n",
+      "        -6.8631e-02, -6.8882e-03, -4.5947e-02, -1.4296e-01, -6.4495e-02,\n",
+      "        -3.4194e-02, -4.3255e-02,  4.5017e-02, -6.5333e-02, -7.0525e-02,\n",
+      "        -3.9629e-02, -2.9729e-02,  6.4918e-02, -1.3496e-01, -8.0784e-02,\n",
+      "        -9.5266e-02,  9.0789e-02, -9.9872e-02, -1.2071e-01, -6.1403e-02,\n",
+      "        -9.6203e-02, -2.1852e-02, -1.2220e-01, -4.9855e-02, -1.5077e-01,\n",
+      "        -1.7482e-01, -1.7586e-01, -6.7612e-02, -3.9623e-02, -1.0050e-01,\n",
+      "         7.0206e-02, -1.0929e-01, -1.2581e-01, -1.1524e-01, -4.3970e-02,\n",
+      "        -1.0417e-01, -1.1369e-01, -8.4778e-02, -8.5936e-02, -1.1681e-01,\n",
+      "        -4.1488e-02, -7.1705e-02,  9.9537e-02, -1.2825e-01,  6.3588e-02,\n",
+      "        -9.8423e-02, -6.4354e-02, -4.2294e-02,  1.1468e-01,  1.0632e-04,\n",
+      "        -7.5848e-02, -1.0134e-01, -8.2370e-02, -6.4896e-02, -4.6754e-02,\n",
+      "        -7.3993e-02,  7.1566e-02, -6.0310e-02, -3.6560e-02,  3.7315e-02,\n",
+      "         1.9607e-01,  1.1489e-01, -5.4373e-03, -4.4303e-02, -8.6277e-02,\n",
+      "        -5.0335e-02, -1.1298e-01, -7.4696e-02, -6.0653e-02, -2.1930e-02,\n",
+      "        -9.8654e-02, -5.0565e-02, -4.3139e-02, -9.1606e-02, -3.0195e-02,\n",
+      "        -1.0824e-01, -1.1333e-01, -9.0354e-02, -1.2388e-01, -5.0561e-03,\n",
+      "        -2.1756e-01, -9.1801e-02, -7.2929e-02, -2.8157e-02, -1.0046e-01,\n",
+      "        -2.8374e-02, -7.6896e-02,  1.4785e-02, -6.7799e-03, -2.6042e-02,\n",
+      "        -9.2699e-02, -7.5784e-02, -7.3962e-02, -1.4848e-01, -1.1135e-01,\n",
+      "        -1.1348e-01, -9.3277e-02, -7.6436e-02, -7.5770e-02, -5.6385e-03,\n",
+      "        -9.2795e-03, -9.1806e-02,  3.0227e-04, -1.4874e-01, -2.8755e-02,\n",
+      "        -1.4124e-02, -6.0527e-02,  2.6133e-02, -1.0703e-01, -1.7268e-02,\n",
+      "         2.9279e-03, -5.1282e-02,  1.3977e-02, -9.7445e-02, -5.2936e-02,\n",
+      "        -4.0971e-02, -7.6900e-02, -1.4148e-01, -1.0937e-01, -1.0304e-01,\n",
+      "        -1.0675e-01, -9.7809e-02, -1.6303e-01, -8.2392e-02, -8.0425e-02,\n",
+      "         1.6640e-01, -8.9165e-02, -5.1454e-02, -9.6393e-02, -9.9535e-03,\n",
+      "        -4.6614e-02, -4.7423e-02, -6.8032e-02, -1.1460e-01, -1.7123e-02,\n",
+      "         1.4920e-03, -1.2448e-01, -3.9722e-02, -4.5080e-02,  2.2011e-03,\n",
+      "        -7.9740e-02,  1.6119e-01, -8.7717e-02, -1.0323e-01, -4.9375e-02,\n",
+      "        -7.4059e-02, -1.5675e-01, -1.2162e-01, -8.0277e-02,  2.6770e-02,\n",
+      "        -1.1880e-01, -4.2977e-02, -1.8863e-02, -6.8335e-02, -9.4733e-02,\n",
+      "        -1.1782e-01,  3.3128e-02, -2.7287e-02, -1.4646e-01, -1.3962e-01,\n",
+      "         5.8714e-02, -3.4696e-02, -1.0448e-01, -2.0625e-01, -6.2076e-02,\n",
+      "        -1.0249e-01, -1.0340e-01, -1.4310e-02, -7.1131e-02, -1.1516e-01,\n",
+      "        -6.6749e-02, -1.0010e-01, -6.9921e-02, -6.8985e-02, -1.2495e-01,\n",
+      "        -9.5457e-02, -3.2836e-02, -1.0615e-01, -1.3724e-01, -1.4741e-01,\n",
+      "        -1.1265e-01, -4.6507e-02, -2.8717e-02, -1.1540e-01, -4.6553e-02,\n",
+      "        -8.8569e-02, -9.2536e-02,  3.7317e-03, -2.2715e-01, -1.1960e-01,\n",
+      "        -7.1897e-02, -2.3170e-02, -1.4338e-02, -1.2225e-01,  1.0247e-01,\n",
+      "        -1.2060e-01, -1.1478e-01, -2.8343e-02, -4.6223e-02, -2.7293e-02,\n",
+      "         1.5579e-01, -1.0952e-01,  1.0240e-01, -1.4695e-01,  3.9669e-02,\n",
+      "        -2.0148e-02, -1.4503e-01, -1.2945e-01, -6.5327e-02, -1.3084e-01,\n",
+      "         1.2903e-01, -8.1795e-03, -1.0765e-01, -8.1696e-02, -1.0026e-01,\n",
+      "        -6.1089e-02, -6.7164e-02, -1.0367e-01, -8.9750e-02, -1.2042e-01,\n",
+      "        -1.3151e-01])), ('pretrained_model.layer3.3.bn2.running_mean', tensor([-0.0357, -0.0405,  0.0039, -0.0892, -0.0855, -0.0072,  0.0361, -0.0097,\n",
+      "        -0.1462, -0.0586, -0.0515, -0.0274,  0.0214, -0.0602, -0.0184, -0.0498,\n",
+      "        -0.0416, -0.0592,  0.0045, -0.0487, -0.1048, -0.0879, -0.0507, -0.1667,\n",
+      "        -0.1720, -0.0404, -0.0151, -0.1112, -0.0503, -0.0789, -0.1095, -0.1062,\n",
+      "        -0.0196,  0.0323,  0.0402,  0.1732,  0.0294,  0.0358, -0.0756, -0.0496,\n",
+      "        -0.1228, -0.0412,  0.0990,  0.0026, -0.0527, -0.0290, -0.0857,  0.0544,\n",
+      "        -0.0329, -0.0561, -0.0778,  0.0916, -0.0375, -0.0290, -0.1134, -0.0505,\n",
+      "        -0.0600, -0.0927, -0.0418, -0.0814, -0.0742, -0.1288, -0.0200,  0.0869,\n",
+      "        -0.0501,  0.0762, -0.0371, -0.0978, -0.0802, -0.1181, -0.0890, -0.1627,\n",
+      "        -0.0488, -0.1475, -0.1113,  0.0712, -0.0374,  0.0157, -0.0334, -0.0198,\n",
+      "        -0.0680, -0.0689,  0.1232,  0.1849,  0.0762, -0.0849, -0.1395, -0.1142,\n",
+      "        -0.0931, -0.0717,  0.0084,  0.0175,  0.0730, -0.0166, -0.0092,  0.0273,\n",
+      "        -0.0997, -0.0503,  0.0087, -0.0436, -0.0636, -0.0569, -0.0641, -0.1062,\n",
+      "        -0.0442, -0.0787, -0.0761, -0.0479, -0.0365, -0.0117,  0.0262, -0.1033,\n",
+      "        -0.0826, -0.0182, -0.1100,  0.0159, -0.1305,  0.0485, -0.0520,  0.0669,\n",
+      "        -0.0519, -0.1172, -0.0162, -0.0871,  0.0482, -0.0520, -0.0761,  0.3152,\n",
+      "        -0.0389, -0.0189, -0.0917, -0.0187, -0.0360, -0.0902, -0.1307,  0.0279,\n",
+      "        -0.0031,  0.0265, -0.0466, -0.0159, -0.0125,  0.0168, -0.0942, -0.0020,\n",
+      "         0.0495, -0.0626,  0.0296, -0.1532, -0.0462, -0.1414, -0.0063, -0.0911,\n",
+      "        -0.0740, -0.0146, -0.0759, -0.1036, -0.0260, -0.1099, -0.1416, -0.0885,\n",
+      "         0.0612,  0.0053, -0.0514, -0.0556, -0.0263, -0.0414, -0.0651, -0.0733,\n",
+      "        -0.0527,  0.0601, -0.1143, -0.0365, -0.0752, -0.0846, -0.1109, -0.0652,\n",
+      "        -0.0795, -0.0138, -0.0463, -0.0633,  0.0007, -0.1160, -0.1113, -0.1321,\n",
+      "        -0.1067, -0.0729, -0.1117, -0.0437, -0.0316, -0.0310,  0.1613, -0.0271,\n",
+      "        -0.1038, -0.1292, -0.0697, -0.0250, -0.0289, -0.0359, -0.1124, -0.0725,\n",
+      "        -0.0538, -0.0868,  0.0145, -0.0352, -0.1815, -0.0789, -0.0706, -0.0511,\n",
+      "        -0.0610,  0.0852, -0.0103,  0.0004, -0.1120,  0.0092, -0.0888, -0.0859,\n",
+      "        -0.1467, -0.0262, -0.0993, -0.0691, -0.0824, -0.0154, -0.0403, -0.0372,\n",
+      "        -0.1259, -0.0039, -0.0407,  0.0141, -0.1455,  0.1345, -0.0235, -0.0265,\n",
+      "        -0.0967, -0.1938, -0.0307,  0.0630, -0.1131, -0.0787, -0.0657, -0.0235,\n",
+      "        -0.0527, -0.0352, -0.0867,  0.0226, -0.1600,  0.0929, -0.0431, -0.0200,\n",
+      "        -0.0653,  0.0193,  0.0197, -0.1484, -0.0867, -0.0920, -0.0687, -0.0408])), ('pretrained_model.layer3.3.bn2.running_var', tensor([0.0063, 0.0113, 0.0081, 0.0118, 0.0065, 0.0067, 0.0153, 0.0123, 0.0118,\n",
+      "        0.0078, 0.0068, 0.0108, 0.0080, 0.0084, 0.0097, 0.0075, 0.0065, 0.0106,\n",
+      "        0.0148, 0.0116, 0.0092, 0.0090, 0.0126, 0.0105, 0.0078, 0.0054, 0.0067,\n",
+      "        0.0095, 0.0093, 0.0076, 0.0110, 0.0084, 0.0086, 0.0054, 0.0121, 0.0115,\n",
+      "        0.0124, 0.0058, 0.0085, 0.0068, 0.0075, 0.0135, 0.0169, 0.0059, 0.0064,\n",
+      "        0.0077, 0.0065, 0.0113, 0.0070, 0.0063, 0.0084, 0.0139, 0.0059, 0.0074,\n",
+      "        0.0064, 0.0042, 0.0148, 0.0074, 0.0091, 0.0069, 0.0058, 0.0092, 0.0089,\n",
+      "        0.0068, 0.0109, 0.0156, 0.0089, 0.0089, 0.0070, 0.0104, 0.0058, 0.0065,\n",
+      "        0.0056, 0.0092, 0.0082, 0.0072, 0.0052, 0.0074, 0.0092, 0.0142, 0.0113,\n",
+      "        0.0073, 0.0087, 0.0133, 0.0122, 0.0079, 0.0133, 0.0080, 0.0291, 0.0072,\n",
+      "        0.0080, 0.0098, 0.0064, 0.0069, 0.0105, 0.0157, 0.0081, 0.0073, 0.0091,\n",
+      "        0.0076, 0.0064, 0.0088, 0.0067, 0.0057, 0.0085, 0.0211, 0.0096, 0.0379,\n",
+      "        0.0057, 0.0149, 0.0086, 0.0058, 0.0093, 0.0109, 0.0068, 0.0148, 0.0080,\n",
+      "        0.0058, 0.0102, 0.0090, 0.0069, 0.0087, 0.0089, 0.0065, 0.0059, 0.0063,\n",
+      "        0.0062, 0.0215, 0.0065, 0.0073, 0.0054, 0.0083, 0.0077, 0.0089, 0.0088,\n",
+      "        0.0147, 0.0069, 0.0080, 0.0072, 0.0098, 0.0072, 0.0068, 0.0065, 0.0084,\n",
+      "        0.0119, 0.0087, 0.0066, 0.0118, 0.0091, 0.0101, 0.0090, 0.0052, 0.0073,\n",
+      "        0.0086, 0.0095, 0.0100, 0.0077, 0.0075, 0.0092, 0.0197, 0.0265, 0.0124,\n",
+      "        0.0056, 0.0093, 0.0067, 0.0106, 0.0087, 0.0065, 0.0120, 0.0076, 0.0121,\n",
+      "        0.0062, 0.0268, 0.0065, 0.0100, 0.0082, 0.0106, 0.0105, 0.0082, 0.0054,\n",
+      "        0.0067, 0.0078, 0.0085, 0.0091, 0.0079, 0.0107, 0.0106, 0.0070, 0.0092,\n",
+      "        0.0064, 0.0173, 0.0118, 0.0095, 0.0106, 0.0060, 0.0130, 0.0092, 0.0071,\n",
+      "        0.0098, 0.0102, 0.0082, 0.0140, 0.0068, 0.0057, 0.0110, 0.0102, 0.0048,\n",
+      "        0.0073, 0.0100, 0.0156, 0.0068, 0.0080, 0.0121, 0.0054, 0.0072, 0.0057,\n",
+      "        0.0126, 0.0086, 0.0088, 0.0052, 0.0063, 0.0076, 0.0084, 0.0110, 0.0094,\n",
+      "        0.0074, 0.0080, 0.0167, 0.0083, 0.0124, 0.0059, 0.0059, 0.0114, 0.0082,\n",
+      "        0.0085, 0.0101, 0.0098, 0.0102, 0.0065, 0.0082, 0.0088, 0.0086, 0.0076,\n",
+      "        0.0075, 0.0090, 0.0203, 0.0077, 0.0124, 0.0106, 0.0069, 0.0084, 0.0074,\n",
+      "        0.0295, 0.0100, 0.0068, 0.0068])), ('pretrained_model.layer3.3.bn2.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.3.conv3.weight', tensor([[[[ 2.5342e-03]],\n",
+      "\n",
+      "         [[ 1.3858e-02]],\n",
+      "\n",
+      "         [[-4.0740e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-3.3295e-03]],\n",
+      "\n",
+      "         [[ 2.4088e-02]],\n",
+      "\n",
+      "         [[-1.4734e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 2.9485e-05]],\n",
+      "\n",
+      "         [[ 1.7097e-02]],\n",
+      "\n",
+      "         [[-1.6839e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 2.0257e-02]],\n",
+      "\n",
+      "         [[-2.3998e-02]],\n",
+      "\n",
+      "         [[ 1.1784e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-2.9854e-03]],\n",
+      "\n",
+      "         [[ 2.3449e-03]],\n",
+      "\n",
+      "         [[ 1.3954e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 2.4483e-02]],\n",
+      "\n",
+      "         [[ 9.7716e-03]],\n",
+      "\n",
+      "         [[-4.8900e-03]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 5.2980e-03]],\n",
+      "\n",
+      "         [[-3.9479e-02]],\n",
+      "\n",
+      "         [[ 1.0076e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.0829e-02]],\n",
+      "\n",
+      "         [[-1.3711e-02]],\n",
+      "\n",
+      "         [[ 7.8305e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-2.6305e-02]],\n",
+      "\n",
+      "         [[ 2.7700e-02]],\n",
+      "\n",
+      "         [[-5.0270e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.9921e-03]],\n",
+      "\n",
+      "         [[ 5.2302e-03]],\n",
+      "\n",
+      "         [[-8.6780e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.0103e-02]],\n",
+      "\n",
+      "         [[-1.6329e-02]],\n",
+      "\n",
+      "         [[-1.4074e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 3.6494e-03]],\n",
+      "\n",
+      "         [[-7.0795e-03]],\n",
+      "\n",
+      "         [[-3.3830e-03]]]])), ('pretrained_model.layer3.3.bn3.weight', tensor([0.0494, 0.1602, 0.0919,  ..., 0.1076, 0.0739, 0.0297])), ('pretrained_model.layer3.3.bn3.bias', tensor([-0.0519, -0.0327, -0.0892,  ..., -0.0928, -0.0495, -0.0284])), ('pretrained_model.layer3.3.bn3.running_mean', tensor([-0.0287, -0.0191, -0.0444,  ..., -0.0175, -0.0059,  0.0033])), ('pretrained_model.layer3.3.bn3.running_var', tensor([0.0006, 0.0015, 0.0008,  ..., 0.0009, 0.0007, 0.0002])), ('pretrained_model.layer3.3.bn3.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.4.conv1.weight', tensor([[[[-0.0358]],\n",
+      "\n",
+      "         [[ 0.0230]],\n",
+      "\n",
+      "         [[-0.0188]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0005]],\n",
+      "\n",
+      "         [[ 0.0130]],\n",
+      "\n",
+      "         [[-0.0035]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0056]],\n",
+      "\n",
+      "         [[-0.0194]],\n",
+      "\n",
+      "         [[-0.0110]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0020]],\n",
+      "\n",
+      "         [[ 0.0043]],\n",
+      "\n",
+      "         [[ 0.0086]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0265]],\n",
+      "\n",
+      "         [[ 0.0047]],\n",
+      "\n",
+      "         [[-0.0097]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0134]],\n",
+      "\n",
+      "         [[ 0.0090]],\n",
+      "\n",
+      "         [[-0.0040]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-0.0070]],\n",
+      "\n",
+      "         [[-0.0248]],\n",
+      "\n",
+      "         [[ 0.0278]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0280]],\n",
+      "\n",
+      "         [[ 0.0197]],\n",
+      "\n",
+      "         [[ 0.0030]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0004]],\n",
+      "\n",
+      "         [[-0.0049]],\n",
+      "\n",
+      "         [[-0.0070]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0233]],\n",
+      "\n",
+      "         [[-0.0189]],\n",
+      "\n",
+      "         [[ 0.0043]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0072]],\n",
+      "\n",
+      "         [[-0.0011]],\n",
+      "\n",
+      "         [[-0.0079]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0096]],\n",
+      "\n",
+      "         [[-0.0199]],\n",
+      "\n",
+      "         [[-0.0027]]]])), ('pretrained_model.layer3.4.bn1.weight', tensor([0.1201, 0.1526, 0.1621, 0.1653, 0.1659, 0.2316, 0.1872, 0.1975, 0.1676,\n",
+      "        0.1487, 0.1351, 0.1774, 0.1123, 0.1886, 0.1317, 0.1806, 0.2080, 0.1946,\n",
+      "        0.1556, 0.2101, 0.1858, 0.1667, 0.1659, 0.1641, 0.1492, 0.1399, 0.2094,\n",
+      "        0.2031, 0.1609, 0.2036, 0.1901, 0.1282, 0.1944, 0.1890, 0.1274, 0.1896,\n",
+      "        0.1147, 0.1333, 0.1823, 0.1489, 0.1866, 0.1650, 0.2030, 0.2355, 0.1616,\n",
+      "        0.1764, 0.1180, 0.1729, 0.1525, 0.1703, 0.1358, 0.1128, 0.1058, 0.2410,\n",
+      "        0.1445, 0.1765, 0.1702, 0.1443, 0.1105, 0.1207, 0.2086, 0.1554, 0.1516,\n",
+      "        0.2151, 0.1513, 0.1786, 0.1177, 0.1298, 0.1805, 0.1422, 0.1810, 0.1686,\n",
+      "        0.1351, 0.1423, 0.1805, 0.1370, 0.2236, 0.1573, 0.1155, 0.1408, 0.1305,\n",
+      "        0.1938, 0.1905, 0.1859, 0.1391, 0.1921, 0.2326, 0.2054, 0.0990, 0.1638,\n",
+      "        0.1463, 0.1920, 0.1845, 0.1078, 0.1630, 0.2262, 0.1048, 0.1189, 0.0978,\n",
+      "        0.1501, 0.2304, 0.1757, 0.1595, 0.1750, 0.1608, 0.1879, 0.1645, 0.1524,\n",
+      "        0.1852, 0.1738, 0.1718, 0.1841, 0.1367, 0.1389, 0.2362, 0.1809, 0.1503,\n",
+      "        0.2070, 0.1575, 0.1347, 0.1962, 0.1801, 0.1350, 0.1432, 0.1516, 0.1243,\n",
+      "        0.1746, 0.1833, 0.1889, 0.2086, 0.1491, 0.1738, 0.2040, 0.1492, 0.1653,\n",
+      "        0.2874, 0.2389, 0.1345, 0.1424, 0.1705, 0.1772, 0.1418, 0.1583, 0.1602,\n",
+      "        0.1781, 0.1016, 0.2444, 0.1601, 0.1698, 0.1376, 0.1335, 0.1625, 0.1437,\n",
+      "        0.1814, 0.1720, 0.1850, 0.1567, 0.2069, 0.1825, 0.1394, 0.1836, 0.2162,\n",
+      "        0.1167, 0.1723, 0.1486, 0.1818, 0.1244, 0.1183, 0.2030, 0.1404, 0.1514,\n",
+      "        0.1800, 0.1908, 0.2109, 0.1279, 0.1645, 0.1935, 0.1655, 0.2011, 0.1828,\n",
+      "        0.1460, 0.1398, 0.2033, 0.1651, 0.1907, 0.1378, 0.1903, 0.1936, 0.1215,\n",
+      "        0.2434, 0.1965, 0.1990, 0.1682, 0.1304, 0.1640, 0.1253, 0.2010, 0.1464,\n",
+      "        0.1522, 0.1897, 0.1634, 0.2039, 0.1617, 0.1777, 0.1429, 0.1593, 0.1596,\n",
+      "        0.1778, 0.1699, 0.1508, 0.1430, 0.1616, 0.2614, 0.1562, 0.1050, 0.1192,\n",
+      "        0.2244, 0.1390, 0.1713, 0.1533, 0.1773, 0.1977, 0.1189, 0.1146, 0.1363,\n",
+      "        0.1168, 0.1574, 0.2175, 0.1203, 0.1182, 0.1042, 0.1603, 0.2578, 0.2062,\n",
+      "        0.2001, 0.2228, 0.1368, 0.1402, 0.1750, 0.1540, 0.1450, 0.1994, 0.1547,\n",
+      "        0.1493, 0.1796, 0.2036, 0.2133, 0.1793, 0.1675, 0.2073, 0.1189, 0.1781,\n",
+      "        0.1800, 0.1933, 0.1603, 0.2618])), ('pretrained_model.layer3.4.bn1.bias', tensor([ 2.9117e-02, -6.7237e-02, -7.5768e-03, -6.9600e-02, -8.4405e-02,\n",
+      "        -2.4079e-01, -1.6523e-01, -1.6115e-01, -7.6595e-02, -7.9202e-02,\n",
+      "        -1.2843e-01, -1.5194e-01,  8.7315e-02, -7.8484e-02, -1.3220e-01,\n",
+      "        -1.5412e-01, -1.6460e-01, -5.6149e-03,  2.2872e-02, -1.6848e-01,\n",
+      "        -1.3600e-01, -1.1130e-01, -7.1120e-02, -6.1422e-02, -9.9474e-02,\n",
+      "        -1.2330e-02, -1.4336e-01, -9.5082e-02, -5.2157e-02, -1.3163e-01,\n",
+      "        -1.1302e-01, -2.1874e-02, -1.9695e-01, -1.2613e-01, -9.0504e-03,\n",
+      "        -8.4977e-02, -1.5428e-02,  3.4171e-02, -4.7863e-02, -1.1965e-01,\n",
+      "        -2.0053e-01, -1.2466e-04, -9.6102e-02, -1.3415e-01, -1.1780e-01,\n",
+      "        -1.2619e-01,  3.7225e-02, -7.0905e-02, -9.9666e-02, -9.0308e-02,\n",
+      "         8.7196e-04, -5.8143e-03, -1.3657e-02, -1.3930e-01, -1.0126e-01,\n",
+      "        -1.5880e-01,  2.7138e-04, -3.1175e-02, -5.9314e-03, -3.3957e-02,\n",
+      "        -1.1031e-01,  2.1836e-02, -2.6342e-02, -1.3373e-01, -6.4512e-02,\n",
+      "        -8.6019e-02,  3.4607e-02, -1.2109e-02, -1.7548e-01, -2.0153e-02,\n",
+      "        -1.0361e-01, -1.0565e-01, -3.0424e-02, -5.4340e-02, -1.2826e-01,\n",
+      "        -3.2756e-02, -1.4420e-01, -7.7501e-02,  5.5905e-02, -5.9100e-02,\n",
+      "        -1.2007e-02, -6.8581e-02, -1.8645e-01, -1.6011e-01, -9.6499e-02,\n",
+      "        -1.1285e-01, -1.2698e-01, -1.6448e-01, -1.5957e-03, -1.6618e-01,\n",
+      "        -9.5597e-02, -1.6296e-01, -1.6067e-01,  1.1498e-01, -3.5848e-02,\n",
+      "        -2.6569e-01,  1.0490e-01, -3.4627e-02,  1.3349e-01, -1.3924e-01,\n",
+      "        -3.1487e-01, -7.8172e-02, -1.5597e-01, -9.9003e-02, -1.0626e-01,\n",
+      "        -7.1643e-02, -7.8068e-02, -1.4197e-01, -7.5019e-02, -2.6737e-02,\n",
+      "        -1.7614e-01, -1.4944e-01,  1.6669e-02,  3.0142e-03, -3.2492e-01,\n",
+      "        -7.5151e-02, -9.0106e-02, -1.3373e-01, -1.2640e-02,  7.0570e-02,\n",
+      "        -1.0792e-01, -1.2558e-01, -1.3705e-01, -1.2278e-01, -1.0649e-01,\n",
+      "        -1.0163e-02, -1.0094e-01, -7.6774e-02, -1.9552e-01, -1.3490e-01,\n",
+      "        -2.4539e-02, -6.9857e-02,  4.2416e-02,  1.9347e-02, -1.3050e-01,\n",
+      "        -2.2190e-01, -3.5597e-02, -1.9611e-02, -6.7694e-02, -8.7436e-02,\n",
+      "        -1.6719e-01, -3.0233e-02, -3.6344e-02, -1.4411e-01, -6.6062e-03,\n",
+      "         1.0228e-01, -3.0359e-01, -1.5254e-01, -1.3065e-01, -2.1235e-02,\n",
+      "         4.3830e-03, -5.0178e-02, -8.6510e-02, -1.8964e-01, -8.8523e-02,\n",
+      "        -1.3460e-01, -1.0527e-01, -2.3674e-01, -9.6098e-02,  7.6544e-02,\n",
+      "        -6.8034e-02, -7.1606e-02,  1.2676e-03, -5.5676e-02, -4.1428e-02,\n",
+      "        -1.4854e-01,  1.3429e-02, -3.6069e-02, -1.8139e-01, -1.1573e-01,\n",
+      "        -1.0037e-01, -9.3186e-02, -4.2635e-02, -1.0767e-01,  6.0156e-02,\n",
+      "        -2.0605e-02, -5.8541e-02, -7.6086e-02, -1.7803e-01, -1.6965e-01,\n",
+      "         6.5052e-03,  6.8260e-02, -1.6071e-01, -1.3218e-01, -2.1562e-01,\n",
+      "        -3.6022e-02, -1.6258e-01, -9.1520e-02, -3.9126e-02, -4.7547e-02,\n",
+      "        -1.8221e-01, -1.4942e-01, -1.2703e-01, -7.0217e-02, -5.7170e-02,\n",
+      "        -4.3616e-02, -1.4135e-01, -1.5603e-02, -2.7688e-02, -1.1072e-01,\n",
+      "        -1.5310e-01, -2.1042e-01, -9.9549e-02, -2.0404e-01, -1.2305e-01,\n",
+      "        -5.2289e-02, -8.6270e-02, -1.0597e-01, -1.1292e-01, -2.0880e-02,\n",
+      "        -8.6023e-02, -6.7615e-02, -2.3873e-01, -9.8087e-02,  1.7574e-02,\n",
+      "        -6.2803e-02, -1.2717e-01,  8.0103e-03, -6.2826e-02, -5.6426e-02,\n",
+      "        -1.1501e-01, -1.3081e-01, -6.8637e-02,  1.3375e-02,  1.4177e-02,\n",
+      "         2.5624e-02,  6.4056e-03, -1.1808e-01, -3.5999e-02,  9.8792e-02,\n",
+      "         5.6315e-03, -1.1468e-01, -1.7399e-01, -2.0368e-01, -9.9095e-02,\n",
+      "        -9.5605e-02, -4.9718e-03, -5.5191e-02, -9.2152e-02, -1.1595e-01,\n",
+      "        -1.2651e-01, -2.7531e-02, -1.3858e-01, -1.2258e-02, -7.6874e-02,\n",
+      "        -9.5632e-02, -1.7150e-01, -8.3326e-02, -3.7926e-02, -8.0021e-02,\n",
+      "         1.2747e-01, -1.3739e-01, -1.1069e-01, -1.2239e-01, -9.6089e-02,\n",
+      "        -1.6678e-01])), ('pretrained_model.layer3.4.bn1.running_mean', tensor([ 0.0003, -0.0446, -0.0689, -0.0348, -0.0636, -0.0108, -0.0733, -0.0849,\n",
+      "         0.0396, -0.0063,  0.0429, -0.0295, -0.0859, -0.0635, -0.0324, -0.0322,\n",
+      "        -0.0453, -0.1600, -0.0446, -0.0820, -0.0396, -0.0361, -0.0575, -0.1047,\n",
+      "         0.0659, -0.0314, -0.0371, -0.0085, -0.0410, -0.0368, -0.0853, -0.0680,\n",
+      "        -0.0602, -0.0223, -0.0340, -0.0302, -0.0558, -0.0183,  0.0057, -0.0077,\n",
+      "        -0.0272,  0.0003, -0.0754, -0.0787, -0.0213,  0.0797, -0.0158, -0.0885,\n",
+      "        -0.0873, -0.1150, -0.0219, -0.0448, -0.0874, -0.0513,  0.0003, -0.0481,\n",
+      "        -0.0905,  0.0180, -0.0599, -0.0476,  0.0540, -0.0755, -0.0598, -0.0612,\n",
+      "        -0.0827, -0.0633, -0.1064, -0.0490, -0.0605, -0.0373, -0.0739, -0.0630,\n",
+      "        -0.0324, -0.0015, -0.0032, -0.0307, -0.0997, -0.0431, -0.0673,  0.0073,\n",
+      "        -0.0587, -0.0172, -0.0433, -0.0581, -0.0104, -0.0525, -0.0368, -0.0499,\n",
+      "        -0.0437, -0.0456, -0.0183, -0.0357, -0.0134,  0.0504, -0.0849, -0.1054,\n",
+      "        -0.1218, -0.0582, -0.1181, -0.0670, -0.0941, -0.0889, -0.0665, -0.0617,\n",
+      "        -0.0014,  0.0006, -0.0504, -0.0393,  0.0158, -0.0436, -0.0060, -0.0520,\n",
+      "         0.0039, -0.0805, -0.1435, -0.0406, -0.0861, -0.0442, -0.0013, -0.0298,\n",
+      "        -0.0132, -0.1197, -0.0568, -0.0657, -0.0070, -0.1030, -0.0123, -0.0602,\n",
+      "         0.0845,  0.0555, -0.1142, -0.0441, -0.0814, -0.0667, -0.0128, -0.1197,\n",
+      "        -0.1148, -0.0513, -0.0139, -0.0985, -0.0689, -0.0279, -0.0753, -0.0751,\n",
+      "        -0.0804, -0.0294, -0.1379, -0.0473, -0.0656, -0.0556, -0.0201, -0.0918,\n",
+      "        -0.0448, -0.0025, -0.0703,  0.0226, -0.0136, -0.0762, -0.1211, -0.0046,\n",
+      "         0.0017, -0.0413, -0.0156, -0.0853, -0.0770, -0.0953, -0.1017, -0.0529,\n",
+      "        -0.0564, -0.1248,  0.0121, -0.0490, -0.0728,  0.0081, -0.0588, -0.0606,\n",
+      "        -0.1024, -0.0078, -0.1066, -0.1091, -0.0513,  0.0987, -0.0629,  0.0104,\n",
+      "        -0.0172, -0.0654,  0.0601,  0.0008, -0.0638, -0.0242,  0.0053, -0.0012,\n",
+      "        -0.0198, -0.0685, -0.0671, -0.0296, -0.0088, -0.0601, -0.0353, -0.0988,\n",
+      "        -0.0469, -0.0390, -0.0385, -0.0553,  0.0157, -0.0717, -0.0637, -0.0716,\n",
+      "         0.0379, -0.0694, -0.0366, -0.0304, -0.1476, -0.0163, -0.1178, -0.0215,\n",
+      "        -0.0614, -0.0502, -0.0035, -0.0374, -0.0253, -0.0772, -0.0575, -0.0406,\n",
+      "        -0.0566, -0.0492, -0.0855, -0.0355, -0.0304,  0.0379, -0.1298, -0.0802,\n",
+      "        -0.0455, -0.1010, -0.0937, -0.0928, -0.1120, -0.0068, -0.0902, -0.0564,\n",
+      "        -0.0760, -0.0446, -0.0283, -0.0252, -0.0995, -0.0602, -0.0668,  0.0169,\n",
+      "        -0.0187, -0.0883, -0.0900, -0.0200, -0.0485, -0.0592, -0.0408, -0.1371])), ('pretrained_model.layer3.4.bn1.running_var', tensor([0.0079, 0.0060, 0.0113, 0.0123, 0.0064, 0.0086, 0.0092, 0.0119, 0.0073,\n",
+      "        0.0097, 0.0073, 0.0080, 0.0100, 0.0115, 0.0069, 0.0052, 0.0095, 0.0172,\n",
+      "        0.0081, 0.0068, 0.0071, 0.0058, 0.0117, 0.0093, 0.0076, 0.0117, 0.0050,\n",
+      "        0.0070, 0.0069, 0.0092, 0.0122, 0.0075, 0.0061, 0.0086, 0.0090, 0.0105,\n",
+      "        0.0065, 0.0075, 0.0079, 0.0060, 0.0074, 0.0085, 0.0135, 0.0124, 0.0053,\n",
+      "        0.0067, 0.0061, 0.0071, 0.0053, 0.0072, 0.0072, 0.0088, 0.0083, 0.0078,\n",
+      "        0.0085, 0.0074, 0.0157, 0.0143, 0.0089, 0.0061, 0.0067, 0.0126, 0.0075,\n",
+      "        0.0135, 0.0114, 0.0068, 0.0078, 0.0124, 0.0056, 0.0076, 0.0091, 0.0097,\n",
+      "        0.0056, 0.0052, 0.0064, 0.0072, 0.0090, 0.0051, 0.0154, 0.0058, 0.0067,\n",
+      "        0.0075, 0.0077, 0.0065, 0.0039, 0.0089, 0.0077, 0.0082, 0.0069, 0.0065,\n",
+      "        0.0074, 0.0097, 0.0057, 0.0121, 0.0097, 0.0106, 0.0136, 0.0056, 0.0101,\n",
+      "        0.0065, 0.0069, 0.0100, 0.0056, 0.0080, 0.0050, 0.0070, 0.0080, 0.0067,\n",
+      "        0.0067, 0.0066, 0.0055, 0.0070, 0.0152, 0.0082, 0.0128, 0.0091, 0.0073,\n",
+      "        0.0078, 0.0070, 0.0175, 0.0128, 0.0086, 0.0053, 0.0078, 0.0071, 0.0078,\n",
+      "        0.0082, 0.0067, 0.0177, 0.0147, 0.0076, 0.0072, 0.0108, 0.0089, 0.0061,\n",
+      "        0.0124, 0.0167, 0.0132, 0.0099, 0.0113, 0.0074, 0.0055, 0.0151, 0.0061,\n",
+      "        0.0096, 0.0128, 0.0132, 0.0081, 0.0078, 0.0092, 0.0095, 0.0077, 0.0057,\n",
+      "        0.0051, 0.0079, 0.0100, 0.0080, 0.0073, 0.0089, 0.0137, 0.0059, 0.0083,\n",
+      "        0.0070, 0.0080, 0.0073, 0.0114, 0.0104, 0.0066, 0.0058, 0.0110, 0.0079,\n",
+      "        0.0054, 0.0085, 0.0139, 0.0108, 0.0122, 0.0101, 0.0083, 0.0069, 0.0090,\n",
+      "        0.0116, 0.0167, 0.0076, 0.0072, 0.0091, 0.0066, 0.0103, 0.0059, 0.0072,\n",
+      "        0.0122, 0.0088, 0.0065, 0.0050, 0.0064, 0.0071, 0.0067, 0.0090, 0.0068,\n",
+      "        0.0082, 0.0103, 0.0055, 0.0074, 0.0078, 0.0050, 0.0073, 0.0110, 0.0154,\n",
+      "        0.0077, 0.0063, 0.0107, 0.0063, 0.0089, 0.0114, 0.0067, 0.0138, 0.0073,\n",
+      "        0.0086, 0.0092, 0.0050, 0.0101, 0.0073, 0.0093, 0.0052, 0.0097, 0.0144,\n",
+      "        0.0138, 0.0104, 0.0091, 0.0067, 0.0151, 0.0135, 0.0053, 0.0105, 0.0098,\n",
+      "        0.0112, 0.0127, 0.0112, 0.0070, 0.0082, 0.0068, 0.0070, 0.0078, 0.0062,\n",
+      "        0.0064, 0.0148, 0.0072, 0.0081, 0.0064, 0.0140, 0.0105, 0.0185, 0.0074,\n",
+      "        0.0095, 0.0084, 0.0041, 0.0158])), ('pretrained_model.layer3.4.bn1.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.4.conv2.weight', tensor([[[[-5.8209e-03,  1.1462e-02,  1.2004e-02],\n",
+      "          [-2.8590e-02, -6.9599e-03, -3.9189e-03],\n",
+      "          [-1.0044e-02, -2.1020e-02, -1.4593e-02]],\n",
+      "\n",
+      "         [[ 8.6116e-04, -1.2200e-03,  2.9348e-03],\n",
+      "          [-7.5528e-03, -1.9162e-02, -8.3819e-03],\n",
+      "          [ 8.3744e-03,  4.8433e-03,  1.9383e-03]],\n",
+      "\n",
+      "         [[-2.5830e-02, -1.3776e-02,  1.1717e-02],\n",
+      "          [-2.4808e-03, -2.3072e-02, -8.7335e-03],\n",
+      "          [ 7.3064e-04, -1.2044e-02, -1.4541e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 8.9793e-04, -6.5028e-03, -6.2118e-03],\n",
+      "          [-8.8695e-03,  1.0267e-02,  1.3219e-02],\n",
+      "          [-1.5843e-02,  4.1420e-03, -1.4981e-03]],\n",
+      "\n",
+      "         [[ 3.7288e-03, -2.4168e-02, -5.5272e-03],\n",
+      "          [-5.5910e-05, -6.1669e-03, -1.3034e-02],\n",
+      "          [ 3.9058e-03,  1.7533e-02,  1.1000e-02]],\n",
+      "\n",
+      "         [[-6.3466e-05, -3.1983e-03, -4.4580e-03],\n",
+      "          [-1.1769e-02, -1.0979e-02, -1.4822e-02],\n",
+      "          [-4.1673e-03, -3.7384e-03, -3.8538e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-3.4705e-02, -2.8515e-02, -2.3093e-02],\n",
+      "          [-2.2231e-03,  2.1156e-02,  8.5395e-03],\n",
+      "          [-8.9862e-03,  8.6979e-03,  2.1634e-02]],\n",
+      "\n",
+      "         [[-6.2353e-03,  3.6523e-03, -4.6562e-03],\n",
+      "          [ 9.1177e-03,  2.1490e-02,  1.1952e-02],\n",
+      "          [-2.2184e-03,  2.9805e-02,  1.7089e-02]],\n",
+      "\n",
+      "         [[ 1.1515e-02,  1.2878e-02,  3.6666e-02],\n",
+      "          [-2.0393e-02, -1.4948e-02,  2.0887e-03],\n",
+      "          [-2.9456e-03, -2.6888e-02, -3.3140e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.5932e-02,  2.2099e-02,  3.1682e-02],\n",
+      "          [-3.7381e-03,  6.3726e-03, -3.5721e-03],\n",
+      "          [-8.5522e-03, -6.7675e-03,  3.1908e-03]],\n",
+      "\n",
+      "         [[ 1.3983e-02,  2.4087e-02,  2.0356e-02],\n",
+      "          [ 1.8362e-03, -4.3993e-03, -3.8945e-03],\n",
+      "          [-9.3115e-03, -1.1335e-02, -1.3701e-02]],\n",
+      "\n",
+      "         [[-1.2841e-02, -1.7752e-02, -1.9801e-02],\n",
+      "          [-2.4421e-03, -1.4244e-02, -8.6861e-04],\n",
+      "          [-7.6722e-03, -1.0066e-02, -5.2010e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 8.1336e-03, -1.8872e-03,  3.3253e-03],\n",
+      "          [ 1.3757e-02,  3.8398e-03,  9.4467e-03],\n",
+      "          [-7.6527e-03, -2.4381e-02, -1.2312e-02]],\n",
+      "\n",
+      "         [[-1.6857e-02, -1.0140e-02, -2.6526e-03],\n",
+      "          [ 1.2181e-02,  5.9825e-03,  1.2123e-02],\n",
+      "          [ 1.9653e-02, -1.8249e-02, -1.9902e-02]],\n",
+      "\n",
+      "         [[ 1.4230e-02,  8.4432e-03, -2.5639e-02],\n",
+      "          [-8.9583e-03,  2.7704e-02,  1.9999e-03],\n",
+      "          [-1.8978e-02, -3.1145e-03, -6.9589e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-2.3122e-02, -2.3861e-02, -2.1814e-02],\n",
+      "          [ 4.1167e-05,  3.4441e-03, -9.1658e-03],\n",
+      "          [ 1.7517e-02,  1.2566e-02,  1.1013e-02]],\n",
+      "\n",
+      "         [[-4.5251e-03, -6.0514e-03, -3.1359e-03],\n",
+      "          [-6.2929e-03,  1.2832e-02, -1.2584e-02],\n",
+      "          [-7.8471e-03, -1.1057e-02, -1.5786e-02]],\n",
+      "\n",
+      "         [[ 3.2513e-02,  1.1059e-02,  1.0454e-02],\n",
+      "          [ 3.4743e-02,  1.9712e-02,  2.7771e-02],\n",
+      "          [ 2.3596e-02,  1.8524e-02,  2.5358e-02]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-5.2654e-03,  2.7511e-02,  1.3816e-02],\n",
+      "          [-1.6258e-02,  1.0640e-02,  8.1433e-03],\n",
+      "          [-1.7503e-02,  2.6646e-02,  1.2351e-02]],\n",
+      "\n",
+      "         [[ 8.0355e-03,  2.9963e-03, -1.4065e-02],\n",
+      "          [-8.3448e-03, -7.5565e-04, -1.1370e-02],\n",
+      "          [-1.4047e-02, -4.9025e-03, -3.1421e-02]],\n",
+      "\n",
+      "         [[-1.0139e-02, -2.3205e-02, -2.1656e-02],\n",
+      "          [ 2.8805e-02,  7.9999e-03, -3.6478e-03],\n",
+      "          [ 1.5108e-02,  2.1001e-03,  5.3493e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.2768e-03,  1.0692e-02,  3.7413e-03],\n",
+      "          [-4.4513e-03, -3.8843e-04,  9.6198e-03],\n",
+      "          [-9.5113e-03, -3.3777e-02, -1.4606e-02]],\n",
+      "\n",
+      "         [[-1.2395e-02, -1.2439e-03, -2.6906e-03],\n",
+      "          [-3.8027e-03,  2.3295e-02,  1.5031e-02],\n",
+      "          [-8.0716e-03, -6.5173e-03, -7.4022e-03]],\n",
+      "\n",
+      "         [[ 8.7246e-03,  1.0052e-02,  1.7776e-03],\n",
+      "          [-7.0105e-03,  1.6988e-02,  4.7162e-03],\n",
+      "          [ 8.0096e-03,  5.5947e-03,  1.1856e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 7.9354e-03,  1.7990e-02,  5.6884e-03],\n",
+      "          [-4.5983e-03,  1.0872e-02, -4.5578e-03],\n",
+      "          [ 5.5214e-03, -2.6487e-03, -2.1537e-04]],\n",
+      "\n",
+      "         [[ 3.2071e-03, -1.7399e-02, -7.3785e-03],\n",
+      "          [ 4.3709e-03, -1.5684e-03, -1.8795e-03],\n",
+      "          [ 6.3070e-03,  2.4163e-02,  9.5550e-03]],\n",
+      "\n",
+      "         [[-1.5632e-03,  9.9834e-03, -2.6852e-02],\n",
+      "          [-1.1277e-02,  1.1648e-02, -3.2450e-03],\n",
+      "          [-3.1337e-03,  1.4756e-02, -4.1817e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-3.4519e-03,  6.8398e-03, -1.6237e-02],\n",
+      "          [ 1.0262e-02,  1.9582e-02,  5.7482e-03],\n",
+      "          [ 1.1611e-02,  2.8118e-02,  2.7798e-02]],\n",
+      "\n",
+      "         [[-1.8105e-02, -1.2363e-02, -1.1474e-02],\n",
+      "          [ 1.1360e-02, -8.8498e-04,  6.0434e-03],\n",
+      "          [ 6.6276e-03, -5.0357e-04, -3.9432e-04]],\n",
+      "\n",
+      "         [[-1.4991e-02, -1.5332e-02, -2.2171e-02],\n",
+      "          [-6.0671e-03, -5.5198e-03, -6.2246e-03],\n",
+      "          [ 6.2286e-03,  1.1915e-02, -6.7971e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-4.0397e-02, -2.0862e-02,  1.8734e-02],\n",
+      "          [ 3.8779e-03, -1.2032e-02, -4.5744e-03],\n",
+      "          [ 2.8957e-02, -1.8789e-02, -2.1809e-02]],\n",
+      "\n",
+      "         [[-2.5142e-02, -1.3132e-02, -5.8895e-03],\n",
+      "          [-3.6067e-03,  4.9809e-05, -6.9549e-03],\n",
+      "          [ 2.8005e-03,  4.9277e-03, -3.7361e-03]],\n",
+      "\n",
+      "         [[-1.5626e-02, -1.9401e-03,  4.6781e-03],\n",
+      "          [-2.9538e-02, -1.1110e-02,  4.4246e-03],\n",
+      "          [-9.3368e-03,  1.0984e-02,  1.3586e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.0404e-02,  1.9675e-03,  1.0132e-02],\n",
+      "          [-6.1025e-03, -8.8255e-03,  1.2296e-02],\n",
+      "          [ 1.5252e-02,  5.9352e-03,  2.8460e-02]],\n",
+      "\n",
+      "         [[-7.7569e-03,  7.5540e-03,  4.8702e-03],\n",
+      "          [-1.2772e-02,  1.0174e-02,  1.1237e-02],\n",
+      "          [-9.9632e-03,  2.8744e-03, -6.4653e-03]],\n",
+      "\n",
+      "         [[ 7.1930e-03, -6.8778e-03, -1.0737e-02],\n",
+      "          [ 1.6499e-02, -1.1646e-02,  2.5632e-04],\n",
+      "          [ 1.9960e-02,  7.1631e-03,  5.8864e-03]]]])), ('pretrained_model.layer3.4.bn2.weight', tensor([0.1948, 0.1505, 0.1152, 0.1920, 0.1925, 0.2993, 0.1310, 0.1750, 0.1607,\n",
+      "        0.1724, 0.2195, 0.1894, 0.1896, 0.1551, 0.2041, 0.1900, 0.1633, 0.1371,\n",
+      "        0.1515, 0.1622, 0.2028, 0.1624, 0.1684, 0.2058, 0.1555, 0.1426, 0.1478,\n",
+      "        0.1484, 0.2197, 0.1901, 0.1527, 0.1721, 0.2284, 0.1742, 0.1495, 0.1735,\n",
+      "        0.1558, 0.1714, 0.1665, 0.1826, 0.1736, 0.2086, 0.1632, 0.1981, 0.1788,\n",
+      "        0.1547, 0.2119, 0.1774, 0.1885, 0.1845, 0.1980, 0.1625, 0.1385, 0.2731,\n",
+      "        0.2035, 0.1695, 0.1847, 0.2025, 0.1219, 0.1417, 0.1580, 0.1152, 0.1430,\n",
+      "        0.2003, 0.1766, 0.1638, 0.1825, 0.2157, 0.1987, 0.1612, 0.1510, 0.2049,\n",
+      "        0.1776, 0.1883, 0.1805, 0.1546, 0.1402, 0.1425, 0.1618, 0.1679, 0.2168,\n",
+      "        0.2576, 0.2050, 0.1393, 0.1769, 0.1663, 0.1870, 0.1423, 0.1638, 0.1863,\n",
+      "        0.1241, 0.2786, 0.1586, 0.1642, 0.1616, 0.2780, 0.1535, 0.1544, 0.1591,\n",
+      "        0.1337, 0.1959, 0.1979, 0.1340, 0.1501, 0.1638, 0.1675, 0.1135, 0.4228,\n",
+      "        0.1938, 0.1696, 0.1884, 0.2080, 0.1734, 0.2006, 0.1703, 0.1815, 0.2461,\n",
+      "        0.1644, 0.1300, 0.2271, 0.1637, 0.2012, 0.1557, 0.1677, 0.1721, 0.2043,\n",
+      "        0.1883, 0.2088, 0.2131, 0.1849, 0.1575, 0.1490, 0.1862, 0.2079, 0.1947,\n",
+      "        0.1300, 0.1373, 0.1978, 0.2076, 0.1399, 0.1475, 0.1157, 0.1946, 0.1646,\n",
+      "        0.2690, 0.2020, 0.1567, 0.1480, 0.1520, 0.2178, 0.1625, 0.1791, 0.1606,\n",
+      "        0.1484, 0.2179, 0.1720, 0.1691, 0.1867, 0.1426, 0.2172, 0.2120, 0.2416,\n",
+      "        0.1613, 0.1337, 0.1733, 0.2337, 0.1618, 0.2419, 0.1825, 0.2028, 0.1653,\n",
+      "        0.1965, 0.1813, 0.1796, 0.1773, 0.2077, 0.1602, 0.1878, 0.1407, 0.1710,\n",
+      "        0.1734, 0.1634, 0.2202, 0.1756, 0.1653, 0.1418, 0.1697, 0.1465, 0.1850,\n",
+      "        0.1308, 0.1570, 0.1999, 0.1900, 0.2264, 0.1871, 0.1745, 0.1578, 0.1691,\n",
+      "        0.1559, 0.1828, 0.1839, 0.1188, 0.2121, 0.1843, 0.1345, 0.1880, 0.2031,\n",
+      "        0.1680, 0.2011, 0.1602, 0.1558, 0.2131, 0.2475, 0.2006, 0.1527, 0.2090,\n",
+      "        0.1680, 0.1567, 0.1775, 0.1863, 0.1400, 0.1731, 0.2087, 0.1389, 0.1239,\n",
+      "        0.1783, 0.1356, 0.2020, 0.1250, 0.1560, 0.1490, 0.2110, 0.1297, 0.1501,\n",
+      "        0.1401, 0.1967, 0.1375, 0.1535, 0.2016, 0.1743, 0.1321, 0.1811, 0.2530,\n",
+      "        0.1638, 0.2071, 0.1839, 0.1854, 0.2215, 0.1562, 0.1878, 0.1929, 0.1899,\n",
+      "        0.2379, 0.1115, 0.1543, 0.1955])), ('pretrained_model.layer3.4.bn2.bias', tensor([-0.1421,  0.0230,  0.0021, -0.1050, -0.1934, -0.0710, -0.0386, -0.1806,\n",
+      "        -0.1283,  0.0224, -0.1799, -0.1562, -0.1615, -0.0274, -0.1554, -0.1381,\n",
+      "        -0.0553, -0.0236, -0.0646, -0.1652, -0.1408, -0.0823,  0.0040, -0.0432,\n",
+      "        -0.0470, -0.1546,  0.0321, -0.1282, -0.1702, -0.0593, -0.0373, -0.0853,\n",
+      "        -0.0987, -0.1035, -0.1046, -0.0884, -0.1131, -0.0463, -0.0171, -0.0976,\n",
+      "        -0.0862, -0.0444, -0.1024, -0.1264, -0.0534, -0.0812, -0.1183, -0.1238,\n",
+      "        -0.0882, -0.0939, -0.1162, -0.0750, -0.0500, -0.2681, -0.1588, -0.0387,\n",
+      "        -0.0955, -0.1375,  0.0960, -0.0027, -0.0698,  0.1640,  0.0030, -0.1335,\n",
+      "        -0.1231, -0.0280, -0.0965, -0.1384, -0.1429, -0.0656, -0.0562, -0.0959,\n",
+      "        -0.1276, -0.1412,  0.0013,  0.2599, -0.1622,  0.0160, -0.1172, -0.1142,\n",
+      "        -0.0746, -0.1511, -0.1847,  0.0579, -0.0288, -0.1399, -0.0970, -0.0677,\n",
+      "        -0.0607, -0.1404, -0.0283, -0.0736, -0.1356, -0.0301, -0.1518, -0.1039,\n",
+      "        -0.0952, -0.1125,  0.0025,  0.0501, -0.0757, -0.1519, -0.0360, -0.0510,\n",
+      "        -0.1356, -0.0471,  0.0892, -0.0017, -0.2128, -0.0199, -0.1003, -0.1361,\n",
+      "        -0.1353, -0.0361, -0.1327, -0.1182, -0.0744, -0.1141,  0.0202, -0.1079,\n",
+      "        -0.0935, -0.0668, -0.0680, -0.0499, -0.0399, -0.1458, -0.1224, -0.1673,\n",
+      "        -0.1919, -0.0466, -0.1453, -0.1218, -0.0770,  0.0163, -0.1740, -0.0642,\n",
+      "         0.0671, -0.1182, -0.0794, -0.0037, -0.0273,  0.0615, -0.0936, -0.1534,\n",
+      "        -0.0784, -0.1220, -0.0396, -0.0229,  0.0306, -0.0924, -0.1100, -0.1426,\n",
+      "        -0.0548, -0.1221, -0.1007, -0.0958, -0.1606, -0.1715, -0.0171, -0.0945,\n",
+      "        -0.0766, -0.1644, -0.0841,  0.0707,  0.0378, -0.2085, -0.0985, -0.0886,\n",
+      "        -0.1804, -0.1045, -0.0191, -0.0991, -0.1572, -0.1178, -0.1175, -0.1293,\n",
+      "        -0.0495, -0.1597, -0.0468, -0.1384, -0.1373, -0.0761, -0.1095, -0.0109,\n",
+      "        -0.1032, -0.0456, -0.1052, -0.0944, -0.1672,  0.0925, -0.0575, -0.0857,\n",
+      "        -0.1023, -0.1347, -0.0836, -0.0327, -0.1448, -0.1519, -0.0516, -0.1428,\n",
+      "        -0.0928,  0.0282, -0.1584, -0.0537,  0.0681, -0.1282, -0.0627, -0.1118,\n",
+      "        -0.1586, -0.1144, -0.0685, -0.1615, -0.0565, -0.1808, -0.0235, -0.1189,\n",
+      "        -0.1494, -0.0485, -0.1078, -0.0435, -0.0583, -0.0881, -0.1330, -0.0214,\n",
+      "         0.0268, -0.0745, -0.0089, -0.0862,  0.0653, -0.1228, -0.0458, -0.1168,\n",
+      "         0.0402,  0.0064, -0.0492, -0.1286, -0.0859, -0.1101, -0.1152, -0.1246,\n",
+      "         0.0152, -0.0441, -0.1068, -0.1124, -0.1562, -0.1006, -0.1635, -0.1007,\n",
+      "        -0.1094, -0.1195, -0.1033, -0.1145, -0.0850,  0.0541, -0.0950, -0.1265])), ('pretrained_model.layer3.4.bn2.running_mean', tensor([-0.1168,  0.0622, -0.1094, -0.1174, -0.1168, -0.0820, -0.0661, -0.0697,\n",
+      "        -0.0959,  0.0510, -0.1296, -0.1001, -0.0557, -0.1024, -0.0770, -0.0732,\n",
+      "        -0.0740, -0.0741, -0.0505, -0.0957, -0.0635, -0.0726, -0.1257, -0.1103,\n",
+      "        -0.0852, -0.0387,  0.0529, -0.0478,  0.0396, -0.0196, -0.0619, -0.0990,\n",
+      "        -0.1293, -0.0883, -0.0725, -0.1728, -0.0743,  0.0283, -0.0664, -0.0461,\n",
+      "        -0.1218, -0.0738, -0.0055, -0.0140, -0.0672, -0.1687, -0.0243, -0.1173,\n",
+      "        -0.1129, -0.0230, -0.0130, -0.0736,  0.0388,  0.0271, -0.0300, -0.0664,\n",
+      "        -0.0210, -0.1389, -0.0531, -0.1290,  0.0101, -0.0749, -0.1787, -0.0706,\n",
+      "        -0.1333, -0.0911, -0.0601, -0.0542, -0.1410, -0.1148, -0.0230, -0.0362,\n",
+      "        -0.1147, -0.1019, -0.1299,  0.1317, -0.0600,  0.0748, -0.1295, -0.0390,\n",
+      "        -0.1512, -0.1485, -0.0837,  0.0546,  0.1245, -0.1228, -0.1618, -0.1172,\n",
+      "        -0.0620, -0.0511, -0.0114, -0.0730, -0.0047, -0.1811, -0.0876,  0.0137,\n",
+      "         0.1239, -0.1130,  0.0140,  0.0494, -0.1261, -0.0659, -0.0577, -0.0770,\n",
+      "        -0.0433, -0.0238,  0.0788, -0.1416, -0.1191,  0.0765, -0.0956, -0.0642,\n",
+      "        -0.1191, -0.0656, -0.1130, -0.0727, -0.1048, -0.0503, -0.0444, -0.1786,\n",
+      "        -0.1375, -0.0526, -0.1174,  0.0322, -0.0372, -0.0997,  0.3103, -0.1393,\n",
+      "        -0.0985, -0.0569, -0.0175, -0.1080, -0.1369, -0.1183, -0.0519, -0.0780,\n",
+      "         0.0598, -0.0085, -0.0042, -0.0029, -0.0007,  0.0793, -0.0972, -0.0917,\n",
+      "         0.1647, -0.0825, -0.0239,  0.0398,  0.0371,  0.0309,  0.0771, -0.1376,\n",
+      "        -0.1153, -0.1129, -0.1360, -0.0909, -0.0388, -0.0938, -0.0909, -0.0504,\n",
+      "        -0.0863, -0.0785, -0.1327,  0.0394, -0.0192, -0.0029, -0.1248, -0.1140,\n",
+      "        -0.1333,  0.0461,  0.0052, -0.1402, -0.2867, -0.1190, -0.0864, -0.0671,\n",
+      "        -0.0506, -0.0422, -0.0746, -0.0552, -0.1131, -0.1170, -0.1053, -0.0809,\n",
+      "        -0.0649, -0.1161, -0.0255, -0.0204, -0.0962,  0.0274, -0.0855, -0.1077,\n",
+      "        -0.0629, -0.0955, -0.0320, -0.1223, -0.1110, -0.1456, -0.0590, -0.1249,\n",
+      "         0.0546, -0.1233, -0.1094, -0.1474, -0.0671, -0.0669, -0.0339, -0.0735,\n",
+      "        -0.1172, -0.0682,  0.0318, -0.0829,  0.0523, -0.1140, -0.0847, -0.0971,\n",
+      "        -0.1351, -0.0781, -0.0919, -0.1112, -0.0454, -0.1143, -0.1209, -0.0863,\n",
+      "        -0.0311, -0.0655, -0.0420, -0.1497, -0.0718, -0.1010, -0.1478, -0.0738,\n",
+      "         0.0752, -0.0712, -0.0548, -0.0777, -0.0772, -0.0243, -0.1408, -0.1039,\n",
+      "        -0.0250, -0.0365,  0.0894, -0.1371,  0.1866, -0.1053, -0.1218, -0.0991,\n",
+      "        -0.0442, -0.1243, -0.1579, -0.0802,  0.0135,  0.0160, -0.0708, -0.0707])), ('pretrained_model.layer3.4.bn2.running_var', tensor([0.0101, 0.0145, 0.0110, 0.0100, 0.0073, 0.0222, 0.0089, 0.0053, 0.0085,\n",
+      "        0.0196, 0.0105, 0.0123, 0.0107, 0.0089, 0.0073, 0.0123, 0.0061, 0.0065,\n",
+      "        0.0083, 0.0076, 0.0104, 0.0065, 0.0102, 0.0099, 0.0079, 0.0074, 0.0086,\n",
+      "        0.0066, 0.0115, 0.0085, 0.0068, 0.0157, 0.0169, 0.0082, 0.0097, 0.0117,\n",
+      "        0.0114, 0.0067, 0.0066, 0.0065, 0.0115, 0.0083, 0.0047, 0.0081, 0.0098,\n",
+      "        0.0099, 0.0083, 0.0072, 0.0197, 0.0066, 0.0106, 0.0075, 0.0071, 0.0328,\n",
+      "        0.0074, 0.0126, 0.0065, 0.0086, 0.0111, 0.0130, 0.0062, 0.0168, 0.0106,\n",
+      "        0.0061, 0.0087, 0.0060, 0.0128, 0.0149, 0.0065, 0.0103, 0.0059, 0.0111,\n",
+      "        0.0114, 0.0103, 0.0142, 0.0270, 0.0084, 0.0262, 0.0080, 0.0086, 0.0193,\n",
+      "        0.0082, 0.0087, 0.0172, 0.0081, 0.0093, 0.0129, 0.0072, 0.0108, 0.0063,\n",
+      "        0.0066, 0.0195, 0.0051, 0.0164, 0.0077, 0.0191, 0.0159, 0.0077, 0.0240,\n",
+      "        0.0126, 0.0110, 0.0099, 0.0087, 0.0094, 0.0046, 0.0057, 0.0103, 0.0310,\n",
+      "        0.0065, 0.0158, 0.0075, 0.0083, 0.0086, 0.0120, 0.0069, 0.0089, 0.0135,\n",
+      "        0.0064, 0.0146, 0.0097, 0.0075, 0.0223, 0.0117, 0.0059, 0.0106, 0.0085,\n",
+      "        0.0385, 0.0113, 0.0165, 0.0093, 0.0060, 0.0067, 0.0083, 0.0209, 0.0095,\n",
+      "        0.0060, 0.0072, 0.0093, 0.0098, 0.0069, 0.0073, 0.0148, 0.0141, 0.0069,\n",
+      "        0.0224, 0.0146, 0.0068, 0.0096, 0.0145, 0.0109, 0.0091, 0.0113, 0.0086,\n",
+      "        0.0093, 0.0131, 0.0065, 0.0061, 0.0107, 0.0112, 0.0124, 0.0081, 0.0084,\n",
+      "        0.0114, 0.0180, 0.0103, 0.0094, 0.0064, 0.0152, 0.0071, 0.0085, 0.0057,\n",
+      "        0.0159, 0.0129, 0.0091, 0.0070, 0.0074, 0.0084, 0.0090, 0.0083, 0.0086,\n",
+      "        0.0087, 0.0103, 0.0111, 0.0081, 0.0052, 0.0074, 0.0092, 0.0069, 0.0062,\n",
+      "        0.0169, 0.0153, 0.0148, 0.0080, 0.0105, 0.0097, 0.0103, 0.0078, 0.0098,\n",
+      "        0.0066, 0.0094, 0.0068, 0.0070, 0.0092, 0.0128, 0.0111, 0.0058, 0.0071,\n",
+      "        0.0067, 0.0079, 0.0068, 0.0062, 0.0081, 0.0152, 0.0082, 0.0064, 0.0101,\n",
+      "        0.0062, 0.0078, 0.0096, 0.0076, 0.0046, 0.0086, 0.0092, 0.0070, 0.0130,\n",
+      "        0.0066, 0.0139, 0.0106, 0.0151, 0.0062, 0.0073, 0.0112, 0.0084, 0.0084,\n",
+      "        0.0062, 0.0110, 0.0079, 0.0117, 0.0105, 0.0068, 0.0074, 0.0067, 0.0167,\n",
+      "        0.0095, 0.0117, 0.0096, 0.0074, 0.0166, 0.0079, 0.0095, 0.0095, 0.0079,\n",
+      "        0.0167, 0.0087, 0.0067, 0.0085])), ('pretrained_model.layer3.4.bn2.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.4.conv3.weight', tensor([[[[ 0.0004]],\n",
+      "\n",
+      "         [[-0.0021]],\n",
+      "\n",
+      "         [[-0.0053]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0057]],\n",
+      "\n",
+      "         [[ 0.0005]],\n",
+      "\n",
+      "         [[ 0.0113]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0213]],\n",
+      "\n",
+      "         [[-0.0011]],\n",
+      "\n",
+      "         [[-0.0094]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0119]],\n",
+      "\n",
+      "         [[-0.0399]],\n",
+      "\n",
+      "         [[-0.0093]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0163]],\n",
+      "\n",
+      "         [[ 0.0193]],\n",
+      "\n",
+      "         [[ 0.0034]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0004]],\n",
+      "\n",
+      "         [[ 0.0044]],\n",
+      "\n",
+      "         [[-0.0295]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-0.0038]],\n",
+      "\n",
+      "         [[ 0.0116]],\n",
+      "\n",
+      "         [[ 0.0205]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0227]],\n",
+      "\n",
+      "         [[-0.0039]],\n",
+      "\n",
+      "         [[ 0.0325]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0169]],\n",
+      "\n",
+      "         [[-0.0125]],\n",
+      "\n",
+      "         [[ 0.0015]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0041]],\n",
+      "\n",
+      "         [[ 0.0165]],\n",
+      "\n",
+      "         [[ 0.0101]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0200]],\n",
+      "\n",
+      "         [[-0.0065]],\n",
+      "\n",
+      "         [[ 0.0113]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0074]],\n",
+      "\n",
+      "         [[ 0.0045]],\n",
+      "\n",
+      "         [[-0.0180]]]])), ('pretrained_model.layer3.4.bn3.weight', tensor([-0.0322,  0.1977,  0.1268,  ...,  0.0940,  0.0413,  0.0602])), ('pretrained_model.layer3.4.bn3.bias', tensor([-0.0736, -0.2050, -0.1439,  ..., -0.0962, -0.0603, -0.0633])), ('pretrained_model.layer3.4.bn3.running_mean', tensor([ 0.0135, -0.0262, -0.0196,  ..., -0.0385, -0.0129, -0.0032])), ('pretrained_model.layer3.4.bn3.running_var', tensor([0.0002, 0.0015, 0.0016,  ..., 0.0018, 0.0005, 0.0004])), ('pretrained_model.layer3.4.bn3.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.5.conv1.weight', tensor([[[[-0.0058]],\n",
+      "\n",
+      "         [[ 0.0392]],\n",
+      "\n",
+      "         [[ 0.0410]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0017]],\n",
+      "\n",
+      "         [[-0.0393]],\n",
+      "\n",
+      "         [[-0.0352]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0240]],\n",
+      "\n",
+      "         [[-0.0263]],\n",
+      "\n",
+      "         [[ 0.0062]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0021]],\n",
+      "\n",
+      "         [[ 0.0041]],\n",
+      "\n",
+      "         [[ 0.0141]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0243]],\n",
+      "\n",
+      "         [[-0.0118]],\n",
+      "\n",
+      "         [[ 0.0098]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0074]],\n",
+      "\n",
+      "         [[ 0.0086]],\n",
+      "\n",
+      "         [[ 0.0055]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0070]],\n",
+      "\n",
+      "         [[-0.0098]],\n",
+      "\n",
+      "         [[ 0.0084]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0016]],\n",
+      "\n",
+      "         [[ 0.0006]],\n",
+      "\n",
+      "         [[ 0.0129]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0204]],\n",
+      "\n",
+      "         [[-0.0069]],\n",
+      "\n",
+      "         [[-0.0008]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0138]],\n",
+      "\n",
+      "         [[ 0.0075]],\n",
+      "\n",
+      "         [[-0.0271]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0286]],\n",
+      "\n",
+      "         [[ 0.0484]],\n",
+      "\n",
+      "         [[-0.0153]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0136]],\n",
+      "\n",
+      "         [[-0.0220]],\n",
+      "\n",
+      "         [[-0.0151]]]])), ('pretrained_model.layer3.5.bn1.weight', tensor([0.1833, 0.1984, 0.1104, 0.2359, 0.1758, 0.2257, 0.2684, 0.2004, 0.1699,\n",
+      "        0.1917, 0.2101, 0.2196, 0.1719, 0.2044, 0.2080, 0.1716, 0.1850, 0.1969,\n",
+      "        0.2386, 0.2979, 0.2421, 0.1452, 0.2202, 0.2029, 0.1308, 0.1499, 0.2170,\n",
+      "        0.1631, 0.2016, 0.1671, 0.2166, 0.1313, 0.1713, 0.1373, 0.1812, 0.1353,\n",
+      "        0.1230, 0.1573, 0.1918, 0.1437, 0.2315, 0.1821, 0.1609, 0.2631, 0.2107,\n",
+      "        0.2047, 0.1831, 0.2348, 0.1980, 0.1141, 0.1440, 0.2144, 0.2155, 0.1577,\n",
+      "        0.1772, 0.1860, 0.1217, 0.2023, 0.1635, 0.1648, 0.2310, 0.1514, 0.1861,\n",
+      "        0.1621, 0.2010, 0.1663, 0.2149, 0.1537, 0.1832, 0.1655, 0.2081, 0.2403,\n",
+      "        0.1552, 0.2363, 0.2112, 0.2027, 0.1877, 0.2225, 0.1475, 0.1450, 0.1849,\n",
+      "        0.2140, 0.2264, 0.1973, 0.2009, 0.0847, 0.1920, 0.1640, 0.1975, 0.2143,\n",
+      "        0.2022, 0.1505, 0.2317, 0.1670, 0.1357, 0.1490, 0.2101, 0.1404, 0.1423,\n",
+      "        0.2179, 0.1949, 0.1870, 0.1706, 0.1753, 0.2150, 0.1887, 0.1942, 0.2288,\n",
+      "        0.2125, 0.2123, 0.1916, 0.2318, 0.1787, 0.1747, 0.1782, 0.2640, 0.1777,\n",
+      "        0.2227, 0.1863, 0.1604, 0.1784, 0.1552, 0.2217, 0.2069, 0.1543, 0.2003,\n",
+      "        0.1580, 0.2002, 0.1542, 0.1306, 0.2027, 0.1589, 0.1816, 0.2066, 0.1715,\n",
+      "        0.1561, 0.1706, 0.2532, 0.1625, 0.1904, 0.1700, 0.1723, 0.1853, 0.1829,\n",
+      "        0.1543, 0.2207, 0.2237, 0.2218, 0.1553, 0.1823, 0.1986, 0.1972, 0.1340,\n",
+      "        0.2269, 0.1835, 0.2159, 0.2333, 0.2055, 0.2308, 0.1985, 0.2359, 0.2273,\n",
+      "        0.2052, 0.1930, 0.1763, 0.1333, 0.1786, 0.1952, 0.3043, 0.1455, 0.2104,\n",
+      "        0.1677, 0.0774, 0.1994, 0.2096, 0.2107, 0.1917, 0.1237, 0.1181, 0.1982,\n",
+      "        0.1880, 0.1768, 0.1908, 0.1832, 0.2344, 0.1323, 0.1160, 0.1301, 0.1720,\n",
+      "        0.1700, 0.1534, 0.2206, 0.2079, 0.1733, 0.1971, 0.1766, 0.1435, 0.1481,\n",
+      "        0.1955, 0.1703, 0.2081, 0.1088, 0.2140, 0.2126, 0.2017, 0.2210, 0.1865,\n",
+      "        0.2230, 0.2140, 0.1923, 0.2344, 0.2181, 0.1984, 0.1499, 0.1829, 0.2222,\n",
+      "        0.1645, 0.1979, 0.1287, 0.1619, 0.1602, 0.1443, 0.1979, 0.1599, 0.3887,\n",
+      "        0.2228, 0.2223, 0.1706, 0.1720, 0.2642, 0.1752, 0.1553, 0.1570, 0.1809,\n",
+      "        0.1849, 0.1739, 0.2099, 0.1711, 0.2315, 0.1828, 0.1687, 0.1416, 0.1551,\n",
+      "        0.1836, 0.1666, 0.1499, 0.1590, 0.1956, 0.2255, 0.2104, 0.1791, 0.1892,\n",
+      "        0.1917, 0.1965, 0.1672, 0.1807])), ('pretrained_model.layer3.5.bn1.bias', tensor([-0.1898, -0.2130,  0.0782, -0.1327, -0.2062, -0.2495, -0.3192, -0.0413,\n",
+      "        -0.1526, -0.0334, -0.0913, -0.2308, -0.0870, -0.0996, -0.1676, -0.1217,\n",
+      "        -0.1401, -0.2087, -0.2192, -0.2431, -0.1548,  0.0180, -0.1698, -0.0728,\n",
+      "        -0.0657, -0.0725, -0.0272, -0.1295, -0.1366, -0.1263, -0.1239, -0.0252,\n",
+      "        -0.0895, -0.0793, -0.0846, -0.0091,  0.0216, -0.1309, -0.0856, -0.1155,\n",
+      "        -0.2605,  0.0188, -0.0927, -0.2299, -0.1077, -0.1035, -0.1138, -0.0998,\n",
+      "        -0.1022, -0.0020,  0.0095, -0.1395, -0.1163,  0.0371, -0.0885, -0.1360,\n",
+      "         0.0517, -0.1385, -0.0918, -0.0497, -0.1066, -0.0914, -0.1180, -0.0310,\n",
+      "        -0.1536, -0.0952, -0.1404, -0.0199, -0.1298, -0.0842, -0.1848, -0.1881,\n",
+      "        -0.0121, -0.0453, -0.1445, -0.1724, -0.0972, -0.1495, -0.0405, -0.0114,\n",
+      "        -0.1089, -0.1986, -0.2194, -0.1111, -0.1148,  0.1162, -0.1212, -0.0901,\n",
+      "        -0.1668, -0.2171, -0.1418, -0.1297, -0.1347, -0.0845, -0.0319, -0.1158,\n",
+      "        -0.2085, -0.0434, -0.0710, -0.1427, -0.1317, -0.1490, -0.1385, -0.0466,\n",
+      "        -0.1614, -0.0545, -0.0695, -0.1355, -0.1528, -0.0934,  0.0180, -0.1745,\n",
+      "        -0.1101, -0.1601, -0.1833, -0.2086, -0.0991, -0.1074, -0.1122, -0.1302,\n",
+      "        -0.0793, -0.0289, -0.1358, -0.1102, -0.0904, -0.1326, -0.0935, -0.1331,\n",
+      "        -0.1184,  0.1601, -0.0666, -0.0359, -0.1932, -0.1012,  0.0269, -0.0963,\n",
+      "        -0.0796, -0.1391,  0.1484, -0.0875, -0.0016, -0.1454, -0.1233, -0.0698,\n",
+      "        -0.0685, -0.2033, -0.1052, -0.1872, -0.0404, -0.0914, -0.1207, -0.0955,\n",
+      "         0.0762, -0.2152, -0.1354, -0.0946, -0.1579, -0.2149, -0.1600, -0.1434,\n",
+      "        -0.1516, -0.1862, -0.0999, -0.1538, -0.1776,  0.0270, -0.1832, -0.0804,\n",
+      "        -0.2038,  0.0257, -0.2001, -0.0575,  0.0598, -0.1872, -0.0070, -0.1042,\n",
+      "        -0.0932,  0.0372,  0.0711, -0.1274, -0.0661,  0.0032, -0.1693, -0.1756,\n",
+      "        -0.0862, -0.0678,  0.0172,  0.0167, -0.1477, -0.0516, -0.0782, -0.0634,\n",
+      "        -0.0992, -0.1338, -0.1293, -0.0967, -0.0759, -0.0734, -0.0651, -0.1080,\n",
+      "        -0.1089,  0.0039, -0.1229, -0.1373, -0.1319, -0.1603, -0.0963, -0.2072,\n",
+      "        -0.0700, -0.1543, -0.1242, -0.1293, -0.1641, -0.0065, -0.0566, -0.1008,\n",
+      "        -0.1385, -0.0590,  0.0101,  0.0363, -0.1450,  0.0365, -0.1535, -0.0919,\n",
+      "        -0.0418, -0.1589, -0.1885, -0.1547, -0.1071, -0.1633, -0.0730, -0.1503,\n",
+      "         0.0051, -0.0109, -0.1595, -0.1774, -0.1342, -0.0613, -0.0807, -0.1711,\n",
+      "        -0.1125, -0.0728,  0.0119, -0.0711, -0.0937, -0.1174, -0.1151, -0.1980,\n",
+      "        -0.2079, -0.1326, -0.1125, -0.1440, -0.1302,  0.0616, -0.0564, -0.1588])), ('pretrained_model.layer3.5.bn1.running_mean', tensor([-1.0920e-02, -6.4211e-02,  2.2822e-02, -1.1231e-01, -6.7593e-03,\n",
+      "        -1.3611e-01, -8.8844e-02,  5.7029e-03, -4.6010e-02, -5.6823e-02,\n",
+      "        -4.4803e-02, -2.3911e-02, -2.1764e-04,  7.1140e-03, -3.9072e-02,\n",
+      "        -7.3866e-02, -3.5324e-02, -5.5345e-02, -7.8948e-02, -7.3233e-02,\n",
+      "        -2.8466e-02, -9.4503e-02, -3.8313e-02, -4.9421e-02, -3.1553e-02,\n",
+      "        -3.8345e-02,  8.7142e-04, -2.2209e-02, -4.4991e-02,  3.2731e-02,\n",
+      "        -2.0491e-02,  3.0570e-02, -9.3811e-03, -9.4166e-02,  2.4847e-03,\n",
+      "         2.8503e-02, -1.1562e-01, -1.2962e-02, -3.4201e-02,  2.5908e-03,\n",
+      "        -5.7150e-02,  3.9110e-02, -6.7731e-02, -4.8491e-02, -5.6559e-02,\n",
+      "        -1.1093e-02, -3.3534e-02, -1.5136e-01, -5.2363e-02, -5.0327e-02,\n",
+      "        -4.4771e-02, -4.7906e-02,  1.3595e-02, -3.5265e-02, -5.0038e-02,\n",
+      "        -7.3878e-02, -7.5755e-02,  1.9916e-03, -3.4505e-02, -4.8796e-02,\n",
+      "        -1.5297e-01, -3.8278e-03, -6.0492e-02,  2.1305e-02, -5.0852e-03,\n",
+      "        -3.8393e-02, -6.0146e-02, -9.9999e-03, -4.7843e-02, -1.5966e-02,\n",
+      "        -1.0638e-03, -3.6870e-02,  1.6825e-04, -2.6369e-02, -4.5145e-02,\n",
+      "         1.9696e-02, -3.8483e-02, -4.0267e-02, -1.1960e-01, -1.7529e-02,\n",
+      "        -4.7074e-02, -6.1584e-03, -1.8267e-02, -3.6201e-02, -6.7461e-02,\n",
+      "        -4.0063e-02, -5.1820e-02, -2.8170e-02, -3.3165e-02, -4.7338e-02,\n",
+      "        -2.5514e-02,  1.5092e-02, -1.8038e-02, -6.1233e-02, -9.4421e-04,\n",
+      "        -8.0941e-03, -5.9470e-02, -2.0125e-02,  2.2805e-02, -1.6298e-02,\n",
+      "        -7.4418e-02, -3.2825e-02, -5.7592e-02, -3.8876e-02, -5.6945e-02,\n",
+      "        -8.9700e-03, -6.4641e-02, -7.3858e-02,  1.0288e-02, -6.2398e-02,\n",
+      "         4.7132e-02,  2.8398e-04, -7.7078e-02, -4.1905e-02,  4.3054e-02,\n",
+      "        -4.4279e-02,  1.4233e-02, -1.0041e-01, -6.4677e-02, -4.0408e-02,\n",
+      "         1.6957e-02, -1.8077e-02, -2.8453e-02, -9.4335e-03, -4.9224e-02,\n",
+      "        -3.3796e-02, -1.3706e-02, -5.6157e-02, -4.3267e-02, -2.0551e-02,\n",
+      "         2.4819e-02, -2.1543e-02, -5.7080e-02, -2.8640e-02, -1.6689e-02,\n",
+      "        -4.5660e-02,  1.7244e-03, -1.7789e-02,  1.4083e-01, -3.3378e-02,\n",
+      "        -2.9116e-02, -3.6015e-02, -5.7471e-02, -9.2827e-03, -1.6939e-02,\n",
+      "        -3.3638e-02, -4.0525e-03, -8.6916e-02, -1.2879e-02, -1.3464e-02,\n",
+      "        -4.7114e-02, -9.6510e-04, -1.1813e-02, -8.4250e-02, -2.1728e-02,\n",
+      "        -1.5693e-02, -8.1018e-02, -4.5722e-02, -3.1155e-02, -5.4107e-03,\n",
+      "        -7.0533e-02, -3.2060e-02, -2.2091e-02, -3.9916e-02, -7.2142e-02,\n",
+      "        -2.1921e-02, -1.3439e-02, -2.4022e-02, -9.2706e-02, -3.5193e-02,\n",
+      "        -4.7068e-02,  1.6858e-02, -2.5819e-02, -6.5042e-02, -8.2458e-02,\n",
+      "        -6.6319e-02, -1.0205e-02, -3.5015e-02, -4.5371e-02, -3.3058e-02,\n",
+      "        -1.2927e-02, -7.9140e-02, -1.7774e-02, -3.5253e-02, -2.6077e-03,\n",
+      "         3.4016e-02, -2.0698e-02, -3.3097e-02, -2.2403e-02, -2.2900e-02,\n",
+      "         1.2749e-03, -8.8577e-02, -1.1255e-02, -1.2382e-02, -3.3522e-02,\n",
+      "        -1.2635e-02, -6.3776e-02,  3.2475e-02, -4.9622e-02, -6.2290e-02,\n",
+      "        -4.5196e-02, -8.2619e-02, -4.9062e-02, -6.1721e-02, -6.7802e-02,\n",
+      "        -2.4012e-02, -4.3992e-02, -3.7260e-02, -3.4117e-02, -3.6660e-02,\n",
+      "        -7.2057e-02, -3.9784e-02, -5.7863e-03, -6.5055e-02, -6.5500e-03,\n",
+      "        -6.8297e-02, -7.5549e-02, -1.9104e-03, -4.4473e-02, -5.7270e-02,\n",
+      "        -1.4253e-02, -4.7260e-02, -4.5167e-02, -8.0135e-02, -1.1599e-01,\n",
+      "        -2.4795e-02, -4.2839e-03, -1.9027e-02, -4.8215e-02, -6.9530e-02,\n",
+      "        -5.8796e-02,  1.3334e-02, -8.6596e-02, -3.9943e-02, -9.9198e-03,\n",
+      "        -3.2818e-02, -4.1983e-02, -2.5748e-02, -3.4717e-02, -5.2003e-02,\n",
+      "        -6.9099e-02,  9.9407e-03, -6.4117e-02, -5.4277e-02, -2.4311e-02,\n",
+      "        -2.6138e-02, -1.4442e-04, -2.2341e-02, -1.8795e-02, -7.2372e-02,\n",
+      "        -4.4439e-02, -2.1836e-02, -2.8829e-02,  4.4730e-03, -3.3322e-03,\n",
+      "        -3.1773e-02])), ('pretrained_model.layer3.5.bn1.running_var', tensor([0.0068, 0.0049, 0.0090, 0.0101, 0.0069, 0.0095, 0.0127, 0.0102, 0.0058,\n",
+      "        0.0051, 0.0069, 0.0058, 0.0060, 0.0064, 0.0073, 0.0071, 0.0046, 0.0052,\n",
+      "        0.0101, 0.0136, 0.0107, 0.0161, 0.0064, 0.0072, 0.0044, 0.0062, 0.0070,\n",
+      "        0.0053, 0.0087, 0.0064, 0.0069, 0.0068, 0.0080, 0.0057, 0.0059, 0.0091,\n",
+      "        0.0105, 0.0046, 0.0076, 0.0042, 0.0072, 0.0143, 0.0074, 0.0074, 0.0097,\n",
+      "        0.0063, 0.0062, 0.0177, 0.0053, 0.0064, 0.0068, 0.0070, 0.0157, 0.0097,\n",
+      "        0.0062, 0.0070, 0.0118, 0.0064, 0.0055, 0.0067, 0.0175, 0.0064, 0.0125,\n",
+      "        0.0116, 0.0090, 0.0071, 0.0057, 0.0059, 0.0084, 0.0056, 0.0072, 0.0139,\n",
+      "        0.0089, 0.0092, 0.0063, 0.0065, 0.0067, 0.0060, 0.0163, 0.0082, 0.0075,\n",
+      "        0.0069, 0.0081, 0.0069, 0.0054, 0.0070, 0.0058, 0.0045, 0.0062, 0.0073,\n",
+      "        0.0041, 0.0051, 0.0069, 0.0067, 0.0044, 0.0048, 0.0058, 0.0101, 0.0062,\n",
+      "        0.0082, 0.0074, 0.0091, 0.0060, 0.0078, 0.0067, 0.0063, 0.0079, 0.0086,\n",
+      "        0.0070, 0.0083, 0.0192, 0.0106, 0.0086, 0.0061, 0.0077, 0.0112, 0.0069,\n",
+      "        0.0182, 0.0066, 0.0059, 0.0083, 0.0069, 0.0086, 0.0100, 0.0062, 0.0128,\n",
+      "        0.0052, 0.0066, 0.0077, 0.0084, 0.0082, 0.0076, 0.0067, 0.0072, 0.0078,\n",
+      "        0.0105, 0.0058, 0.0094, 0.0253, 0.0083, 0.0109, 0.0123, 0.0086, 0.0076,\n",
+      "        0.0113, 0.0096, 0.0084, 0.0066, 0.0060, 0.0052, 0.0064, 0.0054, 0.0103,\n",
+      "        0.0062, 0.0106, 0.0064, 0.0138, 0.0092, 0.0068, 0.0041, 0.0080, 0.0069,\n",
+      "        0.0057, 0.0075, 0.0066, 0.0150, 0.0044, 0.0086, 0.0166, 0.0107, 0.0061,\n",
+      "        0.0057, 0.0072, 0.0081, 0.0093, 0.0074, 0.0076, 0.0065, 0.0091, 0.0058,\n",
+      "        0.0078, 0.0103, 0.0045, 0.0049, 0.0100, 0.0062, 0.0081, 0.0083, 0.0041,\n",
+      "        0.0100, 0.0074, 0.0166, 0.0072, 0.0051, 0.0052, 0.0062, 0.0085, 0.0049,\n",
+      "        0.0118, 0.0053, 0.0069, 0.0075, 0.0080, 0.0057, 0.0057, 0.0069, 0.0053,\n",
+      "        0.0063, 0.0076, 0.0055, 0.0080, 0.0051, 0.0037, 0.0096, 0.0076, 0.0097,\n",
+      "        0.0072, 0.0063, 0.0088, 0.0101, 0.0058, 0.0121, 0.0060, 0.0066, 0.0272,\n",
+      "        0.0075, 0.0064, 0.0071, 0.0069, 0.0102, 0.0055, 0.0049, 0.0103, 0.0062,\n",
+      "        0.0047, 0.0061, 0.0072, 0.0118, 0.0147, 0.0066, 0.0056, 0.0057, 0.0094,\n",
+      "        0.0118, 0.0064, 0.0047, 0.0084, 0.0049, 0.0058, 0.0075, 0.0069, 0.0056,\n",
+      "        0.0062, 0.0281, 0.0052, 0.0100])), ('pretrained_model.layer3.5.bn1.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.5.conv2.weight', tensor([[[[-2.2260e-02, -3.9648e-02, -2.8011e-02],\n",
+      "          [-6.4033e-03,  2.1638e-02, -1.0362e-02],\n",
+      "          [-8.9036e-05,  5.9937e-03, -7.1463e-03]],\n",
+      "\n",
+      "         [[ 1.9983e-02,  3.2845e-02,  2.0212e-02],\n",
+      "          [ 4.2529e-02,  6.9132e-02,  4.1190e-02],\n",
+      "          [-3.4303e-03,  1.5193e-02, -2.0973e-03]],\n",
+      "\n",
+      "         [[-5.4477e-03, -7.1175e-04, -4.3929e-03],\n",
+      "          [-2.9642e-03, -1.8552e-02, -3.3893e-03],\n",
+      "          [ 1.6426e-02,  6.4120e-03,  7.9740e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 4.4184e-03,  1.2749e-02,  1.0057e-02],\n",
+      "          [-4.1500e-03,  5.3795e-03, -4.7064e-03],\n",
+      "          [-2.2759e-02,  2.5227e-03,  5.1394e-03]],\n",
+      "\n",
+      "         [[-2.8681e-03,  9.5230e-03,  2.7378e-04],\n",
+      "          [ 2.0685e-03,  1.9345e-03,  1.2240e-02],\n",
+      "          [-1.0983e-03,  4.1760e-03, -2.6986e-03]],\n",
+      "\n",
+      "         [[ 1.2788e-03,  3.5934e-03,  1.9993e-02],\n",
+      "          [-4.0786e-03, -7.6604e-03,  6.0776e-03],\n",
+      "          [ 1.5745e-03,  7.7777e-03,  2.1693e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.1026e-02, -4.0366e-04,  1.1586e-02],\n",
+      "          [ 6.8225e-03, -1.9379e-02,  2.0669e-02],\n",
+      "          [-2.5925e-03,  1.1815e-03,  1.2367e-02]],\n",
+      "\n",
+      "         [[-1.9921e-02, -1.8411e-02, -1.0427e-02],\n",
+      "          [-1.4819e-02, -6.9539e-03,  8.6664e-03],\n",
+      "          [ 1.3412e-02,  9.6042e-03,  1.2378e-02]],\n",
+      "\n",
+      "         [[ 5.1162e-03,  1.3314e-02,  5.6768e-03],\n",
+      "          [ 4.1374e-03, -4.9322e-04, -6.6439e-03],\n",
+      "          [ 5.5567e-03,  3.1205e-03, -2.0748e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 9.0484e-03, -5.6356e-03, -1.1688e-02],\n",
+      "          [ 1.3198e-02, -6.6311e-03, -2.2092e-02],\n",
+      "          [ 1.0403e-02, -2.2510e-02, -2.9443e-02]],\n",
+      "\n",
+      "         [[-3.0290e-02, -2.0856e-02, -2.6511e-02],\n",
+      "          [-1.1349e-02,  3.4035e-03, -4.3102e-03],\n",
+      "          [-1.5608e-02, -1.8607e-02, -1.2753e-02]],\n",
+      "\n",
+      "         [[-7.9362e-03, -1.6676e-02, -3.2642e-03],\n",
+      "          [-2.5912e-03,  5.1641e-03, -3.3707e-03],\n",
+      "          [-1.7993e-02, -1.7660e-02, -2.3038e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.7567e-02, -2.2952e-02, -1.8661e-02],\n",
+      "          [-2.0988e-02, -2.0038e-02, -2.1512e-02],\n",
+      "          [-5.8344e-03, -3.7850e-03, -1.1810e-02]],\n",
+      "\n",
+      "         [[ 8.8112e-03,  1.3343e-02,  1.1964e-02],\n",
+      "          [-5.6388e-03, -3.3499e-02, -4.4749e-03],\n",
+      "          [ 1.7168e-02,  4.0749e-02,  2.2441e-02]],\n",
+      "\n",
+      "         [[-9.4361e-03, -1.4531e-02, -7.2054e-03],\n",
+      "          [-3.5840e-03,  1.8911e-02, -7.4140e-03],\n",
+      "          [-3.7807e-02, -2.3539e-02, -3.2337e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-3.9499e-03,  1.3369e-02,  2.7547e-02],\n",
+      "          [-2.3536e-02,  5.0829e-03,  1.0186e-02],\n",
+      "          [-1.8971e-02,  3.4553e-03, -4.2330e-03]],\n",
+      "\n",
+      "         [[ 1.0452e-02,  2.2754e-02,  1.2129e-02],\n",
+      "          [-4.3561e-03,  5.5333e-03, -1.0145e-02],\n",
+      "          [-1.7122e-04, -6.7373e-03, -9.5140e-03]],\n",
+      "\n",
+      "         [[-1.7533e-02, -2.0910e-02, -2.2903e-02],\n",
+      "          [-1.7404e-02, -2.8317e-02, -1.0493e-02],\n",
+      "          [-9.1695e-03, -1.2112e-02,  5.6125e-03]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-2.0530e-02, -6.4405e-03,  6.9137e-03],\n",
+      "          [-1.2675e-02, -2.4896e-02, -3.5242e-03],\n",
+      "          [-2.0822e-02, -3.1040e-02, -1.8211e-02]],\n",
+      "\n",
+      "         [[-1.7500e-02, -1.7950e-02, -6.7621e-03],\n",
+      "          [-1.4352e-04, -3.2041e-03,  1.1870e-03],\n",
+      "          [ 2.1767e-02,  3.5243e-02,  1.6755e-02]],\n",
+      "\n",
+      "         [[ 1.0542e-02, -1.0970e-02, -5.2811e-03],\n",
+      "          [ 2.1606e-02, -1.2961e-02,  2.6672e-02],\n",
+      "          [ 4.3930e-02,  6.0701e-03,  4.1282e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.8318e-02,  5.4445e-03,  3.3312e-02],\n",
+      "          [-1.6307e-02, -1.8281e-02,  2.1654e-02],\n",
+      "          [ 3.0221e-03,  2.7710e-04,  3.8022e-02]],\n",
+      "\n",
+      "         [[-5.5334e-03, -4.3754e-03,  5.0223e-03],\n",
+      "          [ 6.9202e-03, -1.9324e-02,  7.3024e-03],\n",
+      "          [ 2.7861e-03,  2.4947e-02,  1.7646e-02]],\n",
+      "\n",
+      "         [[-2.7330e-02, -2.2748e-02, -2.0858e-02],\n",
+      "          [-1.8565e-02, -1.1404e-02, -3.0346e-02],\n",
+      "          [-1.4077e-02, -1.7814e-02, -1.0409e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.6292e-02,  1.2617e-02,  1.9300e-02],\n",
+      "          [ 1.6097e-02, -5.3652e-04,  3.7776e-04],\n",
+      "          [ 1.4628e-02,  2.0076e-02,  1.4455e-02]],\n",
+      "\n",
+      "         [[-2.5200e-04, -1.9032e-02, -1.3610e-02],\n",
+      "          [-2.2124e-02, -1.6775e-02, -2.3134e-02],\n",
+      "          [-1.2527e-02, -7.8079e-03, -1.1489e-02]],\n",
+      "\n",
+      "         [[-5.2289e-03,  1.0485e-03, -7.3356e-03],\n",
+      "          [-1.3521e-02,  3.0286e-03, -2.6432e-03],\n",
+      "          [-2.0943e-02, -2.2949e-02, -1.8315e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.4831e-02, -6.6432e-03, -5.8144e-03],\n",
+      "          [-1.5640e-02, -3.4158e-04,  2.8537e-03],\n",
+      "          [-4.3114e-02, -8.6753e-03,  1.8092e-02]],\n",
+      "\n",
+      "         [[-2.3272e-02, -8.2040e-03, -1.6814e-02],\n",
+      "          [-1.5493e-02, -3.9375e-03, -9.3863e-03],\n",
+      "          [-5.6911e-03,  2.9054e-03,  4.3298e-03]],\n",
+      "\n",
+      "         [[-1.3840e-02, -9.9186e-03, -5.6268e-03],\n",
+      "          [-1.2431e-02,  1.2717e-03, -1.1998e-02],\n",
+      "          [-1.0935e-02, -2.3813e-03, -4.4153e-05]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.6417e-02, -1.2282e-02, -3.5479e-03],\n",
+      "          [-4.2828e-03, -6.7817e-03,  4.0670e-03],\n",
+      "          [-1.4622e-02, -2.2222e-02,  2.9553e-03]],\n",
+      "\n",
+      "         [[ 8.8843e-04, -1.3658e-02, -3.3733e-03],\n",
+      "          [-1.2046e-04, -1.4083e-02, -1.0296e-02],\n",
+      "          [-3.6013e-03, -1.6526e-02, -1.4278e-02]],\n",
+      "\n",
+      "         [[ 1.0722e-02, -1.7944e-03,  8.0081e-03],\n",
+      "          [-4.6970e-03, -1.6304e-02,  2.7316e-03],\n",
+      "          [ 2.9470e-03, -1.6900e-02,  7.8509e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-3.0316e-02, -1.1266e-02,  2.3070e-02],\n",
+      "          [-1.0308e-02, -2.8714e-03, -1.8689e-03],\n",
+      "          [-2.2882e-02,  1.1870e-03,  3.8054e-02]],\n",
+      "\n",
+      "         [[ 1.1109e-02,  9.1714e-03,  1.6178e-02],\n",
+      "          [ 2.3087e-02,  1.2238e-02,  2.6928e-02],\n",
+      "          [ 1.7317e-02,  1.9485e-02,  1.9774e-02]],\n",
+      "\n",
+      "         [[-9.8742e-03, -7.4011e-03,  4.7701e-03],\n",
+      "          [ 2.8145e-03,  1.2734e-02,  1.3388e-02],\n",
+      "          [-2.0782e-02, -1.7423e-02, -1.1668e-02]]]])), ('pretrained_model.layer3.5.bn2.weight', tensor([0.1983, 0.1364, 0.1950, 0.2031, 0.1945, 0.1897, 0.1982, 0.1465, 0.2076,\n",
+      "        0.1704, 0.2084, 0.1539, 0.1841, 0.1782, 0.1896, 0.1703, 0.2030, 0.1944,\n",
+      "        0.1750, 0.1622, 0.1840, 0.1846, 0.2935, 0.2147, 0.2455, 0.2101, 0.1941,\n",
+      "        0.1808, 0.1574, 0.1239, 0.2981, 0.1756, 0.2219, 0.1467, 0.2154, 0.2170,\n",
+      "        0.1701, 0.1989, 0.2034, 0.2503, 0.2571, 0.1787, 0.1337, 0.2081, 0.1977,\n",
+      "        0.1612, 0.1670, 0.1670, 0.1926, 0.1890, 0.1299, 0.2181, 0.2121, 0.1858,\n",
+      "        0.2346, 0.2027, 0.2783, 0.2453, 0.2408, 0.1766, 0.1227, 0.1923, 0.1803,\n",
+      "        0.1934, 0.2152, 0.2264, 0.2132, 0.2105, 0.1581, 0.1780, 0.2101, 0.1638,\n",
+      "        0.1537, 0.2019, 0.1677, 0.3008, 0.1776, 0.2011, 0.1881, 0.2058, 0.2116,\n",
+      "        0.1586, 0.1658, 0.1917, 0.1647, 0.1472, 0.1894, 0.1824, 0.2329, 0.2120,\n",
+      "        0.2025, 0.1678, 0.1760, 0.1667, 0.2453, 0.1879, 0.1635, 0.2038, 0.2078,\n",
+      "        0.2202, 0.2518, 0.1809, 0.1738, 0.2037, 0.2157, 0.2347, 0.1967, 0.2202,\n",
+      "        0.2262, 0.1802, 0.1838, 0.1312, 0.1861, 0.1452, 0.1943, 0.1902, 0.2428,\n",
+      "        0.2535, 0.1505, 0.1632, 0.1455, 0.2068, 0.2277, 0.2146, 0.1635, 0.1401,\n",
+      "        0.1793, 0.1774, 0.1759, 0.2019, 0.1991, 0.1820, 0.2003, 0.1747, 0.1614,\n",
+      "        0.1966, 0.1982, 0.2316, 0.2260, 0.1778, 0.1666, 0.2409, 0.2016, 0.1706,\n",
+      "        0.1943, 0.2279, 0.1557, 0.1260, 0.1860, 0.1846, 0.1887, 0.2138, 0.1906,\n",
+      "        0.2140, 0.1640, 0.1480, 0.1968, 0.1177, 0.1954, 0.1576, 0.1682, 0.2069,\n",
+      "        0.1837, 0.1888, 0.1902, 0.1699, 0.1707, 0.1902, 0.1834, 0.1514, 0.1710,\n",
+      "        0.1163, 0.1640, 0.2793, 0.1992, 0.1745, 0.2313, 0.2278, 0.1903, 0.1274,\n",
+      "        0.1445, 0.2723, 0.2519, 0.1944, 0.2176, 0.2062, 0.2857, 0.1899, 0.1641,\n",
+      "        0.2001, 0.1860, 0.2034, 0.1564, 0.1229, 0.1560, 0.1916, 0.2610, 0.1817,\n",
+      "        0.2567, 0.5776, 0.1306, 0.2221, 0.2035, 0.2291, 0.1572, 0.2041, 0.2242,\n",
+      "        0.1998, 0.2005, 0.1811, 0.1857, 0.2645, 0.1877, 0.2400, 0.1635, 0.2115,\n",
+      "        0.1957, 0.1331, 0.1524, 0.2094, 0.2080, 0.1930, 0.2086, 0.2510, 0.1876,\n",
+      "        0.1948, 0.1874, 0.1654, 0.2486, 0.1348, 0.1875, 0.2804, 0.2041, 0.1271,\n",
+      "        0.2354, 0.6525, 0.1743, 0.1388, 0.1717, 0.2121, 0.1853, 0.2069, 0.1914,\n",
+      "        0.1547, 0.2226, 0.1580, 0.2084, 0.1613, 0.1983, 0.2203, 0.2261, 0.1569,\n",
+      "        0.1432, 0.1761, 0.1718, 0.3605])), ('pretrained_model.layer3.5.bn2.bias', tensor([-0.1087, -0.0425, -0.0500, -0.1181, -0.1123, -0.0995, -0.1020, -0.0457,\n",
+      "        -0.1980, -0.0676, -0.1841, -0.0544, -0.1712, -0.1288, -0.0937, -0.0121,\n",
+      "        -0.0216, -0.0057, -0.0599, -0.0779, -0.1623, -0.0867, -0.0740, -0.0228,\n",
+      "        -0.1862, -0.0296, -0.0475, -0.1286, -0.0880, -0.0198, -0.0493, -0.0628,\n",
+      "        -0.1148, -0.0127, -0.1078,  0.0952, -0.0957, -0.0777, -0.0348, -0.1207,\n",
+      "        -0.1711, -0.0364,  0.1489, -0.1173, -0.0692, -0.0182, -0.1143, -0.0662,\n",
+      "        -0.2068, -0.0382,  0.1258, -0.1308, -0.0549, -0.1622, -0.0602, -0.1136,\n",
+      "        -0.1789, -0.0298, -0.1085, -0.0480,  0.0588, -0.0696, -0.0642, -0.0643,\n",
+      "        -0.2101, -0.1054, -0.0381, -0.0457, -0.0305, -0.0719, -0.1618, -0.0417,\n",
+      "        -0.1184, -0.0978, -0.0026,  0.0085, -0.0887, -0.0217, -0.0147, -0.0828,\n",
+      "         0.0106, -0.1422, -0.0756, -0.0916, -0.0537, -0.0682, -0.0793, -0.1117,\n",
+      "        -0.3206, -0.0638, -0.0689, -0.1720, -0.0343, -0.1377, -0.0884, -0.0332,\n",
+      "        -0.0767, -0.1185, -0.1452, -0.0624, -0.0468, -0.1657, -0.0933, -0.1151,\n",
+      "        -0.0821, -0.1923, -0.0740, -0.0430, -0.0898, -0.0925, -0.0987, -0.1076,\n",
+      "        -0.1245, -0.0870, -0.0842, -0.1193, -0.0620, -0.0237,  0.0155, -0.0471,\n",
+      "        -0.0254, -0.1054, -0.1463, -0.0940, -0.0302, -0.0035, -0.1026, -0.1715,\n",
+      "        -0.1343, -0.0623, -0.1203, -0.0485, -0.0836, -0.0487, -0.1542, -0.1671,\n",
+      "        -0.1663, -0.1377, -0.1285, -0.0645, -0.0579, -0.1904, -0.0759, -0.0887,\n",
+      "        -0.0015, -0.0801, -0.0136, -0.0393, -0.1007, -0.0113, -0.0382, -0.0797,\n",
+      "        -0.1030, -0.0891, -0.0314, -0.0929, -0.1367,  0.1120, -0.0813, -0.0647,\n",
+      "        -0.0401, -0.0881, -0.1403, -0.1004, -0.0443, -0.0645, -0.1089, -0.1291,\n",
+      "        -0.1271, -0.0819, -0.0273,  0.0462, -0.0804, -0.0464, -0.0134,  0.0337,\n",
+      "        -0.1080, -0.0896, -0.1275, -0.0673, -0.0031, -0.2288, -0.0423, -0.0927,\n",
+      "        -0.0281, -0.0793, -0.0536, -0.0983, -0.1066, -0.1253, -0.0583, -0.1150,\n",
+      "         0.0459, -0.0313, -0.0884, -0.0952,  0.0428, -0.1541, -0.1252, -0.0591,\n",
+      "         0.0855, -0.1557, -0.0810, -0.0990, -0.1482, -0.0547, -0.0943, -0.1321,\n",
+      "        -0.1010, -0.0262, -0.0711, -0.0703, -0.0851, -0.1447, -0.0452, -0.1451,\n",
+      "        -0.1096,  0.0924, -0.0855, -0.1197, -0.0607, -0.1111, -0.0823, -0.1306,\n",
+      "        -0.0950, -0.0593, -0.1443, -0.0240, -0.0804, -0.0164,  0.0310, -0.2575,\n",
+      "        -0.0887,  0.1042, -0.0828, -0.2571, -0.0576,  0.0365, -0.0483, -0.1089,\n",
+      "        -0.0788,  0.0341, -0.0703, -0.0555, -0.2342, -0.0610, -0.1668, -0.0505,\n",
+      "        -0.1333, -0.1420, -0.0900, -0.0550, -0.0906, -0.0622, -0.0759, -0.0265])), ('pretrained_model.layer3.5.bn2.running_mean', tensor([-9.2721e-02, -1.1421e-01, -6.4684e-02, -4.7165e-02, -5.2034e-02,\n",
+      "        -1.3159e-02, -8.2481e-02, -1.0525e-02, -7.3490e-02, -1.4934e-02,\n",
+      "        -1.1814e-01, -1.1090e-01, -1.3066e-01, -6.0846e-02, -8.8701e-02,\n",
+      "        -1.2981e-01,  2.4974e-01, -3.8389e-02, -1.0438e-01,  4.9903e-02,\n",
+      "        -1.0167e-01, -1.1830e-01,  1.1214e-01, -1.9825e-02, -1.6703e-02,\n",
+      "        -7.6225e-02, -8.0008e-02, -1.5706e-01, -3.8528e-02, -5.7132e-02,\n",
+      "        -7.2228e-02, -1.3964e-01, -1.3423e-01, -1.0419e-01, -8.9407e-02,\n",
+      "         6.5724e-04, -1.2921e-01, -8.7171e-02, -7.5147e-02, -5.1239e-02,\n",
+      "        -8.3791e-02, -2.8414e-02, -4.0833e-03, -1.2535e-01, -6.4083e-02,\n",
+      "        -3.4677e-02,  6.0580e-02, -3.0052e-02, -7.9561e-02, -7.3676e-02,\n",
+      "         5.1288e-02, -6.2600e-02, -3.7749e-02, -3.9859e-02, -8.5217e-02,\n",
+      "        -3.2851e-02, -1.0180e-01, -1.4895e-01, -6.6536e-02, -8.5599e-02,\n",
+      "        -1.2131e-02, -9.3033e-02, -4.1873e-02, -1.6986e-02, -1.2719e-01,\n",
+      "        -6.4678e-03, -1.1456e-01, -1.0649e-01, -7.3620e-02, -2.3883e-02,\n",
+      "         3.2080e-02, -1.6642e-01, -7.4621e-02, -4.2341e-02, -7.9184e-02,\n",
+      "        -1.0324e-01,  1.9027e-03,  2.4462e-03, -8.3667e-02, -3.0157e-02,\n",
+      "        -1.1886e-02, -1.0680e-01, -1.2175e-02, -1.1285e-01, -8.5670e-02,\n",
+      "        -5.7347e-02, -3.8883e-02, -8.8067e-02, -3.0328e-02,  3.3025e-02,\n",
+      "        -1.1547e-01, -1.2659e-02, -2.1000e-02, -9.3499e-02,  1.1272e-01,\n",
+      "        -1.1496e-01, -3.1595e-02, -7.3070e-02, -3.3798e-02, -9.0028e-02,\n",
+      "        -1.7804e-01, -8.9221e-02, -6.6212e-02, -2.8061e-02, -3.5134e-02,\n",
+      "         1.6473e-01, -6.6352e-02, -2.8901e-02, -2.7504e-02, -5.0957e-02,\n",
+      "        -1.0059e-01, -1.4169e-01, -8.7145e-02, -1.8767e-02, -8.7480e-02,\n",
+      "        -5.5647e-02, -1.6353e-02, -3.6113e-02, -3.6015e-02, -6.8227e-02,\n",
+      "        -1.6698e-01, -5.4637e-02, -9.1841e-02, -4.9793e-02, -5.5360e-03,\n",
+      "        -1.1770e-01, -4.7662e-02, -1.2344e-01, -1.0450e-01, -8.9266e-02,\n",
+      "         2.4515e-02, -4.9313e-02, -7.9821e-03, -1.6617e-01, -1.4597e-01,\n",
+      "        -8.5757e-02, -1.2122e-01, -1.0994e-01, -7.3042e-02, -2.2266e-02,\n",
+      "        -9.6377e-02,  1.0427e-03,  7.5540e-02,  1.0202e-01, -5.1213e-02,\n",
+      "        -5.8663e-02,  6.0732e-02, -7.1311e-02, -6.9167e-02, -8.7503e-02,\n",
+      "        -8.0330e-02,  2.5808e-02, -7.0110e-02, -9.5830e-02, -3.3310e-02,\n",
+      "        -8.0520e-02, -9.6789e-02, -1.5972e-01, -1.2365e-01, -5.1961e-02,\n",
+      "        -1.2406e-01, -1.0316e-01, -8.9397e-02, -2.3614e-02,  4.3641e-02,\n",
+      "        -6.6944e-02, -3.1575e-02,  1.8795e-02, -5.8718e-02, -6.4336e-02,\n",
+      "        -1.2358e-01,  3.2500e-02, -1.2233e-01, -1.1862e-01, -1.5721e-01,\n",
+      "        -8.3281e-02,  1.5887e-02, -1.0266e-01, -8.1544e-02, -2.4511e-02,\n",
+      "        -1.1388e-01, -7.5591e-02, -2.5801e-02,  5.9391e-02, -3.6660e-02,\n",
+      "        -1.1931e-01,  8.3622e-02, -1.2107e-01, -8.8417e-02,  5.6057e-02,\n",
+      "        -8.6341e-02, -3.9424e-02, -5.0789e-02, -4.0672e-03, -2.4606e-02,\n",
+      "        -4.4869e-02, -9.2813e-02, -1.4391e-02, -9.2793e-03, -4.6048e-02,\n",
+      "         3.5586e-02, -6.9810e-02, -7.5455e-02,  1.5730e-01, -9.8248e-02,\n",
+      "        -9.7824e-02,  4.5084e-02,  7.3309e-03,  3.4343e-02, -9.1340e-02,\n",
+      "        -1.4443e-01,  1.7220e-02, -1.3889e-01,  1.4170e-03, -3.6656e-02,\n",
+      "        -6.8880e-02, -1.6169e-04, -1.5844e-01, -1.3457e-01, -7.4040e-03,\n",
+      "        -3.4055e-02,  1.0742e-01,  1.4479e-02, -1.2667e-02, -7.1983e-02,\n",
+      "        -8.0588e-02, -6.4036e-02, -2.1774e-02, -8.6266e-02, -1.6712e-01,\n",
+      "         7.7877e-03, -2.8692e-01, -7.4548e-02,  5.6308e-02, -9.6064e-02,\n",
+      "        -1.7073e-01, -4.8297e-02, -7.2481e-02, -9.3482e-02,  1.5013e-02,\n",
+      "        -1.6748e-02,  4.7359e-02, -4.3423e-02, -6.4793e-02, -7.0874e-02,\n",
+      "        -4.9470e-02, -1.7901e-01, -8.5440e-02,  1.3943e-01, -6.7203e-03,\n",
+      "        -4.7066e-02, -1.3253e-01, -5.0616e-02, -6.8944e-02, -1.1666e-01,\n",
+      "        -4.0582e-02])), ('pretrained_model.layer3.5.bn2.running_var', tensor([0.0080, 0.0096, 0.0151, 0.0143, 0.0076, 0.0072, 0.0080, 0.0135, 0.0063,\n",
+      "        0.0111, 0.0093, 0.0122, 0.0141, 0.0089, 0.0102, 0.0221, 0.1203, 0.0185,\n",
+      "        0.0080, 0.0486, 0.0082, 0.0093, 0.0306, 0.0170, 0.0114, 0.0168, 0.0179,\n",
+      "        0.0360, 0.0067, 0.0119, 0.0191, 0.0111, 0.0155, 0.0088, 0.0128, 0.0326,\n",
+      "        0.0083, 0.0160, 0.0111, 0.0190, 0.0171, 0.0089, 0.0209, 0.0101, 0.0082,\n",
+      "        0.0117, 0.0074, 0.0080, 0.0109, 0.0203, 0.0180, 0.0099, 0.0084, 0.0085,\n",
+      "        0.0160, 0.0100, 0.0121, 0.0268, 0.0072, 0.0123, 0.0136, 0.0104, 0.0074,\n",
+      "        0.0104, 0.0080, 0.0088, 0.0178, 0.0185, 0.0193, 0.0065, 0.0135, 0.0108,\n",
+      "        0.0164, 0.0079, 0.0116, 0.0225, 0.0100, 0.0109, 0.0151, 0.0104, 0.0103,\n",
+      "        0.0071, 0.0083, 0.0113, 0.0140, 0.0074, 0.0371, 0.0111, 0.0399, 0.0132,\n",
+      "        0.0159, 0.0119, 0.0153, 0.0111, 0.0109, 0.0095, 0.0068, 0.0100, 0.0089,\n",
+      "        0.0162, 0.0158, 0.0091, 0.0101, 0.0106, 0.0202, 0.0264, 0.0136, 0.0149,\n",
+      "        0.0093, 0.0089, 0.0123, 0.0171, 0.0063, 0.0090, 0.0269, 0.0079, 0.0223,\n",
+      "        0.0471, 0.0208, 0.0076, 0.0182, 0.0156, 0.0420, 0.0191, 0.0097, 0.0180,\n",
+      "        0.0076, 0.0059, 0.0067, 0.0128, 0.0164, 0.0107, 0.0136, 0.0098, 0.0094,\n",
+      "        0.0083, 0.0163, 0.0141, 0.0113, 0.0137, 0.0084, 0.0073, 0.0083, 0.0120,\n",
+      "        0.0132, 0.0176, 0.0119, 0.0097, 0.0110, 0.0266, 0.0108, 0.0083, 0.0070,\n",
+      "        0.0147, 0.0129, 0.0093, 0.0113, 0.0148, 0.0097, 0.0068, 0.0085, 0.0111,\n",
+      "        0.0087, 0.0076, 0.0140, 0.0128, 0.0067, 0.0119, 0.0111, 0.0094, 0.0112,\n",
+      "        0.0276, 0.0129, 0.0130, 0.0120, 0.0102, 0.0098, 0.0160, 0.0158, 0.0079,\n",
+      "        0.0157, 0.0130, 0.0171, 0.0087, 0.0155, 0.0110, 0.0145, 0.0077, 0.0103,\n",
+      "        0.0323, 0.0115, 0.0074, 0.0122, 0.0094, 0.0093, 0.0081, 0.0265, 0.0086,\n",
+      "        0.0184, 0.0670, 0.0247, 0.0072, 0.0232, 0.0421, 0.0111, 0.0122, 0.0114,\n",
+      "        0.0158, 0.0087, 0.0135, 0.0192, 0.0149, 0.0100, 0.0165, 0.0108, 0.0086,\n",
+      "        0.0083, 0.0206, 0.0082, 0.0081, 0.0115, 0.0123, 0.0084, 0.0145, 0.0077,\n",
+      "        0.0097, 0.0080, 0.0088, 0.0215, 0.0186, 0.0093, 0.0496, 0.0086, 0.0319,\n",
+      "        0.0114, 0.0703, 0.0079, 0.0172, 0.0083, 0.0074, 0.0147, 0.0136, 0.0101,\n",
+      "        0.0143, 0.0150, 0.0090, 0.0104, 0.0099, 0.0211, 0.0083, 0.0176, 0.0199,\n",
+      "        0.0082, 0.0122, 0.0091, 0.0564])), ('pretrained_model.layer3.5.bn2.num_batches_tracked', tensor(0)), ('pretrained_model.layer3.5.conv3.weight', tensor([[[[-1.0014e-03]],\n",
+      "\n",
+      "         [[ 2.4164e-03]],\n",
+      "\n",
+      "         [[-9.5510e-05]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 6.0291e-04]],\n",
+      "\n",
+      "         [[ 2.6667e-03]],\n",
+      "\n",
+      "         [[ 7.4253e-04]]],\n",
+      "\n",
+      "\n",
+      "        [[[-7.9382e-03]],\n",
+      "\n",
+      "         [[ 1.4982e-02]],\n",
+      "\n",
+      "         [[ 6.7769e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-2.3048e-02]],\n",
+      "\n",
+      "         [[-4.0591e-04]],\n",
+      "\n",
+      "         [[-2.8474e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-4.1840e-02]],\n",
+      "\n",
+      "         [[-1.0307e-02]],\n",
+      "\n",
+      "         [[-8.6885e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-2.1047e-03]],\n",
+      "\n",
+      "         [[ 7.0608e-03]],\n",
+      "\n",
+      "         [[-3.7885e-02]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-3.1977e-02]],\n",
+      "\n",
+      "         [[ 5.4819e-03]],\n",
+      "\n",
+      "         [[-8.7492e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 3.2474e-02]],\n",
+      "\n",
+      "         [[ 8.3009e-03]],\n",
+      "\n",
+      "         [[-1.2829e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.3052e-02]],\n",
+      "\n",
+      "         [[-2.9497e-03]],\n",
+      "\n",
+      "         [[ 1.9505e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.1373e-02]],\n",
+      "\n",
+      "         [[ 5.6561e-03]],\n",
+      "\n",
+      "         [[-2.7740e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 9.0996e-03]],\n",
+      "\n",
+      "         [[-3.3151e-03]],\n",
+      "\n",
+      "         [[ 8.6491e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.0678e-02]],\n",
+      "\n",
+      "         [[-8.1526e-04]],\n",
+      "\n",
+      "         [[-1.8757e-02]]]])), ('pretrained_model.layer3.5.bn3.weight', tensor([-0.0023,  0.2610,  0.1205,  ...,  0.1351,  0.1177,  0.0992])), ('pretrained_model.layer3.5.bn3.bias', tensor([-0.0683, -0.2718, -0.1710,  ..., -0.1675, -0.1289, -0.1045])), ('pretrained_model.layer3.5.bn3.running_mean', tensor([-0.0079, -0.0758, -0.0575,  ..., -0.0324, -0.0657, -0.0292])), ('pretrained_model.layer3.5.bn3.running_var', tensor([0.0004, 0.0039, 0.0013,  ..., 0.0018, 0.0024, 0.0021])), ('pretrained_model.layer3.5.bn3.num_batches_tracked', tensor(0)), ('pretrained_model.layer4.0.conv1.weight', tensor([[[[-1.8357e-02]],\n",
+      "\n",
+      "         [[ 3.1095e-02]],\n",
+      "\n",
+      "         [[ 2.5929e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.3945e-02]],\n",
+      "\n",
+      "         [[-1.5624e-02]],\n",
+      "\n",
+      "         [[ 2.0952e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 4.3023e-02]],\n",
+      "\n",
+      "         [[ 3.1892e-02]],\n",
+      "\n",
+      "         [[ 1.4930e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.1006e-02]],\n",
+      "\n",
+      "         [[-1.4178e-02]],\n",
+      "\n",
+      "         [[-2.2116e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-6.8377e-03]],\n",
+      "\n",
+      "         [[ 1.0788e-03]],\n",
+      "\n",
+      "         [[-1.1269e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.3848e-02]],\n",
+      "\n",
+      "         [[ 4.4417e-02]],\n",
+      "\n",
+      "         [[ 1.3720e-02]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-6.8914e-03]],\n",
+      "\n",
+      "         [[-6.9580e-03]],\n",
+      "\n",
+      "         [[ 5.0312e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 8.4534e-05]],\n",
+      "\n",
+      "         [[ 3.7798e-03]],\n",
+      "\n",
+      "         [[ 3.6149e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.3235e-02]],\n",
+      "\n",
+      "         [[-6.2554e-03]],\n",
+      "\n",
+      "         [[ 3.2069e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.5587e-02]],\n",
+      "\n",
+      "         [[ 3.2948e-02]],\n",
+      "\n",
+      "         [[-6.0498e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.3470e-02]],\n",
+      "\n",
+      "         [[ 1.1652e-02]],\n",
+      "\n",
+      "         [[-1.6284e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-3.1440e-02]],\n",
+      "\n",
+      "         [[-2.0755e-02]],\n",
+      "\n",
+      "         [[-3.1002e-02]]]])), ('pretrained_model.layer4.0.bn1.weight', tensor([0.2970, 0.2262, 0.2083, 0.2286, 0.2786, 0.0729, 0.1666, 0.2064, 0.2569,\n",
+      "        0.2113, 0.2494, 0.2626, 0.2467, 0.2391, 0.2426, 0.2255, 0.2604, 0.3454,\n",
+      "        0.2132, 0.1351, 0.2185, 0.2819, 0.2115, 0.1465, 0.1999, 0.1761, 0.2170,\n",
+      "        0.2456, 0.2131, 0.2708, 0.1905, 0.1706, 0.2253, 0.1928, 0.2611, 0.1629,\n",
+      "        0.2549, 0.2456, 0.2594, 0.2667, 0.1912, 0.3013, 0.2669, 0.2054, 0.3000,\n",
+      "        0.2208, 0.1865, 0.1922, 0.2312, 0.1090, 0.2726, 0.2125, 0.1464, 0.2319,\n",
+      "        0.2526, 0.3353, 0.2142, 0.1569, 0.1786, 0.2693, 0.1843, 0.2685, 0.2398,\n",
+      "        0.2014, 0.2412, 0.1606, 0.2624, 0.1595, 0.2433, 0.2187, 0.2504, 0.1701,\n",
+      "        0.3276, 0.2105, 0.2392, 0.1759, 0.1638, 0.2278, 0.2758, 0.2535, 0.2859,\n",
+      "        0.2478, 0.2031, 0.2048, 0.1730, 0.2427, 0.2157, 0.2221, 0.1636, 0.2676,\n",
+      "        0.2557, 0.1962, 0.2369, 0.2137, 0.1821, 0.2096, 0.2017, 0.2687, 0.3469,\n",
+      "        0.2053, 0.2857, 0.2421, 0.2544, 0.2155, 0.2429, 0.2610, 0.1988, 0.2503,\n",
+      "        0.2128, 0.2179, 0.2179, 0.1997, 0.1632, 0.1989, 0.2518, 0.2355, 0.1954,\n",
+      "        0.2556, 0.2206, 0.2150, 0.2509, 0.1721, 0.1966, 0.2125, 0.2746, 0.2161,\n",
+      "        0.3357, 0.2969, 0.2593, 0.2752, 0.2350, 0.2745, 0.1897, 0.2419, 0.2452,\n",
+      "        0.1929, 0.2159, 0.2203, 0.2325, 0.2372, 0.2683, 0.2033, 0.3372, 0.2413,\n",
+      "        0.3034, 0.2077, 0.1889, 0.2630, 0.2734, 0.2266, 0.2521, 0.1208, 0.2233,\n",
+      "        0.2669, 0.1542, 0.2499, 0.1973, 0.1591, 0.2408, 0.2556, 0.2876, 0.3230,\n",
+      "        0.2515, 0.2575, 0.1954, 0.2203, 0.2163, 0.2508, 0.2236, 0.1808, 0.2249,\n",
+      "        0.2921, 0.2009, 0.2303, 0.2044, 0.2244, 0.2209, 0.2829, 0.2553, 0.2736,\n",
+      "        0.2624, 0.1937, 0.2099, 0.2360, 0.2693, 0.1891, 0.2827, 0.1999, 0.2345,\n",
+      "        0.2263, 0.3143, 0.2704, 0.2206, 0.2085, 0.2262, 0.1871, 0.2279, 0.1848,\n",
+      "        0.2570, 0.2749, 0.2248, 0.2395, 0.1818, 0.2365, 0.2199, 0.2526, 0.2188,\n",
+      "        0.2309, 0.2274, 0.1858, 0.2549, 0.2133, 0.1859, 0.2436, 0.2196, 0.2364,\n",
+      "        0.2037, 0.1900, 0.2242, 0.2444, 0.2273, 0.2350, 0.2299, 0.2057, 0.2633,\n",
+      "        0.2723, 0.2649, 0.2451, 0.2294, 0.2797, 0.1877, 0.2542, 0.2665, 0.2313,\n",
+      "        0.2289, 0.2533, 0.1420, 0.2609, 0.2423, 0.2064, 0.1154, 0.3000, 0.2058,\n",
+      "        0.1876, 0.2192, 0.2461, 0.1630, 0.2407, 0.2359, 0.1466, 0.3254, 0.3447,\n",
+      "        0.2519, 0.2744, 0.2005, 0.2492, 0.1849, 0.2837, 0.2271, 0.1580, 0.1623,\n",
+      "        0.2800, 0.1751, 0.1770, 0.2069, 0.1937, 0.2170, 0.2145, 0.2333, 0.2035,\n",
+      "        0.2307, 0.2114, 0.2355, 0.2224, 0.3249, 0.2239, 0.2109, 0.2030, 0.1550,\n",
+      "        0.2417, 0.1642, 0.2252, 0.2685, 0.1908, 0.2502, 0.2530, 0.2727, 0.3249,\n",
+      "        0.2611, 0.2163, 0.1601, 0.2727, 0.3084, 0.2701, 0.2302, 0.1740, 0.1712,\n",
+      "        0.2374, 0.1811, 0.1285, 0.1530, 0.2868, 0.2703, 0.1790, 0.2482, 0.2244,\n",
+      "        0.2918, 0.1771, 0.2438, 0.2410, 0.2417, 0.2329, 0.1585, 0.2320, 0.2535,\n",
+      "        0.3273, 0.2354, 0.2108, 0.2753, 0.2412, 0.2802, 0.2599, 0.1604, 0.2133,\n",
+      "        0.1723, 0.2144, 0.2016, 0.1555, 0.2625, 0.2001, 0.2188, 0.2238, 0.2255,\n",
+      "        0.1884, 0.2019, 0.2000, 0.2146, 0.1482, 0.1845, 0.1979, 0.2381, 0.2255,\n",
+      "        0.2051, 0.2306, 0.2271, 0.1628, 0.1722, 0.2050, 0.2636, 0.2878, 0.2055,\n",
+      "        0.2391, 0.2797, 0.2219, 0.2631, 0.2396, 0.2364, 0.1996, 0.2231, 0.2344,\n",
+      "        0.2158, 0.2084, 0.2101, 0.1728, 0.1711, 0.1699, 0.2961, 0.2933, 0.2413,\n",
+      "        0.2200, 0.3774, 0.2326, 0.2308, 0.1899, 0.1902, 0.2196, 0.1909, 0.1884,\n",
+      "        0.1787, 0.2383, 0.2177, 0.2428, 0.2384, 0.2610, 0.2414, 0.2976, 0.2126,\n",
+      "        0.1997, 0.2701, 0.2293, 0.1974, 0.3155, 0.1598, 0.2665, 0.2683, 0.1827,\n",
+      "        0.1786, 0.2472, 0.2343, 0.2847, 0.2054, 0.2489, 0.3022, 0.2833, 0.2510,\n",
+      "        0.3363, 0.2984, 0.2117, 0.2907, 0.2208, 0.2672, 0.1910, 0.2270, 0.2120,\n",
+      "        0.2409, 0.1895, 0.2235, 0.2491, 0.2080, 0.2309, 0.2138, 0.2458, 0.1881,\n",
+      "        0.1715, 0.3004, 0.2512, 0.2420, 0.2606, 0.1597, 0.2503, 0.2710, 0.2541,\n",
+      "        0.2691, 0.2434, 0.2488, 0.2423, 0.2257, 0.2551, 0.1065, 0.1958, 0.2425,\n",
+      "        0.2280, 0.2336, 0.2373, 0.1846, 0.2333, 0.2735, 0.2260, 0.2944, 0.2213,\n",
+      "        0.1738, 0.2088, 0.2066, 0.2077, 0.2053, 0.2132, 0.2229, 0.2103, 0.1782,\n",
+      "        0.1782, 0.3098, 0.2418, 0.2636, 0.1923, 0.2619, 0.2044, 0.2350, 0.2295,\n",
+      "        0.2265, 0.2243, 0.1807, 0.2027, 0.2070, 0.2183, 0.2578, 0.2048, 0.2366,\n",
+      "        0.2333, 0.2487, 0.2304, 0.2772, 0.2487, 0.2726, 0.2133, 0.2505, 0.2407,\n",
+      "        0.2742, 0.2451, 0.2600, 0.3200, 0.2066, 0.1782, 0.1828, 0.2508, 0.2275,\n",
+      "        0.1901, 0.2300, 0.2040, 0.2370, 0.1929, 0.1894, 0.2266, 0.2102, 0.2560,\n",
+      "        0.2658, 0.1887, 0.1995, 0.1714, 0.1947, 0.2252, 0.2539, 0.2154])), ('pretrained_model.layer4.0.bn1.bias', tensor([-0.2155, -0.1665, -0.0925, -0.1106, -0.2565,  0.0427, -0.1246, -0.1908,\n",
+      "        -0.2480, -0.0997, -0.2023, -0.1974, -0.1639, -0.1972, -0.2252, -0.1336,\n",
+      "        -0.2556, -0.2410, -0.1873, -0.0785, -0.1501, -0.1813, -0.1198, -0.1129,\n",
+      "        -0.1586, -0.1259, -0.2262, -0.2641, -0.1554, -0.2163, -0.0994, -0.0572,\n",
+      "        -0.2341, -0.1177, -0.2053, -0.1456, -0.1907, -0.1665, -0.2128, -0.1828,\n",
+      "        -0.1785, -0.2395, -0.2098, -0.1443, -0.2593, -0.1305, -0.1252, -0.2623,\n",
+      "        -0.2272,  0.1289, -0.2047, -0.1500, -0.1454, -0.2326, -0.2376, -0.2957,\n",
+      "        -0.1670, -0.0429, -0.1029, -0.2419, -0.1118, -0.1684, -0.2099, -0.1480,\n",
+      "        -0.1931, -0.1071, -0.1538, -0.0488, -0.2414, -0.1522, -0.2464, -0.1266,\n",
+      "        -0.2443, -0.1850, -0.1675, -0.1000, -0.1955, -0.1570, -0.2501, -0.2342,\n",
+      "        -0.2533, -0.1756, -0.1123, -0.1314, -0.1429, -0.2247, -0.1104, -0.1513,\n",
+      "        -0.0508, -0.2763, -0.2431, -0.1737, -0.1754, -0.1979, -0.1590, -0.1894,\n",
+      "        -0.1513, -0.2253, -0.2370, -0.0927, -0.2575, -0.1599, -0.2660, -0.1485,\n",
+      "        -0.1602, -0.2353, -0.1499, -0.1380, -0.2469, -0.2477, -0.1426, -0.2569,\n",
+      "        -0.1363, -0.1520, -0.1998, -0.2135, -0.1472, -0.1979, -0.2310, -0.1863,\n",
+      "        -0.2387, -0.1286, -0.1675, -0.1292, -0.2126, -0.1948, -0.3410, -0.2258,\n",
+      "        -0.2046, -0.2043, -0.1871, -0.1685, -0.1696, -0.1911, -0.1711, -0.1526,\n",
+      "        -0.1563, -0.1389, -0.2021, -0.2032, -0.1750, -0.1326, -0.2888, -0.2157,\n",
+      "        -0.1666, -0.1951, -0.1727, -0.2238, -0.2217, -0.1991, -0.1827, -0.0543,\n",
+      "        -0.1555, -0.1493, -0.0848, -0.1638, -0.1367, -0.1771, -0.1788, -0.2209,\n",
+      "        -0.1994, -0.2903, -0.1778, -0.2562, -0.1379, -0.1386, -0.1612, -0.1911,\n",
+      "        -0.2096, -0.1324, -0.2244, -0.2676, -0.1844, -0.1980, -0.1657, -0.2139,\n",
+      "        -0.1708, -0.2051, -0.2059, -0.1640, -0.1982, -0.2003, -0.1680, -0.1781,\n",
+      "        -0.1814, -0.2438, -0.2601, -0.1491, -0.1743, -0.1568, -0.2141, -0.2121,\n",
+      "        -0.1355, -0.2095, -0.2072, -0.1342, -0.2147, -0.1692, -0.2002, -0.2094,\n",
+      "        -0.1533, -0.2163, -0.1533, -0.2107, -0.1678, -0.2776, -0.1623,  0.0988,\n",
+      "        -0.1210, -0.1595, -0.2185, -0.1785, -0.1204, -0.1839, -0.1396, -0.1528,\n",
+      "        -0.1368, -0.2532, -0.2460, -0.1425, -0.1794, -0.2084, -0.1185, -0.2091,\n",
+      "        -0.2256, -0.1602, -0.1934, -0.1925, -0.2519, -0.2565, -0.1376, -0.2040,\n",
+      "        -0.2531, -0.0290, -0.1712, -0.1759, -0.0326, -0.2194, -0.1818, -0.0899,\n",
+      "         0.0616, -0.2111, -0.2174, -0.1935, -0.1887, -0.1764, -0.1656, -0.1472,\n",
+      "        -0.2466, -0.1121, -0.1933, -0.3026, -0.2044, -0.2466, -0.1098, -0.1642,\n",
+      "        -0.1564, -0.1816, -0.1697, -0.1398, -0.1712, -0.2346, -0.1317, -0.1100,\n",
+      "        -0.1955, -0.1353, -0.1737, -0.1229, -0.2218, -0.1559, -0.1677, -0.1351,\n",
+      "        -0.1437, -0.2063, -0.2761, -0.1246, -0.1987, -0.1135, -0.1204, -0.1964,\n",
+      "        -0.1688, -0.1534, -0.2320, -0.1043, -0.2669, -0.1389, -0.2623, -0.2507,\n",
+      "        -0.0913, -0.1623, -0.1163, -0.2457, -0.2777, -0.3074, -0.1957, -0.0960,\n",
+      "        -0.1838, -0.1942, -0.1169, -0.1783, -0.1120, -0.2152, -0.1796, -0.1999,\n",
+      "        -0.2058, -0.1860, -0.2497, -0.1133, -0.1613, -0.1642, -0.2371, -0.1784,\n",
+      "        -0.1637, -0.2211, -0.1709, -0.1765, -0.2438, -0.2557, -0.2610, -0.2057,\n",
+      "        -0.2160, -0.2020, -0.0751, -0.1381, -0.1788, -0.1552, -0.2197, -0.1303,\n",
+      "        -0.1996, -0.1525, -0.2031, -0.1531, -0.1214, -0.1586, -0.1475, -0.1742,\n",
+      "        -0.2240, -0.0908, -0.1065, -0.1293, -0.3344, -0.1737, -0.2152, -0.1674,\n",
+      "        -0.2291, -0.1309, -0.1538, -0.1228, -0.2012, -0.2351, -0.0877, -0.1986,\n",
+      "        -0.2564, -0.1721, -0.2106, -0.2631, -0.1472, -0.1476, -0.1633, -0.2011,\n",
+      "        -0.2685, -0.1756, -0.1738, -0.1248, -0.0925, -0.1465, -0.2149, -0.2610,\n",
+      "        -0.2552, -0.1489, -0.3627, -0.1173, -0.1717, -0.1307, -0.1587, -0.1903,\n",
+      "        -0.1966, -0.2346, -0.0927, -0.1787, -0.2658, -0.1420, -0.2233, -0.1711,\n",
+      "        -0.1872, -0.2528, -0.1384, -0.1797, -0.2106, -0.1886, -0.1355, -0.2765,\n",
+      "        -0.2141, -0.2102, -0.2140, -0.0877, -0.1372, -0.2356, -0.1644, -0.1935,\n",
+      "        -0.1530, -0.3091, -0.2540, -0.2386, -0.1810, -0.2886, -0.2525, -0.1737,\n",
+      "        -0.2464, -0.1788, -0.2676, -0.1768, -0.1181, -0.1676, -0.1694, -0.1288,\n",
+      "        -0.1704, -0.2572, -0.1648, -0.1664, -0.2302, -0.2029, -0.1340,  0.0866,\n",
+      "        -0.2416, -0.2080, -0.2258, -0.1422, -0.1520, -0.3059, -0.2825, -0.2617,\n",
+      "        -0.1387, -0.2114, -0.1508, -0.2840, -0.1683, -0.1778,  0.0834, -0.1642,\n",
+      "        -0.2121, -0.1466, -0.1926, -0.1718, -0.2341, -0.2192, -0.2036, -0.1592,\n",
+      "        -0.2442, -0.2279, -0.1566, -0.1468, -0.1421, -0.1885, -0.2813, -0.1717,\n",
+      "        -0.1538, -0.1381, -0.1166, -0.1028, -0.1893, -0.2164, -0.2351, -0.1759,\n",
+      "        -0.2633, -0.1271, -0.1752, -0.1876, -0.2171, -0.2038, -0.1692, -0.1460,\n",
+      "        -0.1401, -0.1856, -0.1745, -0.2151, -0.2009, -0.1877, -0.2549, -0.1748,\n",
+      "        -0.2461, -0.1947, -0.2140, -0.2188, -0.1740, -0.2122, -0.2452, -0.1956,\n",
+      "        -0.2300, -0.2255, -0.1670, -0.1308, -0.1216, -0.1529, -0.2172, -0.1140,\n",
+      "        -0.2010, -0.1455, -0.1750, -0.1225, -0.1319, -0.3131, -0.1812, -0.1524,\n",
+      "        -0.2145, -0.1137, -0.1830, -0.0996, -0.1711, -0.1511, -0.2608, -0.1953])), ('pretrained_model.layer4.0.bn1.running_mean', tensor([-0.0861, -0.0884, -0.0077, -0.0556, -0.1102,  0.0664, -0.0523, -0.0311,\n",
+      "        -0.1041, -0.0666, -0.0944, -0.1116, -0.0653, -0.0644, -0.0797, -0.0918,\n",
+      "        -0.0602, -0.1809, -0.0568, -0.0259, -0.0763, -0.1266, -0.0764, -0.0559,\n",
+      "        -0.0497, -0.0264, -0.0425, -0.0698, -0.0500, -0.1063, -0.0329, -0.0426,\n",
+      "        -0.0755, -0.0323, -0.0990, -0.0219, -0.0658, -0.0557, -0.0966, -0.0734,\n",
+      "        -0.0587, -0.0941, -0.0718, -0.0437, -0.0639, -0.0445, -0.0589, -0.0731,\n",
+      "        -0.0757, -0.0520, -0.0956, -0.0540, -0.0316, -0.0616, -0.0813, -0.1605,\n",
+      "        -0.0695, -0.0331, -0.0485, -0.1037, -0.0376, -0.1122, -0.0798, -0.0896,\n",
+      "        -0.1097, -0.0342, -0.1157, -0.0362, -0.0637, -0.0690, -0.0388, -0.0284,\n",
+      "        -0.1537, -0.0692, -0.0821, -0.0099, -0.0261, -0.0735, -0.0949, -0.0833,\n",
+      "        -0.1355, -0.0859, -0.0434, -0.0594, -0.0268, -0.0826, -0.0357, -0.0457,\n",
+      "        -0.0904, -0.1106, -0.0949, -0.0763, -0.0541, -0.0624, -0.0315, -0.0342,\n",
+      "        -0.0749, -0.0797, -0.1220, -0.0504, -0.1030, -0.0806, -0.0367, -0.0828,\n",
+      "        -0.0625, -0.0571, -0.0482, -0.0887, -0.0998, -0.0763, -0.0841, -0.0633,\n",
+      "        -0.0562, -0.0614, -0.0842, -0.0765, -0.0489, -0.1097, -0.0708, -0.0623,\n",
+      "        -0.0828, -0.0192, -0.0808, -0.0621, -0.0561, -0.0328, -0.1408, -0.1429,\n",
+      "        -0.0932, -0.1111, -0.0850, -0.1021, -0.0928, -0.0467, -0.0598, -0.0787,\n",
+      "        -0.0549, -0.0393, -0.0587, -0.0912, -0.1080, -0.0601, -0.1482, -0.0503,\n",
+      "        -0.0826, -0.0556, -0.0681, -0.0907, -0.1110, -0.0158, -0.0646, -0.0573,\n",
+      "        -0.0524, -0.1118, -0.0190, -0.0773, -0.0918, -0.0258, -0.0961, -0.0750,\n",
+      "        -0.0823, -0.1238, -0.0885, -0.0915, -0.0555, -0.0681, -0.0410, -0.0802,\n",
+      "        -0.0833, -0.0427, -0.0805, -0.0986, -0.0212, -0.0832, -0.0537, -0.0656,\n",
+      "        -0.0715, -0.0749, -0.0698, -0.1000, -0.0852, -0.0358, -0.0679, -0.0729,\n",
+      "        -0.0419, -0.0047, -0.0555, -0.0569, -0.0784, -0.0558, -0.1289, -0.0835,\n",
+      "        -0.0647, -0.0585, -0.0647, -0.0103, -0.0633, -0.0335, -0.0517, -0.1067,\n",
+      "        -0.0596, -0.0652, -0.0157, -0.0618, -0.0769, -0.0442, -0.0800, -0.0553,\n",
+      "        -0.0974, -0.0591, -0.0515, -0.0734, -0.0761, -0.0603, -0.0411, -0.0794,\n",
+      "        -0.0414, -0.0283, -0.0850, -0.0776, -0.0786, -0.0564, -0.0857, -0.0790,\n",
+      "        -0.0641, -0.0615, -0.0552, -0.0507, -0.0991, -0.1101, -0.0583, -0.0798,\n",
+      "        -0.0634,  0.0937, -0.0602, -0.1328,  0.0108, -0.0868, -0.0866, -0.0465,\n",
+      "        -0.0642, -0.0843, -0.0784, -0.0613, -0.0459, -0.0828, -0.0635, -0.1121,\n",
+      "        -0.0953, -0.0393, -0.1253, -0.1351, -0.0917, -0.0988, -0.0564, -0.0705,\n",
+      "        -0.0426, -0.0909, -0.0709, -0.0552, -0.0729, -0.0889, -0.0514, -0.0772,\n",
+      "        -0.0678, -0.0412, -0.0531, -0.0796, -0.0622, -0.0363, -0.0943, -0.0595,\n",
+      "        -0.1039, -0.0170, -0.0892, -0.0569, -0.0654, -0.0542, -0.0288, -0.1057,\n",
+      "        -0.0841, -0.0551, -0.0665, -0.0411, -0.0646, -0.0521, -0.0744, -0.1159,\n",
+      "        -0.1062, -0.0383, -0.0722, -0.0735, -0.1412, -0.0480, -0.0581, -0.0383,\n",
+      "        -0.0896, -0.0600, -0.0549, -0.0269, -0.0392, -0.0983, -0.1446, -0.0450,\n",
+      "        -0.0890, -0.0347, -0.1071, -0.0597, -0.0396, -0.0830, -0.0056, -0.0296,\n",
+      "        -0.0379, -0.0545, -0.0474, -0.0969, -0.0494, -0.0732, -0.0885, -0.0553,\n",
+      "        -0.0875, -0.0934, -0.0284, -0.0379, -0.0755, -0.0390, -0.0619, -0.0357,\n",
+      "        -0.1331, -0.0593, -0.0539, -0.0425, -0.0640, -0.0347, -0.0485, -0.0744,\n",
+      "        -0.0729, -0.0362, -0.0734, -0.0735, -0.0705, -0.0545, -0.0630, -0.0535,\n",
+      "        -0.0518, -0.1047, -0.0407, -0.0551, -0.1048, -0.1204, -0.0163, -0.0694,\n",
+      "        -0.0624, -0.0782, -0.0953, -0.0564, -0.0462, -0.0705, -0.0153, -0.0635,\n",
+      "        -0.0628, -0.0701, -0.0974, -0.0644, -0.0541, -0.0510, -0.1651, -0.0706,\n",
+      "        -0.0375, -0.0797, -0.1470, -0.0303, -0.0603, -0.0447, -0.0422, -0.0345,\n",
+      "        -0.0256, -0.0293, -0.0565, -0.0666, -0.0622, -0.0743, -0.1269, -0.0765,\n",
+      "        -0.0826, -0.0983, -0.0903, -0.0640, -0.0786, -0.0680, -0.0379, -0.1305,\n",
+      "        -0.0555, -0.1118, -0.0608, -0.0389, -0.0659, -0.0619, -0.1017, -0.0715,\n",
+      "        -0.0871, -0.0428, -0.1090, -0.0985, -0.0669, -0.1071, -0.1263, -0.0914,\n",
+      "        -0.1273, -0.0774, -0.0990, -0.0723,  0.0006, -0.0804, -0.0907, -0.0657,\n",
+      "        -0.0529, -0.0811, -0.0563, -0.0534, -0.0633, -0.0577, -0.0623, -0.0303,\n",
+      "        -0.1033, -0.0966, -0.1293, -0.1059, -0.0541, -0.0979, -0.0670, -0.0776,\n",
+      "        -0.0821, -0.0793, -0.1112, -0.0680, -0.0706, -0.0870, -0.0417, -0.0402,\n",
+      "        -0.0518, -0.0356, -0.0629, -0.1154, -0.1070, -0.0902, -0.1032, -0.0916,\n",
+      "        -0.0973, -0.0967, -0.0290, -0.0757, -0.0796, -0.0243, -0.0665, -0.0562,\n",
+      "        -0.0754, -0.0735, -0.0878, -0.0760, -0.1442, -0.0483, -0.0664, -0.0731,\n",
+      "        -0.0937, -0.0789, -0.0693, -0.0727, -0.0431, -0.0346, -0.0591, -0.0625,\n",
+      "        -0.0448, -0.0725, -0.0882, -0.0167, -0.0906, -0.0743, -0.0603, -0.0603,\n",
+      "        -0.0860, -0.0880, -0.1427, -0.0642, -0.0742, -0.0718, -0.0872, -0.0933,\n",
+      "        -0.1001, -0.1219, -0.0870, -0.0482, -0.0714, -0.1124, -0.0782, -0.0457,\n",
+      "        -0.0442, -0.0797, -0.0562, -0.0229, -0.0303, -0.0532, -0.0363, -0.0672,\n",
+      "        -0.0568, -0.0329, -0.0563, -0.0300, -0.0298, -0.0437, -0.0847, -0.0843])), ('pretrained_model.layer4.0.bn1.running_var', tensor([0.0161, 0.0092, 0.0088, 0.0097, 0.0176, 0.0063, 0.0075, 0.0065, 0.0149,\n",
+      "        0.0096, 0.0142, 0.0175, 0.0114, 0.0108, 0.0091, 0.0088, 0.0073, 0.0339,\n",
+      "        0.0079, 0.0060, 0.0112, 0.0169, 0.0095, 0.0052, 0.0074, 0.0049, 0.0066,\n",
+      "        0.0104, 0.0084, 0.0098, 0.0091, 0.0073, 0.0083, 0.0104, 0.0174, 0.0046,\n",
+      "        0.0109, 0.0143, 0.0163, 0.0153, 0.0091, 0.0172, 0.0114, 0.0105, 0.0182,\n",
+      "        0.0142, 0.0079, 0.0125, 0.0079, 0.0154, 0.0146, 0.0104, 0.0065, 0.0079,\n",
+      "        0.0100, 0.0179, 0.0119, 0.0073, 0.0080, 0.0139, 0.0079, 0.0174, 0.0120,\n",
+      "        0.0142, 0.0117, 0.0066, 0.0190, 0.0113, 0.0096, 0.0087, 0.0073, 0.0056,\n",
+      "        0.0255, 0.0102, 0.0128, 0.0072, 0.0071, 0.0126, 0.0155, 0.0134, 0.0201,\n",
+      "        0.0074, 0.0097, 0.0097, 0.0101, 0.0107, 0.0071, 0.0074, 0.0066, 0.0145,\n",
+      "        0.0127, 0.0072, 0.0092, 0.0056, 0.0057, 0.0079, 0.0087, 0.0112, 0.0365,\n",
+      "        0.0125, 0.0100, 0.0134, 0.0135, 0.0094, 0.0093, 0.0104, 0.0104, 0.0148,\n",
+      "        0.0093, 0.0072, 0.0116, 0.0100, 0.0067, 0.0077, 0.0116, 0.0075, 0.0064,\n",
+      "        0.0160, 0.0115, 0.0077, 0.0101, 0.0093, 0.0089, 0.0090, 0.0127, 0.0070,\n",
+      "        0.0192, 0.0221, 0.0103, 0.0139, 0.0109, 0.0197, 0.0070, 0.0076, 0.0095,\n",
+      "        0.0078, 0.0063, 0.0085, 0.0097, 0.0104, 0.0174, 0.0082, 0.0204, 0.0070,\n",
+      "        0.0191, 0.0061, 0.0097, 0.0120, 0.0165, 0.0057, 0.0111, 0.0052, 0.0111,\n",
+      "        0.0225, 0.0099, 0.0090, 0.0094, 0.0058, 0.0177, 0.0107, 0.0202, 0.0204,\n",
+      "        0.0118, 0.0140, 0.0094, 0.0102, 0.0074, 0.0115, 0.0089, 0.0065, 0.0095,\n",
+      "        0.0120, 0.0063, 0.0125, 0.0085, 0.0091, 0.0110, 0.0148, 0.0121, 0.0170,\n",
+      "        0.0105, 0.0053, 0.0077, 0.0114, 0.0120, 0.0065, 0.0090, 0.0087, 0.0103,\n",
+      "        0.0097, 0.0225, 0.0107, 0.0143, 0.0096, 0.0086, 0.0065, 0.0070, 0.0097,\n",
+      "        0.0119, 0.0144, 0.0075, 0.0098, 0.0066, 0.0106, 0.0101, 0.0095, 0.0123,\n",
+      "        0.0167, 0.0113, 0.0087, 0.0089, 0.0107, 0.0141, 0.0109, 0.0083, 0.0158,\n",
+      "        0.0072, 0.0058, 0.0112, 0.0124, 0.0114, 0.0083, 0.0097, 0.0091, 0.0069,\n",
+      "        0.0128, 0.0120, 0.0087, 0.0128, 0.0127, 0.0101, 0.0118, 0.0094, 0.0148,\n",
+      "        0.0124, 0.0145, 0.0061, 0.0133, 0.0112, 0.0086, 0.0093, 0.0203, 0.0085,\n",
+      "        0.0082, 0.0103, 0.0137, 0.0092, 0.0141, 0.0108, 0.0052, 0.0268, 0.0215,\n",
+      "        0.0109, 0.0154, 0.0124, 0.0086, 0.0075, 0.0241, 0.0177, 0.0102, 0.0072,\n",
+      "        0.0169, 0.0064, 0.0106, 0.0080, 0.0099, 0.0091, 0.0098, 0.0086, 0.0068,\n",
+      "        0.0138, 0.0089, 0.0183, 0.0065, 0.0213, 0.0102, 0.0061, 0.0099, 0.0068,\n",
+      "        0.0106, 0.0076, 0.0111, 0.0123, 0.0088, 0.0094, 0.0144, 0.0108, 0.0177,\n",
+      "        0.0201, 0.0082, 0.0076, 0.0103, 0.0179, 0.0093, 0.0077, 0.0074, 0.0083,\n",
+      "        0.0088, 0.0071, 0.0066, 0.0053, 0.0168, 0.0188, 0.0057, 0.0128, 0.0131,\n",
+      "        0.0198, 0.0078, 0.0134, 0.0123, 0.0095, 0.0108, 0.0035, 0.0084, 0.0157,\n",
+      "        0.0249, 0.0091, 0.0076, 0.0103, 0.0086, 0.0160, 0.0139, 0.0106, 0.0088,\n",
+      "        0.0109, 0.0062, 0.0086, 0.0060, 0.0162, 0.0070, 0.0080, 0.0135, 0.0126,\n",
+      "        0.0056, 0.0081, 0.0085, 0.0087, 0.0056, 0.0082, 0.0093, 0.0073, 0.0078,\n",
+      "        0.0094, 0.0095, 0.0077, 0.0062, 0.0081, 0.0091, 0.0127, 0.0146, 0.0092,\n",
+      "        0.0117, 0.0095, 0.0103, 0.0094, 0.0099, 0.0101, 0.0087, 0.0064, 0.0101,\n",
+      "        0.0074, 0.0101, 0.0107, 0.0062, 0.0092, 0.0073, 0.0194, 0.0123, 0.0093,\n",
+      "        0.0116, 0.0266, 0.0077, 0.0082, 0.0078, 0.0086, 0.0100, 0.0084, 0.0066,\n",
+      "        0.0105, 0.0126, 0.0061, 0.0137, 0.0117, 0.0113, 0.0096, 0.0120, 0.0178,\n",
+      "        0.0065, 0.0160, 0.0086, 0.0068, 0.0189, 0.0075, 0.0148, 0.0144, 0.0122,\n",
+      "        0.0105, 0.0115, 0.0126, 0.0126, 0.0099, 0.0070, 0.0164, 0.0157, 0.0105,\n",
+      "        0.0188, 0.0164, 0.0103, 0.0132, 0.0115, 0.0091, 0.0088, 0.0108, 0.0117,\n",
+      "        0.0189, 0.0076, 0.0094, 0.0079, 0.0070, 0.0124, 0.0069, 0.0088, 0.0092,\n",
+      "        0.0223, 0.0186, 0.0095, 0.0138, 0.0150, 0.0081, 0.0072, 0.0106, 0.0085,\n",
+      "        0.0203, 0.0089, 0.0189, 0.0094, 0.0085, 0.0139, 0.0132, 0.0080, 0.0093,\n",
+      "        0.0062, 0.0086, 0.0107, 0.0113, 0.0085, 0.0130, 0.0131, 0.0158, 0.0114,\n",
+      "        0.0069, 0.0108, 0.0087, 0.0136, 0.0123, 0.0079, 0.0137, 0.0111, 0.0080,\n",
+      "        0.0077, 0.0327, 0.0113, 0.0121, 0.0097, 0.0086, 0.0120, 0.0099, 0.0095,\n",
+      "        0.0088, 0.0104, 0.0081, 0.0094, 0.0104, 0.0112, 0.0128, 0.0078, 0.0100,\n",
+      "        0.0095, 0.0071, 0.0070, 0.0121, 0.0121, 0.0214, 0.0106, 0.0148, 0.0110,\n",
+      "        0.0151, 0.0144, 0.0097, 0.0157, 0.0090, 0.0061, 0.0061, 0.0169, 0.0114,\n",
+      "        0.0103, 0.0095, 0.0147, 0.0158, 0.0078, 0.0058, 0.0093, 0.0060, 0.0108,\n",
+      "        0.0096, 0.0096, 0.0076, 0.0083, 0.0065, 0.0074, 0.0094, 0.0079])), ('pretrained_model.layer4.0.bn1.num_batches_tracked', tensor(0)), ('pretrained_model.layer4.0.conv2.weight', tensor([[[[-5.0423e-05, -1.0962e-02,  7.7703e-03],\n",
+      "          [-5.9257e-03, -5.0643e-03, -2.8951e-03],\n",
+      "          [-1.4640e-02, -1.5511e-02, -1.6876e-02]],\n",
+      "\n",
+      "         [[ 9.4395e-03,  1.5716e-02,  6.5847e-03],\n",
+      "          [ 1.6648e-02,  8.6742e-03,  1.8575e-02],\n",
+      "          [ 1.2583e-02,  1.2471e-02,  2.0795e-02]],\n",
+      "\n",
+      "         [[ 1.1836e-02,  1.0028e-02,  1.3638e-02],\n",
+      "          [ 5.5055e-03,  2.7629e-03,  1.0283e-02],\n",
+      "          [ 4.2025e-03,  2.6237e-03,  8.4151e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-7.6683e-03, -9.9674e-03, -4.2087e-03],\n",
+      "          [ 4.2060e-03, -6.8563e-03, -7.9693e-03],\n",
+      "          [-2.4735e-03, -1.3793e-02, -1.0838e-02]],\n",
+      "\n",
+      "         [[-1.8655e-03,  1.0175e-02,  6.8113e-03],\n",
+      "          [ 4.5670e-05,  2.2822e-02,  1.5336e-02],\n",
+      "          [ 1.9873e-02,  1.6146e-02,  1.8461e-02]],\n",
+      "\n",
+      "         [[-5.4963e-03, -1.6109e-02, -1.0602e-02],\n",
+      "          [ 2.9665e-03, -2.6743e-03,  3.3104e-03],\n",
+      "          [ 1.9526e-03,  3.1588e-03,  7.9958e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.0495e-02, -5.6854e-03, -1.1569e-02],\n",
+      "          [-2.6614e-03, -5.0547e-03, -7.0820e-03],\n",
+      "          [-6.2870e-03, -9.6512e-05, -3.3071e-03]],\n",
+      "\n",
+      "         [[ 8.4805e-03, -1.2329e-02, -7.8134e-03],\n",
+      "          [ 1.3711e-03, -3.8128e-03, -9.6685e-03],\n",
+      "          [ 2.4915e-03,  1.5704e-03, -9.3444e-04]],\n",
+      "\n",
+      "         [[-5.8361e-03, -3.6481e-03, -2.5828e-03],\n",
+      "          [-9.7470e-03, -5.9932e-03, -3.2187e-03],\n",
+      "          [ 2.9059e-04,  5.2320e-03, -1.1678e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.4197e-04, -1.2356e-02, -8.9474e-03],\n",
+      "          [-3.5033e-03, -5.1856e-03, -2.3636e-03],\n",
+      "          [-2.3891e-03,  3.0510e-03,  8.6964e-03]],\n",
+      "\n",
+      "         [[ 2.6572e-03,  6.4026e-03,  1.0513e-02],\n",
+      "          [ 4.3940e-03,  1.8899e-02,  6.6934e-03],\n",
+      "          [ 1.2076e-02,  2.4365e-02,  2.3074e-02]],\n",
+      "\n",
+      "         [[ 4.5903e-03,  1.5673e-02,  1.4446e-02],\n",
+      "          [ 1.0541e-02, -1.0070e-03,  1.6581e-02],\n",
+      "          [ 1.1009e-02,  1.9077e-02,  1.8860e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.9640e-03, -6.2071e-04, -7.3876e-03],\n",
+      "          [-8.7123e-04,  5.9410e-04, -7.9821e-03],\n",
+      "          [ 8.6333e-04,  3.4823e-03, -1.0392e-02]],\n",
+      "\n",
+      "         [[-4.4296e-03,  1.0248e-02,  2.2635e-03],\n",
+      "          [ 9.9592e-03,  1.1542e-02,  9.1201e-03],\n",
+      "          [ 4.5598e-03,  1.1619e-02,  8.5142e-03]],\n",
+      "\n",
+      "         [[ 1.2777e-02,  6.1681e-03,  1.1454e-02],\n",
+      "          [-7.0569e-03,  6.8780e-03,  5.0789e-03],\n",
+      "          [ 1.8155e-02,  1.4110e-02,  1.5053e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-9.9294e-03, -3.8707e-03,  1.7250e-03],\n",
+      "          [-9.1370e-03, -9.5747e-04, -7.4830e-03],\n",
+      "          [-8.7667e-03, -1.1457e-04, -1.3441e-03]],\n",
+      "\n",
+      "         [[ 5.1164e-03,  2.5452e-04,  2.4336e-03],\n",
+      "          [ 5.4423e-03, -4.8939e-03,  8.4228e-03],\n",
+      "          [ 2.0466e-03,  7.1158e-03,  5.8269e-03]],\n",
+      "\n",
+      "         [[ 3.1400e-04, -1.0155e-02, -2.9110e-03],\n",
+      "          [-4.3114e-03, -1.2538e-02, -3.9011e-03],\n",
+      "          [-8.1369e-03, -1.8478e-02, -3.3005e-03]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 1.0515e-03,  6.3064e-03,  6.9530e-03],\n",
+      "          [ 2.3379e-03, -7.1429e-03, -1.1626e-02],\n",
+      "          [ 1.5480e-03,  4.5345e-03, -5.9408e-03]],\n",
+      "\n",
+      "         [[-4.4307e-03, -1.2683e-02, -6.7815e-03],\n",
+      "          [-1.8457e-02, -2.4628e-02, -2.8986e-02],\n",
+      "          [-1.8771e-02, -1.8087e-02, -1.3633e-02]],\n",
+      "\n",
+      "         [[ 2.1604e-02,  1.9798e-02,  2.4032e-02],\n",
+      "          [ 2.0278e-02,  1.9641e-02,  3.5305e-02],\n",
+      "          [ 1.8795e-02,  2.3249e-02,  2.5793e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-3.1662e-03,  5.3831e-03, -6.8517e-04],\n",
+      "          [ 5.4802e-03,  1.0781e-02,  8.7782e-03],\n",
+      "          [ 1.1334e-02,  1.1959e-03,  5.8689e-03]],\n",
+      "\n",
+      "         [[ 7.4675e-03,  1.2154e-03,  8.8316e-04],\n",
+      "          [-3.3504e-03, -5.7823e-03,  2.4605e-03],\n",
+      "          [-6.4041e-03, -1.8811e-03, -3.8719e-03]],\n",
+      "\n",
+      "         [[ 5.5035e-03,  1.2695e-02,  1.1141e-02],\n",
+      "          [ 5.8060e-03, -3.4438e-03,  5.4058e-04],\n",
+      "          [ 8.3495e-03,  9.3498e-04, -1.2256e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.1845e-02,  3.3914e-03, -8.2730e-03],\n",
+      "          [-2.0476e-02,  5.0373e-04, -5.9914e-04],\n",
+      "          [-1.2707e-02, -3.7435e-03, -1.3905e-02]],\n",
+      "\n",
+      "         [[-1.0753e-02, -4.9825e-03, -7.8857e-03],\n",
+      "          [-7.8919e-03, -5.3626e-03, -9.6301e-03],\n",
+      "          [-2.1605e-02, -3.8846e-03, -6.0327e-03]],\n",
+      "\n",
+      "         [[-4.1721e-03, -2.1266e-03, -2.6178e-03],\n",
+      "          [-1.2706e-03, -5.3327e-03,  1.0710e-02],\n",
+      "          [-1.2358e-02, -3.4695e-03,  4.0394e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-7.4600e-03, -4.6358e-03, -3.1793e-03],\n",
+      "          [-7.8543e-03,  4.6052e-03,  2.6923e-03],\n",
+      "          [-3.3655e-03,  1.0670e-03,  4.9421e-03]],\n",
+      "\n",
+      "         [[ 1.7740e-02,  3.8359e-02,  3.3684e-02],\n",
+      "          [ 1.8530e-02,  1.0653e-02,  2.9453e-02],\n",
+      "          [ 1.6576e-02,  2.8362e-02,  3.2225e-02]],\n",
+      "\n",
+      "         [[-9.8405e-03, -1.0577e-03,  5.9674e-03],\n",
+      "          [ 7.4877e-03,  1.3042e-02,  1.8538e-02],\n",
+      "          [ 9.7554e-03, -3.4941e-03,  1.0279e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.3159e-02, -8.1393e-03, -1.0366e-02],\n",
+      "          [-8.4063e-03, -1.1576e-02, -1.4037e-02],\n",
+      "          [-1.9387e-02, -2.0046e-02, -1.4405e-02]],\n",
+      "\n",
+      "         [[ 2.0949e-03,  9.3162e-03,  4.2943e-03],\n",
+      "          [ 2.1350e-03,  1.5734e-02,  6.8997e-03],\n",
+      "          [-3.1718e-03, -1.9356e-04,  7.7731e-03]],\n",
+      "\n",
+      "         [[-1.0942e-02, -1.9239e-02, -1.5174e-02],\n",
+      "          [-9.0907e-03, -1.4787e-02, -1.1845e-02],\n",
+      "          [-1.1123e-02, -2.3507e-02, -2.4897e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-5.7341e-03, -6.9284e-03, -8.2398e-03],\n",
+      "          [-1.4212e-02, -1.2563e-02, -8.2822e-03],\n",
+      "          [-6.4475e-03, -1.4297e-03, -9.1359e-03]],\n",
+      "\n",
+      "         [[ 1.2265e-02, -2.7944e-03,  7.7046e-03],\n",
+      "          [-3.9848e-03, -5.6192e-03, -6.9252e-03],\n",
+      "          [ 1.4317e-03, -8.6719e-03,  7.0849e-03]],\n",
+      "\n",
+      "         [[ 3.7420e-03,  1.3224e-02,  6.6733e-03],\n",
+      "          [ 8.1195e-03, -4.2914e-04,  5.4927e-03],\n",
+      "          [ 6.1726e-04, -1.0891e-02, -6.1557e-03]]]])), ('pretrained_model.layer4.0.bn2.weight', tensor([0.2299, 0.1957, 0.1911, 0.2140, 0.2217, 0.2839, 0.1902, 0.2664, 0.1936,\n",
+      "        0.1634, 0.1433, 0.2101, 0.2994, 0.2207, 0.2137, 0.2011, 0.2196, 0.1620,\n",
+      "        0.1794, 0.1706, 0.1889, 0.1721, 0.1552, 0.2103, 0.2145, 0.1710, 0.1664,\n",
+      "        0.1799, 0.2230, 0.1683, 0.1423, 0.1300, 0.1981, 0.1355, 0.2577, 0.2405,\n",
+      "        0.1914, 0.2528, 0.2012, 0.1959, 0.2331, 0.1450, 0.2118, 0.1696, 0.1796,\n",
+      "        0.1631, 0.1595, 0.2339, 0.2534, 0.2066, 0.1531, 0.1969, 0.1581, 0.1591,\n",
+      "        0.2499, 0.1725, 0.2080, 0.1843, 0.2249, 0.2029, 0.2158, 0.1355, 0.1926,\n",
+      "        0.1784, 0.2154, 0.2116, 0.2157, 0.1905, 0.2031, 0.1648, 0.1264, 0.1910,\n",
+      "        0.1919, 0.2235, 0.1696, 0.1501, 0.1688, 0.2377, 0.1737, 0.2126, 0.2192,\n",
+      "        0.1838, 0.1774, 0.1931, 0.1721, 0.1851, 0.2077, 0.2240, 0.1697, 0.2091,\n",
+      "        0.2017, 0.1781, 0.1848, 0.1680, 0.3899, 0.2453, 0.1888, 0.2208, 0.1685,\n",
+      "        0.1768, 0.2133, 0.2067, 0.1865, 0.2312, 0.2995, 0.2094, 0.2856, 0.2410,\n",
+      "        0.1566, 0.1965, 0.1790, 0.1620, 0.1657, 0.2003, 0.1775, 0.1806, 0.1717,\n",
+      "        0.1612, 0.1822, 0.1629, 0.1701, 0.2116, 0.2479, 0.2106, 0.2227, 0.1533,\n",
+      "        0.2128, 0.1839, 0.2088, 0.2592, 0.1876, 0.2063, 0.2228, 0.2266, 0.1620,\n",
+      "        0.1484, 0.1456, 0.2857, 0.2064, 0.1744, 0.2017, 0.1455, 0.1769, 0.1944,\n",
+      "        0.2196, 0.1465, 0.1169, 0.1718, 0.1437, 0.2222, 0.1645, 0.1875, 0.2371,\n",
+      "        0.2878, 0.1556, 0.1789, 0.1647, 0.1810, 0.1879, 0.2251, 0.2124, 0.1581,\n",
+      "        0.1882, 0.2195, 0.1687, 0.2205, 0.1907, 0.1263, 0.1917, 0.1508, 0.1760,\n",
+      "        0.2881, 0.2425, 0.2814, 0.1764, 0.2351, 0.1443, 0.1643, 0.2307, 0.2129,\n",
+      "        0.1961, 0.1971, 0.2178, 0.1698, 0.2694, 0.1956, 0.2308, 0.1763, 0.1779,\n",
+      "        0.1700, 0.1936, 0.1643, 0.1622, 0.1293, 0.1603, 0.2109, 0.1785, 0.1917,\n",
+      "        0.1865, 0.2196, 0.3066, 0.2127, 0.1824, 0.1802, 0.1667, 0.2244, 0.1718,\n",
+      "        0.2858, 0.1579, 0.1953, 0.2530, 0.2108, 0.1738, 0.2112, 0.1784, 0.2058,\n",
+      "        0.2579, 0.2065, 0.2148, 0.1931, 0.2332, 0.2159, 0.2294, 0.1463, 0.2122,\n",
+      "        0.1572, 0.1528, 0.1821, 0.1715, 0.1840, 0.1840, 0.1585, 0.1794, 0.2011,\n",
+      "        0.2064, 0.2103, 0.1921, 0.2003, 0.2546, 0.2443, 0.2663, 0.2212, 0.1827,\n",
+      "        0.2405, 0.1941, 0.1993, 0.2062, 0.2391, 0.1511, 0.2110, 0.2234, 0.2028,\n",
+      "        0.1995, 0.2553, 0.2095, 0.2237, 0.2018, 0.1959, 0.2037, 0.2168, 0.1894,\n",
+      "        0.1954, 0.1657, 0.2372, 0.2059, 0.1570, 0.1622, 0.2213, 0.2009, 0.1849,\n",
+      "        0.2106, 0.2089, 0.1652, 0.2449, 0.1625, 0.2680, 0.1855, 0.1376, 0.2660,\n",
+      "        0.2137, 0.2208, 0.1899, 0.1670, 0.2646, 0.2264, 0.2198, 0.1925, 0.2117,\n",
+      "        0.2079, 0.1838, 0.1927, 0.2817, 0.2385, 0.2127, 0.2223, 0.1547, 0.2048,\n",
+      "        0.1879, 0.1893, 0.2146, 0.1433, 0.2486, 0.2352, 0.1503, 0.1881, 0.2391,\n",
+      "        0.1806, 0.2276, 0.2278, 0.2686, 0.2822, 0.2377, 0.2723, 0.1727, 0.1484,\n",
+      "        0.1834, 0.1748, 0.1817, 0.2558, 0.2385, 0.1533, 0.1753, 0.1771, 0.1679,\n",
+      "        0.1836, 0.2225, 0.2195, 0.2088, 0.2028, 0.2092, 0.1278, 0.2195, 0.2605,\n",
+      "        0.2255, 0.1981, 0.1730, 0.1172, 0.2529, 0.1951, 0.2398, 0.2467, 0.1953,\n",
+      "        0.1941, 0.1616, 0.1725, 0.1840, 0.1664, 0.2324, 0.1459, 0.1552, 0.2241,\n",
+      "        0.1989, 0.2341, 0.1962, 0.1579, 0.2550, 0.1896, 0.2199, 0.2099, 0.2159,\n",
+      "        0.1610, 0.1693, 0.1579, 0.1942, 0.1779, 0.2027, 0.1736, 0.1899, 0.2243,\n",
+      "        0.2316, 0.2514, 0.1732, 0.1389, 0.1657, 0.1732, 0.2208, 0.2245, 0.1899,\n",
+      "        0.2354, 0.1605, 0.1755, 0.1993, 0.1249, 0.2467, 0.2026, 0.1551, 0.2493,\n",
+      "        0.2477, 0.2109, 0.2390, 0.2454, 0.2387, 0.1867, 0.1835, 0.1698, 0.1536,\n",
+      "        0.1997, 0.2686, 0.1717, 0.1604, 0.2106, 0.2116, 0.1590, 0.1840, 0.1569,\n",
+      "        0.2427, 0.1674, 0.2137, 0.2251, 0.2931, 0.1800, 0.2238, 0.1974, 0.2766,\n",
+      "        0.3089, 0.1906, 0.2186, 0.1825, 0.1218, 0.1703, 0.1714, 0.2180, 0.2109,\n",
+      "        0.2369, 0.2079, 0.1804, 0.2066, 0.2163, 0.1894, 0.2523, 0.2010, 0.1828,\n",
+      "        0.1904, 0.1952, 0.1566, 0.1426, 0.1810, 0.1978, 0.1768, 0.2169, 0.2338,\n",
+      "        0.1561, 0.2024, 0.2198, 0.1847, 0.1900, 0.1821, 0.1786, 0.2557, 0.1954,\n",
+      "        0.2317, 0.2323, 0.1912, 0.1577, 0.1744, 0.2497, 0.1986, 0.1921, 0.1622,\n",
+      "        0.1344, 0.1625, 0.2334, 0.1406, 0.1613, 0.2147, 0.2081, 0.1522, 0.2427,\n",
+      "        0.2523, 0.2109, 0.1754, 0.1542, 0.2280, 0.2700, 0.2306, 0.1944, 0.2187,\n",
+      "        0.1659, 0.1890, 0.1790, 0.1666, 0.1901, 0.1479, 0.1761, 0.1553, 0.2495,\n",
+      "        0.1868, 0.1667, 0.2138, 0.2144, 0.1798, 0.1395, 0.1438, 0.1857, 0.2027,\n",
+      "        0.1620, 0.2184, 0.2227, 0.2025, 0.2025, 0.2153, 0.2129, 0.2537, 0.1561,\n",
+      "        0.2248, 0.2002, 0.1593, 0.1753, 0.2434, 0.1675, 0.1757, 0.2136])), ('pretrained_model.layer4.0.bn2.bias', tensor([-6.2766e-02, -1.4485e-01, -7.3511e-02, -8.0317e-02, -7.0008e-03,\n",
+      "        -2.8029e-02, -1.1074e-01, -8.2064e-02, -9.6224e-02, -8.6871e-02,\n",
+      "        -1.1271e-01, -1.7772e-02, -3.2333e-03, -1.1878e-01,  1.8454e-02,\n",
+      "        -7.6305e-02,  6.6867e-02, -6.3706e-02, -3.6976e-02, -4.9624e-02,\n",
+      "        -6.3160e-03, -1.3181e-01, -4.2034e-02,  1.5142e-02, -2.9406e-02,\n",
+      "        -1.5673e-01, -3.9602e-02, -1.3527e-01, -3.5881e-02, -1.8320e-02,\n",
+      "        -1.7706e-02,  3.1723e-02, -6.3283e-02,  6.9117e-03,  1.0755e-02,\n",
+      "        -7.8532e-02,  2.8973e-02, -2.8449e-02, -1.3089e-01,  5.4610e-03,\n",
+      "        -1.4157e-02,  4.2041e-02,  2.5045e-02, -5.1077e-02, -4.3550e-02,\n",
+      "         3.4550e-03, -1.1904e-01, -6.7820e-02, -8.9938e-02, -6.8736e-02,\n",
+      "        -1.0778e-01, -1.7099e-03,  3.2298e-02, -5.4956e-02, -4.5088e-03,\n",
+      "        -7.0614e-02, -3.6867e-02, -9.5401e-02, -1.0557e-01, -8.0512e-02,\n",
+      "        -1.0692e-01, -1.0909e-01,  1.0443e-02, -8.2225e-02, -9.9705e-02,\n",
+      "        -3.6006e-02, -6.5989e-02, -5.1103e-02, -1.2740e-01, -1.0987e-01,\n",
+      "         5.4217e-02, -9.9152e-02, -1.2930e-01, -3.4526e-02, -7.4588e-02,\n",
+      "         8.9165e-03, -1.5264e-02, -5.6172e-02, -3.7572e-02, -1.7318e-02,\n",
+      "        -4.8876e-02, -4.2640e-02, -1.2654e-01, -5.3876e-02, -1.0432e-01,\n",
+      "         4.0919e-03, -1.3270e-01, -3.4891e-02,  2.5997e-03, -4.9954e-02,\n",
+      "        -5.6356e-02, -6.0388e-02, -1.0467e-01, -1.7268e-01,  3.5094e-01,\n",
+      "        -9.8926e-03, -1.9660e-02, -1.0272e-01, -5.0056e-02, -5.8784e-02,\n",
+      "        -7.5578e-02, -4.1032e-02, -2.5515e-02, -1.0978e-01, -2.5092e-03,\n",
+      "        -3.8078e-02,  1.3870e-02, -5.0924e-02, -7.0524e-02, -6.5046e-02,\n",
+      "        -1.2150e-02, -3.2431e-02, -1.1597e-01,  3.1120e-02, -2.3846e-02,\n",
+      "        -1.4841e-02, -5.0889e-02, -1.5566e-01,  6.2659e-02, -5.7951e-02,\n",
+      "        -4.8960e-03,  7.2519e-03, -9.1143e-02, -6.7368e-02, -4.8937e-02,\n",
+      "         8.5572e-02, -7.0673e-02, -6.3162e-02, -8.1666e-02, -2.1026e-03,\n",
+      "        -1.3749e-01, -1.0906e-01, -1.5644e-02,  2.0129e-03,  4.1589e-02,\n",
+      "        -1.1380e-01, -4.6830e-02, -8.5165e-02, -1.0226e-01, -1.3435e-01,\n",
+      "         2.5840e-02, -6.6026e-02, -5.5005e-02, -5.2951e-02,  9.2679e-03,\n",
+      "        -1.5999e-02,  9.1109e-03, -1.5655e-02, -1.2244e-01, -4.9305e-02,\n",
+      "        -3.0233e-02, -4.5157e-02, -1.6063e-02,  2.4875e-02, -6.5851e-02,\n",
+      "        -1.1484e-01, -1.1464e-01, -1.5455e-02, -1.9132e-02, -1.4022e-01,\n",
+      "        -6.7460e-02, -5.7804e-02, -6.0313e-02, -8.8631e-02, -3.1576e-02,\n",
+      "        -1.3351e-01, -6.2224e-02,  8.3339e-03, -3.7800e-02, -6.3757e-02,\n",
+      "        -1.0841e-01, -4.5900e-02, -9.7595e-02,  6.1404e-02, -1.6636e-01,\n",
+      "        -1.1302e-01, -3.7158e-02, -4.1453e-02, -8.5425e-03, -3.1544e-02,\n",
+      "        -4.8446e-02, -7.3237e-02,  4.5133e-02,  7.8118e-04,  2.7116e-04,\n",
+      "        -4.2304e-02,  5.8233e-03, -4.2632e-02, -5.1293e-02,  4.6485e-02,\n",
+      "        -5.9937e-03, -1.0313e-01, -3.2944e-02, -3.6287e-02, -4.4626e-03,\n",
+      "        -5.3214e-02,  1.5014e-02, -6.7945e-02, -4.9009e-02,  3.0062e-03,\n",
+      "         2.1732e-02,  7.3970e-02,  4.7565e-03, -5.3021e-02, -6.8269e-02,\n",
+      "        -6.7847e-02, -7.3542e-02, -9.4184e-02, -6.7229e-02, -4.6964e-02,\n",
+      "        -4.5813e-03, -7.1691e-02,  4.2156e-02,  2.1092e-03, -3.7862e-02,\n",
+      "        -9.5047e-02, -1.7234e-01, -3.0417e-02, -6.8643e-02, -5.8295e-03,\n",
+      "        -7.6775e-02, -3.5672e-02,  4.0173e-02, -1.5495e-02, -7.3388e-02,\n",
+      "        -7.9512e-02, -3.0548e-02, -3.1804e-02, -9.3860e-02, -3.4116e-02,\n",
+      "        -1.6859e-01, -8.1048e-02, -2.3219e-02, -1.0200e-01, -8.9748e-02,\n",
+      "        -1.2731e-02, -2.2716e-02, -1.1827e-01, -4.7346e-02, -1.1220e-02,\n",
+      "        -5.9735e-02, -5.8264e-02, -1.3044e-01, -2.9139e-02,  3.7686e-02,\n",
+      "        -6.8076e-02, -2.9987e-02, -2.6159e-02, -2.7283e-02,  2.4338e-02,\n",
+      "         3.7840e-02, -3.2233e-02,  6.1609e-02, -6.1600e-02, -2.2133e-02,\n",
+      "        -7.1738e-02, -1.2484e-01,  1.2288e-02, -6.6378e-02, -8.0628e-02,\n",
+      "        -4.6543e-02, -1.4909e-02, -8.7619e-02, -5.9027e-02, -5.3124e-02,\n",
+      "        -6.6768e-02, -2.3749e-02, -6.2752e-02,  2.5320e-02, -1.0021e-01,\n",
+      "         2.2593e-03,  2.9114e-02, -5.6096e-02, -1.0470e-01, -8.4046e-02,\n",
+      "        -1.2689e-02,  1.4769e-02, -1.1800e-01, -4.0163e-02, -4.3105e-02,\n",
+      "        -3.8331e-02, -1.2108e-01, -2.7898e-02,  1.9509e-02, -9.0006e-02,\n",
+      "        -5.8544e-02,  1.3892e-02, -7.0732e-02, -4.6361e-02,  2.4366e-03,\n",
+      "        -6.3816e-02, -8.6950e-02,  2.3156e-02, -3.8387e-02, -4.3072e-02,\n",
+      "        -1.1831e-01, -7.2084e-02,  7.7134e-03, -1.3629e-02, -1.3081e-02,\n",
+      "        -1.0898e-01, -3.3854e-02, -5.7288e-02,  9.1849e-02, -8.3642e-02,\n",
+      "        -3.1626e-02, -1.2754e-01, -7.3564e-02,  1.8498e-02, -3.2584e-02,\n",
+      "        -9.0428e-05, -3.1667e-02,  1.8984e-04, -2.7662e-02, -2.6415e-02,\n",
+      "        -5.8278e-02, -9.4778e-02, -1.8079e-02, -1.5882e-02, -4.1818e-02,\n",
+      "        -4.0132e-02, -2.5994e-02, -4.9396e-02, -9.6156e-02, -9.9993e-02,\n",
+      "        -6.0785e-02, -8.5785e-02, -6.0188e-02, -1.0064e-01, -6.0019e-02,\n",
+      "        -7.9101e-02, -1.0038e-01,  9.7017e-02, -6.6090e-02, -3.3316e-02,\n",
+      "        -9.2005e-02, -8.3500e-02, -6.1636e-02, -1.1279e-02, -5.6765e-02,\n",
+      "        -1.1647e-01, -8.7803e-02, -8.4827e-02, -9.8368e-02, -6.6573e-02,\n",
+      "        -5.1184e-02, -9.4151e-03, -1.0030e-01,  1.1832e-01, -5.6800e-02,\n",
+      "        -8.0370e-02, -1.9153e-02, -1.5983e-01, -5.7311e-02,  6.0756e-03,\n",
+      "        -5.3462e-02, -1.7773e-01, -3.3452e-02, -7.8726e-02,  4.8494e-02,\n",
+      "        -1.7572e-02, -1.1421e-01, -5.5976e-02,  1.2327e-02,  1.8406e-02,\n",
+      "        -1.3715e-01,  8.2917e-03, -2.1602e-02, -2.9629e-02, -6.8956e-02,\n",
+      "        -4.6483e-02, -8.8612e-02, -3.6271e-02,  1.0182e-02, -7.3525e-02,\n",
+      "        -4.1169e-02,  3.7647e-02,  6.6245e-03, -1.1091e-01,  1.8913e-02,\n",
+      "        -8.1320e-02, -1.1291e-02, -6.6259e-02, -1.5489e-02, -5.7492e-02,\n",
+      "         3.8209e-02, -6.9593e-02, -5.0030e-02, -6.8767e-02,  8.1075e-03,\n",
+      "        -6.3671e-02, -8.9167e-02, -6.5263e-02, -9.9505e-02,  1.6581e-02,\n",
+      "        -7.0731e-02, -5.0669e-02, -5.7019e-02, -9.7790e-03,  9.9250e-03,\n",
+      "        -1.2273e-01, -1.8375e-02, -1.2779e-01,  4.0550e-02,  1.7296e-02,\n",
+      "        -9.3975e-02, -1.9369e-02, -7.0253e-03,  2.1769e-02, -4.1591e-02,\n",
+      "        -1.1330e-01,  3.4761e-02, -6.5120e-02, -1.6846e-02, -9.0145e-02,\n",
+      "        -1.4776e-01, -2.2348e-02, -5.7536e-02, -2.2405e-02, -7.7816e-02,\n",
+      "        -3.7208e-02, -1.8066e-01, -8.8921e-02, -1.0191e-01, -1.1965e-01,\n",
+      "        -9.1476e-04, -6.6107e-02, -5.6101e-02, -9.2789e-02, -3.6762e-02,\n",
+      "        -5.2970e-02, -8.2350e-02, -3.1151e-02, -8.6483e-02, -4.1355e-02,\n",
+      "        -4.9794e-02, -6.9692e-02, -1.0317e-01,  1.9302e-02, -7.1997e-02,\n",
+      "        -5.1573e-03, -9.0619e-02, -6.8649e-02, -1.5645e-01, -5.4509e-02,\n",
+      "        -2.3344e-02, -4.6860e-02,  9.5477e-03,  4.8510e-02,  2.0508e-02,\n",
+      "         8.4277e-03, -4.1019e-02, -1.0464e-01, -2.4570e-02, -4.7903e-02,\n",
+      "        -5.2235e-02, -2.8965e-02, -5.6190e-03, -7.2358e-03,  7.9171e-03,\n",
+      "        -8.2264e-02, -5.7519e-02, -3.5575e-02, -5.8611e-02,  3.8607e-03,\n",
+      "         1.3422e-02, -6.6732e-02, -1.8973e-02, -4.1655e-02, -7.6395e-02,\n",
+      "        -1.0820e-01, -1.1502e-01, -8.5212e-02, -3.7460e-02, -7.0839e-02,\n",
+      "        -1.4020e-02, -1.4274e-01, -4.2879e-02, -1.1995e-02, -9.5491e-02,\n",
+      "        -2.3450e-02, -1.8083e-01, -3.8327e-02, -7.7763e-02, -6.6539e-02,\n",
+      "        -1.2837e-02, -9.5810e-02, -1.0012e-01, -1.1604e-01, -1.2313e-01,\n",
+      "        -7.7426e-02, -4.3962e-02,  5.2386e-02, -4.1475e-02, -2.3059e-02,\n",
+      "         4.0549e-02, -2.0143e-02, -7.4400e-02, -7.1526e-02, -3.4886e-02,\n",
+      "        -8.6587e-02, -5.6021e-02, -5.6275e-04, -2.8115e-02, -5.7461e-02,\n",
+      "        -2.0051e-03, -4.3081e-02,  5.9770e-02,  2.4799e-02,  2.9110e-02,\n",
+      "        -1.8496e-02, -1.4631e-01])), ('pretrained_model.layer4.0.bn2.running_mean', tensor([-0.0511, -0.0754, -0.0669,  0.0180, -0.0512, -0.0256, -0.0019, -0.0423,\n",
+      "        -0.0363, -0.0564, -0.0426, -0.0267, -0.0508, -0.0525, -0.0618, -0.0309,\n",
+      "        -0.0936, -0.0541, -0.0092, -0.0406, -0.0678, -0.0753, -0.0408, -0.0741,\n",
+      "        -0.0113, -0.0306, -0.0486, -0.0415, -0.0572, -0.0295,  0.0446, -0.0117,\n",
+      "        -0.0179, -0.0212, -0.0589, -0.0721, -0.1012, -0.0204, -0.0378, -0.0292,\n",
+      "        -0.0524, -0.1411, -0.0215, -0.0157, -0.0514, -0.0264, -0.0654, -0.0288,\n",
+      "        -0.0545,  0.0065, -0.0131, -0.0498, -0.0275, -0.0235, -0.0438, -0.0359,\n",
+      "        -0.0064, -0.0313, -0.0500,  0.0075, -0.0037,  0.0466, -0.0339, -0.0066,\n",
+      "        -0.0562, -0.0636, -0.0317, -0.0165, -0.0080, -0.0757,  0.0344, -0.0624,\n",
+      "         0.0071, -0.0644, -0.0242, -0.0122,  0.0051, -0.0454, -0.0557, -0.0698,\n",
+      "        -0.0421, -0.0613, -0.0917, -0.0745, -0.0858, -0.0584, -0.0692, -0.0528,\n",
+      "        -0.0786, -0.0593, -0.0225, -0.0115, -0.0195, -0.0302,  0.0331, -0.1071,\n",
+      "        -0.0256, -0.0720, -0.0486, -0.0199, -0.0288, -0.0076, -0.0786, -0.0648,\n",
+      "        -0.0734, -0.0002, -0.0680, -0.0439, -0.0177, -0.0785, -0.0210, -0.0260,\n",
+      "        -0.0504,  0.0125, -0.0398, -0.0357, -0.0960, -0.0816, -0.0732, -0.0279,\n",
+      "        -0.0187,  0.0033,  0.0096, -0.0280, -0.0268, -0.0586, -0.0373,  0.0182,\n",
+      "         0.0041, -0.0390, -0.0437, -0.0369, -0.0450, -0.0391, -0.0401, -0.0312,\n",
+      "         0.0037, -0.0608,  0.0103, -0.0485, -0.0265, -0.0326, -0.0530, -0.0169,\n",
+      "        -0.0169, -0.0489, -0.0341,  0.0237, -0.1180, -0.0390, -0.0241, -0.0776,\n",
+      "        -0.0964, -0.0758, -0.0235,  0.0109, -0.1195, -0.0382, -0.0264, -0.0249,\n",
+      "         0.0183, -0.0650, -0.0719, -0.0757, -0.0009, -0.0085, -0.0778, -0.0101,\n",
+      "        -0.0436, -0.0267, -0.0270, -0.0339, -0.0882, -0.0465, -0.1020,  0.0203,\n",
+      "        -0.0829, -0.0417, -0.0383, -0.0150, -0.0357, -0.0314, -0.1203, -0.0337,\n",
+      "        -0.1022, -0.0244, -0.0848, -0.0166, -0.0119, -0.0115, -0.0557, -0.0536,\n",
+      "         0.0074, -0.0280, -0.0386, -0.0526, -0.0627, -0.0120, -0.0491, -0.0509,\n",
+      "        -0.0695, -0.0628, -0.0897,  0.0040,  0.0107, -0.0103, -0.0207, -0.0805,\n",
+      "        -0.0239, -0.0464, -0.0670, -0.0369, -0.0685, -0.0678, -0.0396, -0.0057,\n",
+      "        -0.0479, -0.0325, -0.0615, -0.0284,  0.0365, -0.0617, -0.0756, -0.0194,\n",
+      "        -0.0470, -0.0361, -0.0346, -0.0159, -0.0782, -0.0083, -0.0717, -0.0749,\n",
+      "        -0.0374, -0.0457,  0.0111, -0.0073, -0.0490, -0.0339, -0.0340, -0.0778,\n",
+      "        -0.0577, -0.0383, -0.0474, -0.0327, -0.0389, -0.0346, -0.0717, -0.0273,\n",
+      "        -0.0134, -0.0163, -0.0311, -0.0215, -0.0593, -0.0611, -0.0232, -0.0314,\n",
+      "        -0.0382, -0.0359, -0.0332, -0.0245, -0.0239, -0.0285, -0.0105, -0.1018,\n",
+      "        -0.0547, -0.0378, -0.0354, -0.0466, -0.0801, -0.0513, -0.0365, -0.0314,\n",
+      "        -0.0019, -0.0750, -0.0838, -0.0164, -0.1089, -0.0137, -0.0572, -0.0180,\n",
+      "        -0.0011, -0.0873, -0.0241, -0.0452, -0.0736, -0.0563, -0.0473, -0.0474,\n",
+      "        -0.0440,  0.0062, -0.0590, -0.0396, -0.0345, -0.0778, -0.0695, -0.0026,\n",
+      "        -0.0302, -0.0174, -0.0497, -0.0961, -0.0413, -0.0264, -0.0440, -0.0735,\n",
+      "        -0.0743, -0.0246, -0.0781,  0.0005, -0.0324, -0.0417, -0.0488, -0.0707,\n",
+      "        -0.0329, -0.0236, -0.0474, -0.0277, -0.0373, -0.0479,  0.0053, -0.0518,\n",
+      "        -0.0182,  0.0262, -0.0605, -0.0104, -0.0538, -0.0012,  0.0465, -0.0494,\n",
+      "        -0.0674, -0.0336, -0.0166, -0.0482, -0.0664, -0.0225,  0.0030, -0.0368,\n",
+      "        -0.0585, -0.0712, -0.0649, -0.0317, -0.0363, -0.0060, -0.0252, -0.0734,\n",
+      "        -0.0470, -0.0110, -0.0568, -0.0664,  0.0625, -0.1218, -0.0571, -0.0665,\n",
+      "        -0.0236, -0.0656, -0.0648, -0.0606, -0.0820, -0.0588, -0.0860, -0.0720,\n",
+      "         0.0012, -0.0375, -0.0492, -0.0214, -0.0422, -0.0427, -0.0355, -0.0085,\n",
+      "        -0.0194, -0.0045,  0.0335, -0.0092, -0.0061,  0.0080, -0.0755, -0.0737,\n",
+      "        -0.0541, -0.0242, -0.0189,  0.0130,  0.0104, -0.0028,  0.0133, -0.0464,\n",
+      "        -0.0761, -0.0297, -0.0220, -0.0138, -0.0145, -0.0993, -0.0531, -0.0559,\n",
+      "        -0.0555, -0.0086, -0.0299, -0.0196, -0.0228, -0.0636, -0.0258, -0.0516,\n",
+      "        -0.0397, -0.0577, -0.0169,  0.0202, -0.0397, -0.0409, -0.0379, -0.0227,\n",
+      "        -0.0770, -0.0706, -0.0809, -0.1124, -0.0280, -0.0031, -0.0496, -0.0933,\n",
+      "        -0.0247, -0.0397,  0.0213, -0.0479, -0.0221, -0.0516, -0.0476, -0.0014,\n",
+      "        -0.0546, -0.0289, -0.0169, -0.0496, -0.0765, -0.0485, -0.0114, -0.0476,\n",
+      "         0.0136, -0.0246, -0.0607, -0.0130,  0.0486, -0.0576, -0.0768, -0.0541,\n",
+      "        -0.0225, -0.0110, -0.0212, -0.1220, -0.0749, -0.0414, -0.0074, -0.0516,\n",
+      "        -0.0740, -0.0594, -0.0559, -0.0859, -0.0663, -0.0366,  0.0123, -0.0465,\n",
+      "        -0.0977, -0.0579,  0.0024, -0.0454, -0.0613, -0.0545, -0.0305, -0.0384,\n",
+      "        -0.0609, -0.0479,  0.0331, -0.0782, -0.0466, -0.0647, -0.0647,  0.0068,\n",
+      "        -0.0550, -0.0260, -0.0429, -0.0716,  0.0022, -0.0386, -0.0198, -0.0409,\n",
+      "         0.0010, -0.0058, -0.0170,  0.0106, -0.0660, -0.0224, -0.1032, -0.0037,\n",
+      "        -0.0238, -0.0320,  0.0064, -0.0810, -0.0488, -0.0504, -0.0245, -0.0175,\n",
+      "        -0.0123, -0.0264, -0.0415, -0.0104,  0.0114, -0.1015, -0.0183, -0.0647,\n",
+      "        -0.0532, -0.0371,  0.0286, -0.1103, -0.0447, -0.0417, -0.0675, -0.0420])), ('pretrained_model.layer4.0.bn2.running_var', tensor([0.0097, 0.0103, 0.0117, 0.0086, 0.0145, 0.0154, 0.0091, 0.0118, 0.0130,\n",
+      "        0.0254, 0.0082, 0.0100, 0.0181, 0.0082, 0.0088, 0.0092, 0.0182, 0.0063,\n",
+      "        0.0065, 0.0054, 0.0090, 0.0102, 0.0246, 0.0107, 0.0112, 0.0089, 0.0115,\n",
+      "        0.0061, 0.0120, 0.0071, 0.0111, 0.0079, 0.0085, 0.0067, 0.0157, 0.0123,\n",
+      "        0.0112, 0.0097, 0.0067, 0.0102, 0.0083, 0.0199, 0.0101, 0.0145, 0.0059,\n",
+      "        0.0076, 0.0077, 0.0117, 0.0149, 0.0111, 0.0060, 0.0124, 0.0075, 0.0095,\n",
+      "        0.0114, 0.0058, 0.0095, 0.0085, 0.0087, 0.0081, 0.0088, 0.0076, 0.0094,\n",
+      "        0.0068, 0.0131, 0.0076, 0.0087, 0.0073, 0.0148, 0.0103, 0.0091, 0.0113,\n",
+      "        0.0064, 0.0147, 0.0071, 0.0104, 0.0141, 0.0113, 0.0071, 0.0112, 0.0087,\n",
+      "        0.0083, 0.0151, 0.0125, 0.0157, 0.0099, 0.0128, 0.0147, 0.0119, 0.0109,\n",
+      "        0.0108, 0.0095, 0.0048, 0.0066, 0.0865, 0.0156, 0.0100, 0.0106, 0.0124,\n",
+      "        0.0098, 0.0093, 0.0113, 0.0144, 0.0094, 0.0133, 0.0147, 0.0237, 0.0134,\n",
+      "        0.0104, 0.0099, 0.0126, 0.0069, 0.0088, 0.0127, 0.0073, 0.0119, 0.0150,\n",
+      "        0.0053, 0.0100, 0.0054, 0.0070, 0.0098, 0.0112, 0.0088, 0.0150, 0.0105,\n",
+      "        0.0141, 0.0085, 0.0080, 0.0149, 0.0084, 0.0090, 0.0175, 0.0115, 0.0094,\n",
+      "        0.0075, 0.0070, 0.0147, 0.0087, 0.0115, 0.0075, 0.0084, 0.0099, 0.0075,\n",
+      "        0.0102, 0.0072, 0.0069, 0.0114, 0.0088, 0.0113, 0.0134, 0.0100, 0.0119,\n",
+      "        0.0142, 0.0072, 0.0093, 0.0090, 0.0091, 0.0082, 0.0084, 0.0089, 0.0222,\n",
+      "        0.0099, 0.0103, 0.0064, 0.0129, 0.0138, 0.0108, 0.0109, 0.0095, 0.0070,\n",
+      "        0.0107, 0.0102, 0.0203, 0.0077, 0.0108, 0.0163, 0.0099, 0.0103, 0.0120,\n",
+      "        0.0149, 0.0096, 0.0161, 0.0097, 0.0225, 0.0073, 0.0138, 0.0098, 0.0078,\n",
+      "        0.0089, 0.0154, 0.0081, 0.0074, 0.0061, 0.0160, 0.0060, 0.0135, 0.0091,\n",
+      "        0.0142, 0.0095, 0.0284, 0.0104, 0.0074, 0.0075, 0.0063, 0.0118, 0.0068,\n",
+      "        0.0134, 0.0162, 0.0075, 0.0135, 0.0097, 0.0103, 0.0098, 0.0110, 0.0102,\n",
+      "        0.0111, 0.0086, 0.0100, 0.0092, 0.0146, 0.0099, 0.0135, 0.0090, 0.0103,\n",
+      "        0.0074, 0.0103, 0.0091, 0.0068, 0.0065, 0.0071, 0.0109, 0.0080, 0.0079,\n",
+      "        0.0126, 0.0096, 0.0145, 0.0085, 0.0088, 0.0093, 0.0119, 0.0125, 0.0097,\n",
+      "        0.0123, 0.0093, 0.0074, 0.0083, 0.0129, 0.0085, 0.0119, 0.0097, 0.0091,\n",
+      "        0.0155, 0.0096, 0.0083, 0.0095, 0.0080, 0.0114, 0.0079, 0.0075, 0.0177,\n",
+      "        0.0124, 0.0083, 0.0106, 0.0080, 0.0063, 0.0073, 0.0081, 0.0112, 0.0111,\n",
+      "        0.0122, 0.0093, 0.0096, 0.0120, 0.0061, 0.0133, 0.0193, 0.0118, 0.0139,\n",
+      "        0.0102, 0.0083, 0.0140, 0.0147, 0.0170, 0.0091, 0.0124, 0.0097, 0.0102,\n",
+      "        0.0113, 0.0078, 0.0068, 0.0105, 0.0139, 0.0119, 0.0130, 0.0051, 0.0077,\n",
+      "        0.0121, 0.0101, 0.0119, 0.0091, 0.0101, 0.0091, 0.0081, 0.0086, 0.0119,\n",
+      "        0.0088, 0.0108, 0.0113, 0.0112, 0.0209, 0.0179, 0.0116, 0.0096, 0.0073,\n",
+      "        0.0077, 0.0062, 0.0096, 0.0126, 0.0111, 0.0225, 0.0072, 0.0098, 0.0084,\n",
+      "        0.0124, 0.0088, 0.0145, 0.0082, 0.0142, 0.0140, 0.0040, 0.0103, 0.0203,\n",
+      "        0.0121, 0.0117, 0.0067, 0.0113, 0.0118, 0.0086, 0.0088, 0.0084, 0.0117,\n",
+      "        0.0067, 0.0084, 0.0064, 0.0091, 0.0126, 0.0134, 0.0250, 0.0115, 0.0093,\n",
+      "        0.0090, 0.0112, 0.0079, 0.0138, 0.0105, 0.0190, 0.0103, 0.0101, 0.0118,\n",
+      "        0.0075, 0.0123, 0.0084, 0.0086, 0.0091, 0.0085, 0.0095, 0.0159, 0.0106,\n",
+      "        0.0078, 0.0141, 0.0089, 0.0075, 0.0099, 0.0099, 0.0143, 0.0138, 0.0128,\n",
+      "        0.0102, 0.0061, 0.0092, 0.0184, 0.0101, 0.0199, 0.0120, 0.0117, 0.0124,\n",
+      "        0.0095, 0.0095, 0.0151, 0.0098, 0.0110, 0.0050, 0.0073, 0.0180, 0.0073,\n",
+      "        0.0102, 0.0109, 0.0107, 0.0086, 0.0119, 0.0125, 0.0065, 0.0105, 0.0088,\n",
+      "        0.0143, 0.0109, 0.0116, 0.0113, 0.0238, 0.0132, 0.0131, 0.0075, 0.0141,\n",
+      "        0.0156, 0.0092, 0.0076, 0.0126, 0.0075, 0.0125, 0.0086, 0.0095, 0.0081,\n",
+      "        0.0101, 0.0066, 0.0120, 0.0092, 0.0199, 0.0079, 0.0128, 0.0078, 0.0172,\n",
+      "        0.0122, 0.0126, 0.0102, 0.0192, 0.0101, 0.0088, 0.0106, 0.0117, 0.0105,\n",
+      "        0.0096, 0.0078, 0.0244, 0.0091, 0.0177, 0.0086, 0.0111, 0.0142, 0.0077,\n",
+      "        0.0107, 0.0129, 0.0088, 0.0070, 0.0078, 0.0180, 0.0116, 0.0101, 0.0099,\n",
+      "        0.0111, 0.0123, 0.0096, 0.0077, 0.0126, 0.0127, 0.0135, 0.0132, 0.0125,\n",
+      "        0.0192, 0.0117, 0.0090, 0.0109, 0.0139, 0.0141, 0.0103, 0.0112, 0.0064,\n",
+      "        0.0156, 0.0092, 0.0069, 0.0075, 0.0075, 0.0115, 0.0061, 0.0122, 0.0220,\n",
+      "        0.0137, 0.0101, 0.0097, 0.0110, 0.0094, 0.0108, 0.0095, 0.0096, 0.0076,\n",
+      "        0.0084, 0.0095, 0.0065, 0.0090, 0.0111, 0.0105, 0.0092, 0.0224, 0.0116,\n",
+      "        0.0082, 0.0144, 0.0079, 0.0085, 0.0125, 0.0073, 0.0128, 0.0079])), ('pretrained_model.layer4.0.bn2.num_batches_tracked', tensor(0)), ('pretrained_model.layer4.0.conv3.weight', tensor([[[[ 7.0322e-05]],\n",
+      "\n",
+      "         [[ 2.3844e-03]],\n",
+      "\n",
+      "         [[-1.0431e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-8.0468e-03]],\n",
+      "\n",
+      "         [[-6.2128e-03]],\n",
+      "\n",
+      "         [[-6.0058e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 4.9071e-03]],\n",
+      "\n",
+      "         [[ 3.9434e-02]],\n",
+      "\n",
+      "         [[-1.1496e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-7.6899e-04]],\n",
+      "\n",
+      "         [[-2.4386e-02]],\n",
+      "\n",
+      "         [[-8.3670e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.3333e-02]],\n",
+      "\n",
+      "         [[-1.4869e-02]],\n",
+      "\n",
+      "         [[-7.2095e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 5.7129e-03]],\n",
+      "\n",
+      "         [[-4.5076e-03]],\n",
+      "\n",
+      "         [[-1.1003e-02]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 1.8879e-02]],\n",
+      "\n",
+      "         [[-1.3394e-02]],\n",
+      "\n",
+      "         [[-1.3855e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.2260e-03]],\n",
+      "\n",
+      "         [[ 2.0004e-03]],\n",
+      "\n",
+      "         [[ 1.6151e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 7.4645e-03]],\n",
+      "\n",
+      "         [[ 2.9608e-03]],\n",
+      "\n",
+      "         [[-1.1933e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 3.0782e-02]],\n",
+      "\n",
+      "         [[-8.4900e-03]],\n",
+      "\n",
+      "         [[-3.1126e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.6793e-02]],\n",
+      "\n",
+      "         [[-4.5291e-03]],\n",
+      "\n",
+      "         [[ 1.3840e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.0123e-02]],\n",
+      "\n",
+      "         [[ 1.6255e-02]],\n",
+      "\n",
+      "         [[-1.5754e-02]]]])), ('pretrained_model.layer4.0.bn3.weight', tensor([0.3403, 0.4529, 0.4082,  ..., 0.3419, 0.3808, 0.3270])), ('pretrained_model.layer4.0.bn3.bias', tensor([-0.0420, -0.0773, -0.0611,  ..., -0.0442, -0.0548, -0.0539])), ('pretrained_model.layer4.0.bn3.running_mean', tensor([ 0.0067,  0.0196,  0.0110,  ..., -0.0010,  0.0042,  0.0015])), ('pretrained_model.layer4.0.bn3.running_var', tensor([0.0007, 0.0012, 0.0012,  ..., 0.0010, 0.0014, 0.0008])), ('pretrained_model.layer4.0.bn3.num_batches_tracked', tensor(0)), ('pretrained_model.layer4.0.downsample.0.weight', tensor([[[[ 0.0031]],\n",
+      "\n",
+      "         [[ 0.0006]],\n",
+      "\n",
+      "         [[ 0.0037]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0037]],\n",
+      "\n",
+      "         [[-0.0036]],\n",
+      "\n",
+      "         [[ 0.0061]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0029]],\n",
+      "\n",
+      "         [[ 0.0076]],\n",
+      "\n",
+      "         [[ 0.0027]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0058]],\n",
+      "\n",
+      "         [[ 0.0023]],\n",
+      "\n",
+      "         [[-0.0011]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0098]],\n",
+      "\n",
+      "         [[-0.0032]],\n",
+      "\n",
+      "         [[-0.0007]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0187]],\n",
+      "\n",
+      "         [[-0.0012]],\n",
+      "\n",
+      "         [[ 0.0099]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-0.0041]],\n",
+      "\n",
+      "         [[ 0.0116]],\n",
+      "\n",
+      "         [[ 0.0060]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0043]],\n",
+      "\n",
+      "         [[ 0.0172]],\n",
+      "\n",
+      "         [[-0.0079]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0033]],\n",
+      "\n",
+      "         [[ 0.0014]],\n",
+      "\n",
+      "         [[-0.0106]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0059]],\n",
+      "\n",
+      "         [[-0.0015]],\n",
+      "\n",
+      "         [[-0.0004]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0012]],\n",
+      "\n",
+      "         [[ 0.0019]],\n",
+      "\n",
+      "         [[-0.0069]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0157]],\n",
+      "\n",
+      "         [[-0.0033]],\n",
+      "\n",
+      "         [[ 0.0176]]]])), ('pretrained_model.layer4.0.downsample.1.weight', tensor([0.2644, 0.3116, 0.2785,  ..., 0.2066, 0.2833, 0.2651])), ('pretrained_model.layer4.0.downsample.1.bias', tensor([-0.0420, -0.0773, -0.0611,  ..., -0.0442, -0.0548, -0.0539])), ('pretrained_model.layer4.0.downsample.1.running_mean', tensor([ 0.0065,  0.0096,  0.0056,  ...,  0.0076, -0.0004,  0.0142])), ('pretrained_model.layer4.0.downsample.1.running_var', tensor([0.0025, 0.0031, 0.0017,  ..., 0.0014, 0.0025, 0.0016])), ('pretrained_model.layer4.0.downsample.1.num_batches_tracked', tensor(0)), ('pretrained_model.layer4.1.conv1.weight', tensor([[[[-0.0281]],\n",
+      "\n",
+      "         [[-0.0140]],\n",
+      "\n",
+      "         [[-0.0163]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0135]],\n",
+      "\n",
+      "         [[-0.0244]],\n",
+      "\n",
+      "         [[-0.0052]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0011]],\n",
+      "\n",
+      "         [[ 0.0278]],\n",
+      "\n",
+      "         [[-0.0082]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0070]],\n",
+      "\n",
+      "         [[ 0.0135]],\n",
+      "\n",
+      "         [[-0.0216]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0277]],\n",
+      "\n",
+      "         [[-0.0126]],\n",
+      "\n",
+      "         [[-0.0054]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0035]],\n",
+      "\n",
+      "         [[ 0.0184]],\n",
+      "\n",
+      "         [[-0.0033]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0171]],\n",
+      "\n",
+      "         [[-0.0063]],\n",
+      "\n",
+      "         [[-0.0132]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0024]],\n",
+      "\n",
+      "         [[ 0.0014]],\n",
+      "\n",
+      "         [[ 0.0074]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0073]],\n",
+      "\n",
+      "         [[-0.0281]],\n",
+      "\n",
+      "         [[-0.0067]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0143]],\n",
+      "\n",
+      "         [[ 0.0111]],\n",
+      "\n",
+      "         [[ 0.0084]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0286]],\n",
+      "\n",
+      "         [[-0.0172]],\n",
+      "\n",
+      "         [[ 0.0172]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0137]],\n",
+      "\n",
+      "         [[-0.0072]],\n",
+      "\n",
+      "         [[-0.0007]]]])), ('pretrained_model.layer4.1.bn1.weight', tensor([0.2108, 0.1627, 0.2224, 0.2274, 0.2542, 0.1140, 0.1811, 0.1943, 0.3070,\n",
+      "        0.1523, 0.2577, 0.1892, 0.1787, 0.2314, 0.2153, 0.2043, 0.1551, 0.2594,\n",
+      "        0.1939, 0.2656, 0.2222, 0.2360, 0.1796, 0.1588, 0.2309, 0.1905, 0.2088,\n",
+      "        0.1934, 0.0921, 0.1644, 0.2324, 0.2171, 0.2395, 0.1410, 0.2114, 0.1188,\n",
+      "        0.2260, 0.1606, 0.1964, 0.2026, 0.0760, 0.1848, 0.2443, 0.1354, 0.1906,\n",
+      "        0.2587, 0.1510, 0.2333, 0.2242, 0.1593, 0.1547, 0.2577, 0.2090, 0.1339,\n",
+      "        0.2694, 0.1930, 0.1625, 0.2221, 0.1743, 0.1593, 0.2307, 0.1684, 0.1702,\n",
+      "        0.2061, 0.2187, 0.2770, 0.2374, 0.1251, 0.2488, 0.1940, 0.1818, 0.2410,\n",
+      "        0.2117, 0.1892, 0.1286, 0.1833, 0.2322, 0.1636, 0.2362, 0.0573, 0.2519,\n",
+      "        0.2419, 0.2430, 0.1502, 0.2689, 0.2428, 0.2619, 0.2283, 0.1644, 0.2000,\n",
+      "        0.2012, 0.2502, 0.1936, 0.2390, 0.2707, 0.2142, 0.2145, 0.1992, 0.1755,\n",
+      "        0.1503, 0.1707, 0.2898, 0.1940, 0.0886, 0.2098, 0.1874, 0.1920, 0.1705,\n",
+      "        0.1893, 0.1931, 0.1536, 0.2434, 0.2239, 0.2087, 0.1217, 0.1317, 0.2315,\n",
+      "        0.1959, 0.2777, 0.1913, 0.2014, 0.2006, 0.1519, 0.2452, 0.1903, 0.2324,\n",
+      "        0.1913, 0.2435, 0.2284, 0.2419, 0.2155, 0.1899, 0.1620, 0.2086, 0.1657,\n",
+      "        0.1212, 0.1695, 0.1370, 0.1998, 0.1119, 0.3149, 0.2191, 0.1472, 0.1651,\n",
+      "        0.1473, 0.2510, 0.1467, 0.2641, 0.1632, 0.2602, 0.2429, 0.1464, 0.1278,\n",
+      "        0.2153, 0.2407, 0.2262, 0.2626, 0.2193, 0.1485, 0.2038, 0.1795, 0.1756,\n",
+      "        0.1378, 0.1517, 0.2166, 0.2174, 0.1408, 0.2585, 0.2499, 0.1627, 0.2029,\n",
+      "        0.1906, 0.1701, 0.1732, 0.2515, 0.1751, 0.2181, 0.1109, 0.2013, 0.1777,\n",
+      "        0.1824, 0.2084, 0.2033, 0.1427, 0.2067, 0.1366, 0.2275, 0.2518, 0.2499,\n",
+      "        0.1869, 0.1681, 0.2225, 0.3162, 0.1929, 0.2180, 0.2609, 0.2109, 0.2082,\n",
+      "        0.2555, 0.1907, 0.2135, 0.1417, 0.2728, 0.1818, 0.2178, 0.1916, 0.2071,\n",
+      "        0.2114, 0.1878, 0.2222, 0.1857, 0.2230, 0.2059, 0.2637, 0.2110, 0.2725,\n",
+      "        0.1273, 0.2802, 0.2236, 0.1862, 0.2041, 0.1807, 0.2646, 0.2576, 0.2196,\n",
+      "        0.1951, 0.1924, 0.2269, 0.3128, 0.2398, 0.1901, 0.1806, 0.1409, 0.2455,\n",
+      "        0.1463, 0.2000, 0.2119, 0.1765, 0.2827, 0.2555, 0.2604, 0.1435, 0.1214,\n",
+      "        0.2178, 0.2615, 0.2371, 0.2138, 0.1447, 0.2231, 0.2121, 0.1779, 0.1849,\n",
+      "        0.1122, 0.2310, 0.2612, 0.2630, 0.2620, 0.2105, 0.2284, 0.2139, 0.2217,\n",
+      "        0.1260, 0.2189, 0.2126, 0.2161, 0.1303, 0.2432, 0.2199, 0.2726, 0.2260,\n",
+      "        0.1906, 0.2445, 0.1943, 0.1775, 0.2403, 0.1779, 0.1708, 0.1637, 0.1468,\n",
+      "        0.1199, 0.2484, 0.2510, 0.2328, 0.0771, 0.2395, 0.1908, 0.2226, 0.2381,\n",
+      "        0.1187, 0.1787, 0.2111, 0.1838, 0.1669, 0.2011, 0.2342, 0.2484, 0.2012,\n",
+      "        0.1668, 0.1627, 0.2779, 0.2296, 0.1675, 0.1991, 0.1802, 0.2096, 0.1848,\n",
+      "        0.2178, 0.2167, 0.1827, 0.1873, 0.1579, 0.1995, 0.1826, 0.2008, 0.1314,\n",
+      "        0.2956, 0.2085, 0.1799, 0.2049, 0.2806, 0.2450, 0.2181, 0.1778, 0.2944,\n",
+      "        0.2045, 0.2374, 0.1999, 0.1516, 0.2083, 0.2244, 0.1916, 0.1967, 0.2808,\n",
+      "        0.2365, 0.1958, 0.2156, 0.2034, 0.1331, 0.1768, 0.2358, 0.3148, 0.2091,\n",
+      "        0.1986, 0.2140, 0.1710, 0.2376, 0.2025, 0.2032, 0.2277, 0.1693, 0.1717,\n",
+      "        0.1827, 0.2230, 0.2153, 0.2719, 0.2191, 0.1976, 0.2140, 0.1579, 0.2039,\n",
+      "        0.2213, 0.1519, 0.2148, 0.1871, 0.2305, 0.2092, 0.1664, 0.1898, 0.1685,\n",
+      "        0.2023, 0.2104, 0.2123, 0.1746, 0.1739, 0.2537, 0.2378, 0.2013, 0.1971,\n",
+      "        0.2095, 0.2263, 0.2078, 0.2510, 0.2507, 0.2543, 0.2274, 0.2178, 0.1585,\n",
+      "        0.4136, 0.2189, 0.2743, 0.2003, 0.2108, 0.1508, 0.2358, 0.1633, 0.1696,\n",
+      "        0.2011, 0.1888, 0.1736, 0.1262, 0.1963, 0.0829, 0.2217, 0.2250, 0.2312,\n",
+      "        0.2065, 0.3004, 0.1772, 0.1913, 0.2212, 0.2011, 0.1501, 0.2267, 0.2183,\n",
+      "        0.2682, 0.1867, 0.2751, 0.1805, 0.2300, 0.1986, 0.2531, 0.1658, 0.2063,\n",
+      "        0.2030, 0.1739, 0.1441, 0.2460, 0.2780, 0.2431, 0.1956, 0.1182, 0.1462,\n",
+      "        0.2032, 0.1052, 0.3084, 0.1773, 0.2538, 0.2345, 0.1552, 0.2139, 0.1271,\n",
+      "        0.1901, 0.1184, 0.2375, 0.2213, 0.2483, 0.1948, 0.1719, 0.1451, 0.1798,\n",
+      "        0.2357, 0.2083, 0.1665, 0.1363, 0.1741, 0.2707, 0.2538, 0.1417, 0.2415,\n",
+      "        0.2796, 0.2263, 0.2646, 0.2227, 0.2031, 0.2174, 0.2068, 0.2060, 0.1659,\n",
+      "        0.2026, 0.1119, 0.2157, 0.2343, 0.1354, 0.2128, 0.2910, 0.2131, 0.1975,\n",
+      "        0.2307, 0.1974, 0.1662, 0.1981, 0.2412, 0.2193, 0.2530, 0.2792, 0.1945,\n",
+      "        0.1740, 0.2126, 0.1504, 0.2530, 0.1738, 0.2307, 0.1342, 0.2053, 0.2057,\n",
+      "        0.2217, 0.1382, 0.2289, 0.1220, 0.2200, 0.1260, 0.1520, 0.2057, 0.1787,\n",
+      "        0.1985, 0.2164, 0.1668, 0.1715, 0.2576, 0.2294, 0.2880, 0.2234])), ('pretrained_model.layer4.1.bn1.bias', tensor([-0.0933, -0.1241, -0.0759, -0.1343, -0.1450, -0.0487, -0.1453, -0.1075,\n",
+      "        -0.1597, -0.0656, -0.1469, -0.1197, -0.1289, -0.1408, -0.1126, -0.1272,\n",
+      "        -0.0677, -0.1340, -0.1064, -0.1446, -0.1219, -0.1012, -0.0993, -0.1375,\n",
+      "        -0.1335, -0.1121, -0.1180, -0.1101,  0.0510, -0.1034, -0.1343, -0.1286,\n",
+      "        -0.1722, -0.0588, -0.1225, -0.0598, -0.1134, -0.0903, -0.1091, -0.1078,\n",
+      "         0.0687, -0.1312, -0.1154, -0.0832, -0.0607, -0.1480, -0.1513, -0.1599,\n",
+      "        -0.1112, -0.0585, -0.0568, -0.2285, -0.1451, -0.0428, -0.1537, -0.1263,\n",
+      "        -0.1344, -0.1152, -0.0872, -0.1325, -0.1179, -0.0845, -0.0850, -0.1306,\n",
+      "        -0.1611, -0.1463, -0.1035, -0.0403, -0.1618, -0.1675, -0.0749, -0.1338,\n",
+      "        -0.2054, -0.0716, -0.1473, -0.1077, -0.1305, -0.0646, -0.1421,  0.0965,\n",
+      "        -0.1382, -0.2101, -0.1320, -0.0804, -0.1420, -0.1437, -0.1373, -0.1150,\n",
+      "        -0.1207, -0.1055, -0.1779, -0.1577, -0.1653, -0.1705, -0.1590, -0.1262,\n",
+      "        -0.1090, -0.1398, -0.0789, -0.0849, -0.1065, -0.1748, -0.1506, -0.0117,\n",
+      "        -0.1469, -0.1274, -0.1243, -0.1339, -0.2129, -0.0936, -0.0878, -0.1295,\n",
+      "        -0.1337, -0.0965, -0.0764, -0.0905, -0.1360, -0.1335, -0.1699, -0.1430,\n",
+      "        -0.0693, -0.1668, -0.0709, -0.1009, -0.1279, -0.1064, -0.1513, -0.2138,\n",
+      "        -0.1139, -0.1470, -0.1138, -0.0817, -0.0838, -0.1933, -0.0785, -0.0468,\n",
+      "        -0.1317, -0.0786, -0.1474,  0.0076, -0.1706, -0.1023, -0.1161, -0.0842,\n",
+      "        -0.0983, -0.1486,  0.0596, -0.1536, -0.1436, -0.1273, -0.1006, -0.0351,\n",
+      "        -0.0260, -0.0944, -0.1061, -0.1300, -0.1474, -0.1087, -0.1360, -0.1611,\n",
+      "        -0.1064, -0.0806, -0.0465, -0.0760, -0.1075, -0.2105, -0.0698, -0.1146,\n",
+      "        -0.1423, -0.1032, -0.1142, -0.0780, -0.0858, -0.0992, -0.1152, -0.0674,\n",
+      "        -0.1138, -0.0366, -0.1536, -0.1126, -0.1332, -0.0952, -0.0787, -0.0873,\n",
+      "        -0.1258, -0.1021, -0.1278, -0.1499, -0.1193, -0.1447, -0.0985, -0.1433,\n",
+      "        -0.1574, -0.1031, -0.0998, -0.1598, -0.0675, -0.0854, -0.1208, -0.0703,\n",
+      "        -0.1206, -0.0865, -0.1737, -0.0901, -0.1705, -0.1290, -0.1829, -0.1099,\n",
+      "        -0.0479, -0.0988, -0.1306, -0.1056, -0.1769, -0.1335, -0.1082, -0.1427,\n",
+      "        -0.0336, -0.1562, -0.1265, -0.0665, -0.1547, -0.1021, -0.1699, -0.1464,\n",
+      "        -0.1275, -0.0922, -0.0638, -0.1828, -0.1922, -0.1193, -0.1690, -0.1019,\n",
+      "        -0.0705, -0.1349, -0.1084, -0.1209, -0.1109, -0.0929, -0.3102, -0.1396,\n",
+      "        -0.1437, -0.0679, -0.0322, -0.1273, -0.1303, -0.1106, -0.1251, -0.0823,\n",
+      "        -0.1298, -0.0874, -0.1354, -0.1344,  0.1264, -0.1365, -0.1282, -0.1388,\n",
+      "        -0.1421, -0.1221, -0.1077, -0.1034, -0.1103, -0.0571, -0.1049, -0.1026,\n",
+      "        -0.1128, -0.0356, -0.1067, -0.1286, -0.1573, -0.1303, -0.0986, -0.1290,\n",
+      "        -0.1089, -0.0621, -0.1335, -0.1475, -0.0692, -0.1378, -0.0715, -0.0334,\n",
+      "        -0.1355, -0.1257, -0.1676, -0.0430, -0.1222, -0.1135, -0.1060, -0.1149,\n",
+      "        -0.1010, -0.0844, -0.1027, -0.1304, -0.1391, -0.0986, -0.1004, -0.1334,\n",
+      "        -0.1350, -0.0991, -0.0312, -0.1569, -0.1358, -0.1591, -0.1558, -0.1741,\n",
+      "        -0.0965, -0.1747, -0.1650, -0.1011, -0.0776, -0.1700, -0.0861, -0.1149,\n",
+      "        -0.0799, -0.1575, -0.1552, -0.1658, -0.1609, -0.1617, -0.0974, -0.1555,\n",
+      "        -0.1220, -0.1716, -0.1201, -0.1659, -0.1060, -0.1037, -0.1051, -0.0661,\n",
+      "        -0.0944, -0.1438, -0.1600, -0.0854, -0.1454, -0.1585, -0.1732, -0.1069,\n",
+      "        -0.1701, -0.0411, -0.0895, -0.2129, -0.1540, -0.1759, -0.1334, -0.0974,\n",
+      "        -0.1002, -0.1484, -0.1675, -0.0876, -0.1210, -0.1235, -0.1416, -0.1137,\n",
+      "        -0.1758, -0.1025, -0.1369, -0.0671, -0.1146, -0.1891, -0.0869, -0.1970,\n",
+      "        -0.1456, -0.0677, -0.1247, -0.1213, -0.1260, -0.1767, -0.0560, -0.1088,\n",
+      "        -0.0926, -0.1412, -0.1741, -0.1283, -0.1424, -0.1503, -0.1331, -0.1106,\n",
+      "        -0.1241, -0.0775, -0.0870, -0.1228, -0.0529, -0.1476, -0.1002, -0.1203,\n",
+      "        -0.1288, -0.1466, -0.0505, -0.0205, -0.1576, -0.1472, -0.0959, -0.1061,\n",
+      "        -0.0923, -0.1584, -0.0843, -0.0954, -0.1692, -0.1551, -0.0794, -0.0947,\n",
+      "        -0.1320, -0.0046, -0.1151, -0.0991, -0.1167, -0.1093, -0.1969, -0.1371,\n",
+      "        -0.1111, -0.1104, -0.0798, -0.0694, -0.1304, -0.1315, -0.1466, -0.1499,\n",
+      "        -0.1859, -0.0692, -0.1420, -0.1037, -0.1053, -0.0804, -0.0873, -0.0815,\n",
+      "        -0.1602, -0.0835, -0.1348, -0.1762, -0.1453, -0.1239,  0.0103, -0.0691,\n",
+      "        -0.1102, -0.0418, -0.1622, -0.0844, -0.1513, -0.1476, -0.0877, -0.2122,\n",
+      "        -0.0301, -0.1503, -0.1214, -0.1768, -0.1863, -0.1301, -0.1751, -0.0930,\n",
+      "        -0.1124, -0.1570, -0.1141, -0.1112, -0.1154, -0.0560, -0.0867, -0.1322,\n",
+      "        -0.1453, -0.0247, -0.1317, -0.1514, -0.1411, -0.1127, -0.1514, -0.1101,\n",
+      "        -0.1045, -0.0966, -0.1116, -0.0548, -0.1151,  0.0553, -0.1128, -0.1530,\n",
+      "        -0.1243, -0.1517, -0.1491, -0.1243, -0.0867, -0.1562, -0.1116, -0.0735,\n",
+      "        -0.1399, -0.1277, -0.1250, -0.1476, -0.1191, -0.1962, -0.0945, -0.0859,\n",
+      "        -0.0500, -0.1540, -0.0731, -0.1873, -0.0665, -0.1112, -0.1750, -0.1158,\n",
+      "        -0.1403, -0.1142, -0.0924, -0.1573, -0.0282, -0.1344, -0.1020, -0.1239,\n",
+      "        -0.1198, -0.1024, -0.0885, -0.0933, -0.2575, -0.1321, -0.1668, -0.1393])), ('pretrained_model.layer4.1.bn1.running_mean', tensor([-0.5942, -0.3501, -0.4803, -0.5702, -0.4832, -0.2954, -0.5852, -0.3749,\n",
+      "        -0.7551, -0.3477, -0.5342, -0.4317, -0.3891, -0.5481, -0.4711, -0.3824,\n",
+      "        -0.4070, -0.6805, -0.3833, -0.5330, -0.4166, -0.7404, -0.2707, -0.6352,\n",
+      "        -0.5400, -0.5523, -0.1859, -0.4658, -0.0014, -0.4398, -0.3884, -0.5762,\n",
+      "        -0.6372, -0.3438, -0.4124, -0.1940, -0.6042, -0.4566, -0.4315, -0.1430,\n",
+      "        -0.1854, -0.2726, -0.5639, -0.4834, -0.3860, -0.6507, -0.1366, -0.3004,\n",
+      "        -0.5865, -0.4581, -0.3071, -0.4309, -0.3225, -0.1729, -0.5583, -0.3977,\n",
+      "        -0.2663, -0.5305, -0.4051, -0.3956, -0.5642, -0.5140, -0.2725, -0.3809,\n",
+      "        -0.4774, -0.6099, -0.4737, -0.1989, -0.4534, -0.3329, -0.4400, -0.4943,\n",
+      "        -0.2795, -0.4203, -0.5457, -0.5314, -0.5073, -0.3530, -0.4697, -0.2128,\n",
+      "        -0.6291, -0.4041, -0.5176, -0.2635, -0.4910, -0.5457, -0.6669, -0.4329,\n",
+      "        -0.2758, -0.3146, -0.3948, -0.4431, -0.3501, -0.4157, -0.5704, -0.4822,\n",
+      "        -0.5102, -0.3159, -0.4947, -0.3492, -0.3406, -0.5502, -0.4159,  0.0810,\n",
+      "        -0.4641, -0.4086, -0.3963, -0.3249, -1.0643, -0.5393, -0.4085, -0.5372,\n",
+      "        -0.3552, -0.4604, -0.4482, -0.3840, -0.3706, -0.1852, -0.6005, -0.1770,\n",
+      "        -0.2510, -0.3659, -0.3203, -0.4906, -0.4346, -0.4426, -0.3752, -0.3834,\n",
+      "        -0.5160, -0.4640, -0.4440, -0.4831, -0.3836, -0.3758, -0.2885, -0.2517,\n",
+      "        -0.3186, -0.2239, -0.4344, -0.1531, -0.6922, -0.4193, -0.5938, -0.3732,\n",
+      "        -0.2401, -0.5124, -0.0828, -0.6122, -0.2639, -0.5614, -0.6429, -0.4542,\n",
+      "        -0.2720, -0.4801, -0.4790, -0.5259, -0.5581, -0.3001, -0.6362, -0.3222,\n",
+      "        -0.3795, -0.3813, -0.2723, -0.4297, -0.3479, -0.2791, -0.3480, -0.6555,\n",
+      "        -0.4783, -0.4004, -0.4317, -0.4506, -0.2666, -0.3566, -0.4856, -0.4531,\n",
+      "        -0.4841, -0.3625, -0.3550, -0.2635, -0.3784, -0.5276, -0.4581, -0.4775,\n",
+      "        -0.4679, -0.3840, -0.4769, -0.5339, -0.5986, -0.4187, -0.2778, -0.5355,\n",
+      "        -0.6429, -0.3542, -0.6439, -0.6253, -0.7248, -0.3676, -0.5601, -0.4712,\n",
+      "        -0.4790, -0.1091, -0.5881, -0.2068, -0.5288, -0.4320, -0.3071, -0.5469,\n",
+      "        -0.3792, -0.5417, -0.4925, -0.5869, -0.2386, -0.5200, -0.4928, -0.4692,\n",
+      "        -0.4692, -0.5530, -0.3911, -0.4213, -0.4155, -0.5316, -0.4935, -0.5323,\n",
+      "        -0.3965, -0.4742, -0.5333, -0.5616, -0.6187, -0.6297, -0.3518, -0.3741,\n",
+      "        -0.3809, -0.4393, -0.0207, -0.4144, -0.5021, -0.3939, -0.4115, -0.5530,\n",
+      "        -0.6725, -0.3403, -0.4597, -0.4152, -0.6060, -0.4092, -0.3960, -0.3736,\n",
+      "        -0.2520, -0.4364, -0.3365, -0.7121, -0.1516, -0.1941, -0.5336, -0.5990,\n",
+      "        -0.6655, -0.3954, -0.5750, -0.5065, -0.4258, -0.3681, -0.3398, -0.4139,\n",
+      "        -0.4894, -0.2872, -0.3810, -0.4458, -0.5670, -0.4893, -0.4935, -0.5946,\n",
+      "        -0.5717, -0.2667, -0.4805, -0.2987, -0.5005, -0.3214, -0.3073, -0.3582,\n",
+      "        -0.5872, -0.4124, -0.2714, -0.0487, -0.5443, -0.4246, -0.4059, -0.6224,\n",
+      "        -0.5673, -0.3395, -0.4878, -0.3647, -0.3618, -0.4833, -0.5544, -0.5083,\n",
+      "        -0.2941, -0.3537, -0.4266, -0.6169, -0.4821, -0.3840, -0.3881, -0.5681,\n",
+      "        -0.2849, -0.2449, -0.3020, -0.3761, -0.3797, -0.4415, -0.4116, -0.4096,\n",
+      "        -0.4718, -0.3777, -0.3713, -0.7268, -0.3040, -0.3642, -0.4923, -0.5429,\n",
+      "        -0.6557, -0.3736, -0.2072, -0.5081, -0.4078, -0.4207, -0.5318, -0.3525,\n",
+      "        -0.5795, -0.4027, -0.1055, -0.5040, -0.4059, -0.3976, -0.4016, -0.4819,\n",
+      "        -0.3935, -0.4214, -0.4651, -0.2936, -0.6318, -0.4446, -0.4262, -0.5628,\n",
+      "        -0.2165, -0.3715, -0.1862, -0.5739, -0.4856, -0.2578, -0.5691, -0.2376,\n",
+      "        -0.3513, -0.5705, -0.6906, -0.4916, -0.3828, -0.4916, -0.3450, -0.0989,\n",
+      "        -0.4607, -0.4628, -0.3478, -0.5904, -0.3725, -0.2415, -0.3311, -0.4602,\n",
+      "        -0.2278, -0.3698, -0.3557, -0.4172, -0.4265, -0.2544, -0.5860, -0.4218,\n",
+      "        -0.4307, -0.2242, -0.5355, -0.3490, -0.4303, -0.6114, -0.4889, -0.6540,\n",
+      "        -0.4318, -0.3451, -0.5353,  0.3564, -0.3089, -0.4770, -0.3683, -0.5962,\n",
+      "        -0.3077, -0.5133, -0.3545, -0.4352, -0.4144, -0.3372, -0.4630, -0.3286,\n",
+      "        -0.4963, -0.1095, -0.4962, -0.4926, -0.5621, -0.3579, -0.5563, -0.3558,\n",
+      "        -0.3525, -0.4413, -0.4992, -0.3486, -0.3309, -0.5063, -0.5094, -0.3520,\n",
+      "        -0.5124, -0.2690, -0.5098, -0.4322, -0.6021, -0.3920, -0.3511, -0.3684,\n",
+      "        -0.5470, -0.3816, -0.5383, -0.3957, -0.5423, -0.5424, -0.3689, -0.3510,\n",
+      "        -0.4420, -0.1193, -0.7583, -0.3803, -0.4749, -0.3184, -0.3952, -0.3947,\n",
+      "        -0.1810, -0.3109, -0.2252, -0.2818, -0.2595, -0.4259, -0.5038, -0.3334,\n",
+      "        -0.3757, -0.2308, -0.3929, -0.3140, -0.3718, -0.2228, -0.4243, -0.6101,\n",
+      "        -0.5664, -0.4560, -0.4687, -0.6063, -0.2687, -0.5882, -0.3213, -0.3674,\n",
+      "        -0.3509, -0.4390, -0.4154, -0.3537, -0.4453, -0.1710, -0.4920, -0.4233,\n",
+      "        -0.5166, -0.2415, -0.6503, -0.5105, -0.5037, -0.2095, -0.4269, -0.3541,\n",
+      "        -0.0760, -0.3347, -0.5392, -0.5518, -0.4935, -0.4404, -0.6449, -0.3651,\n",
+      "        -0.4878, -0.5509, -0.1759, -0.2600, -0.4551, -0.4463, -0.2898, -0.4935,\n",
+      "        -0.5761, -0.4410, -0.4819, -0.3676, -0.3802, -0.6883, -0.4276, -0.4774,\n",
+      "        -0.3518, -0.4604, -0.3474, -0.3609, -0.4709, -0.4092, -0.4264, -0.4278])), ('pretrained_model.layer4.1.bn1.running_var', tensor([0.7658, 0.2630, 0.8117, 0.5834, 0.5226, 0.3039, 0.9639, 0.4080, 1.1781,\n",
+      "        0.3698, 0.6187, 0.4357, 0.3394, 0.5414, 0.4881, 0.3868, 0.3680, 0.9575,\n",
+      "        0.2845, 0.6245, 0.3954, 1.1721, 0.2668, 0.7887, 0.5557, 0.5959, 0.3069,\n",
+      "        0.4738, 0.5627, 0.4583, 0.3905, 0.6021, 0.7353, 0.3140, 0.4330, 0.2446,\n",
+      "        0.7275, 0.4218, 0.4442, 0.3463, 0.3269, 0.2830, 0.7933, 0.7061, 0.6151,\n",
+      "        0.7568, 0.2284, 0.3017, 0.6990, 0.6086, 0.3478, 0.3573, 0.3748, 0.4946,\n",
+      "        0.6819, 0.3335, 0.2443, 0.5384, 0.3596, 0.4247, 0.6281, 0.5968, 0.3066,\n",
+      "        0.3240, 0.3988, 0.7752, 0.5883, 0.3727, 0.3868, 0.2599, 0.5475, 0.5774,\n",
+      "        0.3557, 0.5972, 0.6188, 0.5034, 0.5769, 0.4191, 0.4446, 0.3006, 0.7240,\n",
+      "        0.3457, 0.5845, 0.2285, 0.5694, 0.5045, 0.8872, 0.4366, 0.2403, 0.3761,\n",
+      "        0.3609, 0.5058, 0.3692, 0.3240, 0.6813, 0.4859, 0.5480, 0.2930, 0.5621,\n",
+      "        0.3700, 0.2884, 0.5592, 0.4218, 0.3355, 0.4953, 0.3292, 0.3935, 0.3963,\n",
+      "        1.7528, 0.6955, 0.4916, 0.6384, 0.3956, 0.5055, 0.4903, 0.5046, 0.4252,\n",
+      "        0.4804, 0.5601, 0.2598, 0.4419, 0.3475, 0.3467, 0.6018, 0.3443, 0.5986,\n",
+      "        0.2875, 0.3390, 0.5859, 0.5734, 0.4923, 0.4868, 0.3859, 0.3215, 0.2765,\n",
+      "        0.2266, 0.2589, 0.2693, 0.4189, 0.3412, 0.8895, 0.5469, 0.6031, 0.4138,\n",
+      "        0.2790, 0.6022, 0.5844, 0.7029, 0.2213, 0.7601, 0.8150, 0.4239, 0.3481,\n",
+      "        0.5250, 0.6566, 0.5609, 0.6312, 0.3589, 1.0687, 0.2610, 0.3536, 0.3342,\n",
+      "        0.4199, 0.6576, 0.3350, 0.2855, 0.3357, 1.0044, 0.4855, 0.3846, 0.4242,\n",
+      "        0.5740, 0.2637, 0.2791, 0.5781, 0.5086, 0.4975, 0.4760, 0.3031, 0.1814,\n",
+      "        0.3063, 0.6894, 0.4780, 0.5105, 0.5033, 0.3594, 0.4775, 0.5573, 0.7113,\n",
+      "        0.3599, 0.2243, 0.5518, 0.9542, 0.3136, 0.8725, 0.6743, 1.0061, 0.5426,\n",
+      "        0.7130, 0.5121, 0.5789, 0.3368, 0.6072, 0.4987, 0.6579, 0.3404, 0.3587,\n",
+      "        0.6422, 0.5415, 0.6590, 0.4879, 0.7915, 0.3677, 0.5645, 0.5089, 0.5875,\n",
+      "        0.6006, 0.6024, 0.3489, 0.4291, 0.3039, 0.5653, 0.4329, 0.6042, 0.3729,\n",
+      "        0.4948, 0.6668, 0.5329, 0.7260, 0.7962, 0.3458, 0.2835, 0.3582, 0.4110,\n",
+      "        0.2880, 0.3248, 0.6467, 0.3528, 0.3670, 0.5328, 0.8442, 0.3431, 0.5875,\n",
+      "        0.3694, 0.7385, 0.4629, 0.3589, 0.5153, 0.2734, 0.5408, 0.3291, 1.0899,\n",
+      "        0.9334, 0.3516, 0.6554, 0.6591, 0.8720, 0.4434, 0.7329, 0.6973, 0.4232,\n",
+      "        0.3912, 0.4270, 0.4822, 0.5426, 0.4007, 0.4975, 0.3734, 0.6162, 0.5307,\n",
+      "        0.5396, 0.7394, 0.6578, 0.3822, 0.4984, 0.2915, 0.5504, 0.2431, 0.3025,\n",
+      "        0.3047, 0.7959, 0.4698, 0.3505, 0.2129, 0.6924, 0.3777, 0.4046, 0.7667,\n",
+      "        0.5405, 0.4346, 0.5725, 0.2637, 0.3078, 0.4353, 0.8855, 0.5384, 0.2845,\n",
+      "        0.3652, 0.5543, 0.7346, 0.4634, 0.3346, 0.5027, 0.5856, 0.3611, 0.2136,\n",
+      "        0.3254, 0.4324, 0.3869, 0.3563, 0.3504, 0.3837, 0.5321, 0.3078, 0.3769,\n",
+      "        1.0473, 0.3669, 0.3888, 0.6034, 0.6594, 0.9696, 0.3194, 0.3167, 0.5745,\n",
+      "        0.3745, 0.5164, 0.6146, 0.3840, 0.7050, 0.5273, 0.3013, 0.6586, 0.5178,\n",
+      "        0.3710, 0.3516, 0.5616, 0.4505, 0.5083, 0.3922, 0.2313, 0.8705, 0.3922,\n",
+      "        0.4282, 0.7334, 0.3971, 0.4953, 0.2291, 0.8491, 0.5068, 0.2610, 0.8320,\n",
+      "        0.3405, 0.2996, 0.6585, 1.0168, 0.7506, 0.3782, 0.4513, 0.3336, 0.2328,\n",
+      "        0.4220, 0.4536, 0.2930, 0.6986, 0.3788, 0.3077, 0.4742, 0.3723, 0.3204,\n",
+      "        0.3355, 0.2674, 0.4179, 0.4031, 0.2230, 0.6756, 0.4380, 0.3814, 0.5370,\n",
+      "        0.7407, 0.4375, 0.5664, 0.6479, 0.8250, 0.9289, 0.3987, 0.3621, 0.5002,\n",
+      "        2.0075, 0.3879, 0.5327, 0.3828, 0.7266, 0.3305, 0.5101, 0.3545, 0.3875,\n",
+      "        0.4008, 0.2672, 0.5039, 0.3205, 0.4759, 0.2461, 0.5433, 0.5683, 0.7574,\n",
+      "        0.3904, 0.5861, 0.3734, 0.4693, 0.4528, 0.6186, 0.3502, 0.3546, 0.4992,\n",
+      "        0.5158, 0.3071, 0.5221, 0.3240, 0.5220, 0.4556, 0.8824, 0.3843, 0.4548,\n",
+      "        0.4941, 0.5346, 0.3292, 0.5752, 0.4737, 0.5968, 0.6532, 0.4993, 0.3586,\n",
+      "        0.4314, 0.2751, 1.2070, 0.3961, 0.4740, 0.4391, 0.4232, 0.3522, 0.3471,\n",
+      "        0.2500, 0.1970, 0.3035, 0.2758, 0.4494, 0.5418, 0.3121, 0.5002, 0.3583,\n",
+      "        0.4518, 0.4198, 0.3407, 0.2809, 0.4321, 0.7905, 0.6713, 0.4489, 0.5357,\n",
+      "        0.6273, 0.3846, 0.9633, 0.3500, 0.2888, 0.4882, 0.3763, 0.4531, 0.3766,\n",
+      "        0.4414, 0.5244, 0.4842, 0.3582, 0.5609, 0.2851, 0.8174, 0.5737, 0.6263,\n",
+      "        0.3728, 0.4371, 0.4092, 0.4412, 0.3047, 0.5662, 0.6036, 0.7896, 0.4072,\n",
+      "        0.7698, 0.5014, 0.5492, 0.6205, 0.2801, 0.3104, 0.4985, 0.4202, 0.2448,\n",
+      "        0.5297, 0.6546, 0.4377, 0.4658, 0.3875, 0.3765, 0.8673, 0.4206, 0.4897,\n",
+      "        0.4013, 0.5031, 0.2621, 0.2990, 0.3868, 0.3880, 0.4090, 0.3650])), ('pretrained_model.layer4.1.bn1.num_batches_tracked', tensor(0)), ('pretrained_model.layer4.1.conv2.weight', tensor([[[[-9.7020e-03, -7.1768e-03,  3.3213e-03],\n",
+      "          [-1.0467e-02, -1.1009e-02, -1.5599e-03],\n",
+      "          [ 6.1611e-03,  2.1712e-03, -1.2905e-02]],\n",
+      "\n",
+      "         [[ 7.0452e-03, -7.5846e-03, -9.8428e-03],\n",
+      "          [-1.6463e-02, -4.3235e-03,  1.9710e-02],\n",
+      "          [-3.0269e-03,  5.7477e-03,  1.1182e-02]],\n",
+      "\n",
+      "         [[ 2.4230e-02, -6.6461e-03,  1.2867e-02],\n",
+      "          [ 1.7647e-02, -1.8172e-02, -9.2179e-03],\n",
+      "          [ 1.0915e-02, -7.0826e-03, -4.7280e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 2.4064e-03,  3.9419e-03, -1.1886e-03],\n",
+      "          [-7.2313e-03,  7.7233e-03,  2.4360e-04],\n",
+      "          [ 4.4936e-03,  1.5412e-02,  1.3376e-03]],\n",
+      "\n",
+      "         [[-1.3019e-02,  7.1688e-03,  1.3685e-02],\n",
+      "          [-1.1927e-02, -6.4408e-03,  1.4693e-02],\n",
+      "          [-5.3547e-03,  3.8480e-03,  1.3620e-02]],\n",
+      "\n",
+      "         [[-3.7750e-03, -6.5283e-03,  1.5157e-02],\n",
+      "          [ 6.9059e-03,  1.8573e-04,  8.2411e-03],\n",
+      "          [-3.3972e-03,  1.4551e-02,  1.3705e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 5.6109e-03,  2.8416e-03,  2.0879e-03],\n",
+      "          [ 1.2486e-02,  5.2545e-03,  9.1740e-03],\n",
+      "          [ 3.0883e-03,  4.6015e-04, -7.9495e-04]],\n",
+      "\n",
+      "         [[-8.2450e-03, -8.2323e-03, -1.0948e-02],\n",
+      "          [-1.6664e-02, -1.0817e-02, -1.3479e-02],\n",
+      "          [-6.2937e-03,  1.3948e-04, -1.2441e-02]],\n",
+      "\n",
+      "         [[ 1.4542e-02,  1.8077e-02,  1.9992e-02],\n",
+      "          [ 1.5337e-02,  1.5658e-02,  1.5881e-02],\n",
+      "          [ 1.2960e-02,  1.4550e-03,  4.8420e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-7.8657e-03, -5.4318e-03, -2.2286e-03],\n",
+      "          [-1.7556e-03, -3.6133e-04,  9.1425e-04],\n",
+      "          [-5.1793e-03, -4.8186e-03, -1.4177e-02]],\n",
+      "\n",
+      "         [[-6.9030e-03, -1.3723e-02, -6.0486e-03],\n",
+      "          [-2.0838e-03, -1.9018e-02, -5.6892e-03],\n",
+      "          [-1.3123e-02, -1.8785e-02, -1.4590e-02]],\n",
+      "\n",
+      "         [[-4.5179e-03, -2.6360e-03, -1.3660e-05],\n",
+      "          [ 1.7246e-02,  1.8448e-02,  1.4618e-02],\n",
+      "          [ 6.6428e-03,  1.0005e-02,  7.4562e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-3.7202e-03, -1.3294e-02, -1.4340e-02],\n",
+      "          [-8.6347e-03, -1.2887e-02, -2.4584e-02],\n",
+      "          [-2.1561e-02, -2.0734e-02, -2.2435e-02]],\n",
+      "\n",
+      "         [[ 9.5540e-05,  1.0062e-02,  7.6226e-03],\n",
+      "          [ 4.7632e-04, -1.8522e-03,  1.0796e-02],\n",
+      "          [ 7.2116e-03,  6.2726e-03,  1.1369e-02]],\n",
+      "\n",
+      "         [[-1.2139e-02, -1.1854e-02, -1.3998e-02],\n",
+      "          [-7.7282e-03, -2.7013e-02, -2.0022e-02],\n",
+      "          [-1.4243e-02, -2.8123e-02, -1.1659e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 6.0686e-03,  7.0257e-03,  3.2685e-03],\n",
+      "          [ 1.0992e-02,  2.8609e-03, -3.0241e-03],\n",
+      "          [ 6.9426e-03,  1.2987e-02, -2.4111e-03]],\n",
+      "\n",
+      "         [[-1.0518e-02, -1.1332e-02, -1.7753e-03],\n",
+      "          [-1.6108e-03, -4.5729e-03,  9.9246e-03],\n",
+      "          [-2.9965e-03,  1.5383e-05,  1.4351e-03]],\n",
+      "\n",
+      "         [[ 4.4982e-03,  3.2679e-03, -4.3628e-04],\n",
+      "          [ 4.2512e-03,  1.5779e-02,  1.7753e-03],\n",
+      "          [-7.7575e-03, -4.0826e-03, -1.2117e-02]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 6.9608e-03,  9.3817e-03,  1.3724e-02],\n",
+      "          [ 1.0194e-03,  1.1363e-02,  5.0344e-03],\n",
+      "          [-2.8746e-03, -4.8575e-03, -3.3975e-03]],\n",
+      "\n",
+      "         [[-1.4337e-03, -6.9152e-03, -1.4493e-04],\n",
+      "          [-5.0850e-05, -8.2015e-03,  7.3286e-03],\n",
+      "          [-4.0236e-03, -5.5584e-03,  1.5376e-03]],\n",
+      "\n",
+      "         [[ 9.0612e-03,  9.0787e-03,  1.2397e-02],\n",
+      "          [ 2.9575e-03,  1.2484e-02,  9.6425e-03],\n",
+      "          [ 2.1927e-03,  1.8373e-03,  4.1046e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.7917e-02, -1.4429e-02, -2.4693e-02],\n",
+      "          [-2.0537e-02, -1.3909e-02, -2.3324e-02],\n",
+      "          [-1.1222e-02, -1.5231e-03, -1.1967e-02]],\n",
+      "\n",
+      "         [[-1.9722e-02, -1.2175e-02, -2.4301e-02],\n",
+      "          [-1.0649e-02,  4.4355e-03, -1.8225e-02],\n",
+      "          [-2.1041e-02, -1.6356e-02, -2.7770e-02]],\n",
+      "\n",
+      "         [[-3.4283e-03, -6.8848e-03,  1.7298e-03],\n",
+      "          [ 2.9887e-03,  1.2416e-03,  9.2143e-03],\n",
+      "          [ 4.2437e-03, -2.8594e-03, -2.3485e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 5.8391e-03,  8.6094e-03,  3.4115e-03],\n",
+      "          [ 1.1298e-03,  5.7737e-03,  9.7921e-04],\n",
+      "          [-5.8463e-03, -4.9519e-03, -5.5352e-03]],\n",
+      "\n",
+      "         [[ 4.9776e-03,  9.2441e-03,  8.6724e-03],\n",
+      "          [-9.7668e-03, -1.1262e-03, -6.5738e-03],\n",
+      "          [-5.2516e-03, -5.5367e-03, -1.7367e-03]],\n",
+      "\n",
+      "         [[ 9.5622e-03,  5.2034e-03,  9.8196e-03],\n",
+      "          [ 2.7280e-02,  1.1717e-02,  3.7027e-02],\n",
+      "          [ 2.1086e-02,  8.9102e-03,  1.5792e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 2.1051e-03,  1.6172e-02,  5.2326e-03],\n",
+      "          [ 9.1129e-03,  1.0658e-02,  1.6382e-03],\n",
+      "          [ 4.8412e-03,  1.2847e-02,  1.9044e-03]],\n",
+      "\n",
+      "         [[ 6.2369e-04, -8.8505e-03, -4.2985e-03],\n",
+      "          [-3.0243e-03,  1.1256e-03, -7.7116e-03],\n",
+      "          [ 3.8368e-03,  7.0067e-03,  6.8522e-03]],\n",
+      "\n",
+      "         [[-7.8760e-03, -2.2500e-03, -2.8649e-03],\n",
+      "          [-2.4289e-03, -5.0852e-03, -9.5917e-04],\n",
+      "          [-1.0200e-02, -2.7228e-03, -2.8983e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-7.0206e-03, -2.1290e-02, -1.6505e-02],\n",
+      "          [-2.2838e-02, -1.7960e-02, -2.2051e-02],\n",
+      "          [-2.6191e-02, -2.1326e-02, -2.6344e-02]],\n",
+      "\n",
+      "         [[-7.2988e-03, -1.0963e-02, -7.8411e-03],\n",
+      "          [-5.4716e-03, -6.5233e-03, -9.8048e-03],\n",
+      "          [ 4.5904e-03,  4.7400e-03,  3.8849e-03]],\n",
+      "\n",
+      "         [[-2.6101e-02, -5.0592e-03, -1.8699e-02],\n",
+      "          [-2.0611e-02,  7.6589e-03, -1.5896e-02],\n",
+      "          [-2.6864e-02, -1.9562e-02, -2.7906e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 1.6726e-02,  1.0837e-02,  1.2695e-02],\n",
+      "          [ 2.4570e-02,  1.0622e-02,  1.6356e-02],\n",
+      "          [ 1.4330e-02,  2.0304e-02,  1.8440e-02]],\n",
+      "\n",
+      "         [[ 7.5016e-03,  1.1636e-02,  9.9679e-03],\n",
+      "          [ 7.6316e-03, -3.6425e-03,  5.8442e-03],\n",
+      "          [ 5.1598e-03,  1.2039e-03,  8.5540e-03]],\n",
+      "\n",
+      "         [[ 7.7260e-04, -6.8700e-03, -6.3775e-03],\n",
+      "          [ 3.6620e-03,  1.8563e-03,  5.4664e-03],\n",
+      "          [ 8.8058e-03,  1.3481e-02,  1.3912e-03]]]])), ('pretrained_model.layer4.1.bn2.weight', tensor([0.1809, 0.2232, 0.1514, 0.2633, 0.2495, 0.2723, 0.2312, 0.1795, 0.2263,\n",
+      "        0.2926, 0.2743, 0.1808, 0.2366, 0.2095, 0.3238, 0.1945, 0.4164, 0.2528,\n",
+      "        0.1662, 0.1820, 0.1815, 0.1782, 0.1825, 0.2070, 0.1910, 0.1531, 0.2537,\n",
+      "        0.1995, 0.2290, 0.2414, 0.2934, 0.1989, 0.2810, 0.2036, 0.1920, 0.2128,\n",
+      "        0.2381, 0.2466, 0.2349, 0.3000, 0.1967, 0.1626, 0.2142, 0.1289, 0.1633,\n",
+      "        0.2952, 0.1891, 0.2104, 0.1715, 0.2163, 0.2069, 0.2230, 0.1345, 0.2359,\n",
+      "        0.1540, 0.1739, 0.2081, 0.2646, 0.2051, 0.2412, 0.2776, 0.2148, 0.2118,\n",
+      "        0.1105, 0.1827, 0.2878, 0.2009, 0.1828, 0.2099, 0.1375, 0.2452, 0.2550,\n",
+      "        0.1924, 0.2374, 0.2463, 0.2489, 0.2385, 0.2035, 0.2351, 0.2319, 0.2551,\n",
+      "        0.2017, 0.2155, 0.2173, 0.2523, 0.2652, 0.2521, 0.1611, 0.1781, 0.1973,\n",
+      "        0.2268, 0.2019, 0.1965, 0.2441, 0.3433, 0.1886, 0.3089, 0.2774, 0.2265,\n",
+      "        0.2072, 0.2123, 0.1994, 0.1391, 0.1883, 0.2324, 0.1965, 0.2640, 0.2133,\n",
+      "        0.1827, 0.2496, 0.2133, 0.2099, 0.2171, 0.2573, 0.2421, 0.1616, 0.2185,\n",
+      "        0.2777, 0.2972, 0.2299, 0.2154, 0.2175, 0.2061, 0.1213, 0.2197, 0.2178,\n",
+      "        0.2059, 0.1070, 0.2994, 0.2996, 0.2084, 0.2105, 0.2104, 0.2359, 0.2217,\n",
+      "        0.3646, 0.1670, 0.2033, 0.2113, 0.2388, 0.2080, 0.2321, 0.1543, 0.2151,\n",
+      "        0.2331, 0.1785, 0.1874, 0.2214, 0.2145, 0.1984, 0.2626, 0.1540, 0.2482,\n",
+      "        0.3091, 0.1613, 0.2130, 0.2418, 0.2539, 0.1883, 0.2477, 0.1566, 0.2757,\n",
+      "        0.1975, 0.2635, 0.2078, 0.2125, 0.1757, 0.2663, 0.2235, 0.2749, 0.2474,\n",
+      "        0.1766, 0.2166, 0.2314, 0.1904, 0.2090, 0.2002, 0.2712, 0.2530, 0.2376,\n",
+      "        0.2028, 0.1808, 0.1742, 0.1814, 0.2143, 0.3005, 0.2003, 0.1871, 0.2131,\n",
+      "        0.2339, 0.2045, 0.1181, 0.2094, 0.2487, 0.1685, 0.2232, 0.1686, 0.2095,\n",
+      "        0.2508, 0.2178, 0.1809, 0.3622, 0.2634, 0.2203, 0.2262, 0.2309, 0.3169,\n",
+      "        0.2291, 0.1846, 0.2043, 0.2343, 0.2062, 0.1805, 0.2541, 0.2082, 0.2885,\n",
+      "        0.1346, 0.1866, 0.2271, 0.2707, 0.1754, 0.1632, 0.2277, 0.1819, 0.1450,\n",
+      "        0.2214, 0.1571, 0.2734, 0.2752, 0.1971, 0.2032, 0.1996, 0.3364, 0.1788,\n",
+      "        0.1959, 0.2879, 0.1803, 0.2708, 0.1957, 0.4230, 0.2686, 0.1685, 0.2972,\n",
+      "        0.2198, 0.2580, 0.1211, 0.2418, 0.1686, 0.2030, 0.3014, 0.1962, 0.2187,\n",
+      "        0.2520, 0.2126, 0.1725, 0.2365, 0.2265, 0.2209, 0.1930, 0.2301, 0.1891,\n",
+      "        0.2683, 0.1295, 0.1919, 0.2123, 0.2073, 0.2429, 0.2517, 0.2378, 0.2426,\n",
+      "        0.2441, 0.2849, 0.2448, 0.2132, 0.2546, 0.1786, 0.2052, 0.3117, 0.3035,\n",
+      "        0.2217, 0.2205, 0.2039, 0.1886, 0.1768, 0.1858, 0.1898, 0.2280, 0.2009,\n",
+      "        0.2001, 0.2925, 0.1985, 0.2701, 0.2141, 0.1756, 0.1746, 0.2837, 0.1720,\n",
+      "        0.1842, 0.1768, 0.2691, 0.2050, 0.2632, 0.2683, 0.2491, 0.3294, 0.1928,\n",
+      "        0.2068, 0.2945, 0.2501, 0.2517, 0.2376, 0.2171, 0.1119, 0.1814, 0.1859,\n",
+      "        0.0317, 0.1729, 0.2735, 0.2006, 0.1555, 0.2928, 0.2363, 0.2628, 0.1942,\n",
+      "        0.1422, 0.3073, 0.2701, 0.1966, 0.2921, 0.1340, 0.2182, 0.2774, 0.2673,\n",
+      "        0.2399, 0.1840, 0.1858, 0.2897, 0.2151, 0.2370, 0.1472, 0.1731, 0.1755,\n",
+      "        0.2090, 0.2294, 0.2880, 0.2793, 0.2320, 0.1944, 0.2036, 0.2179, 0.2180,\n",
+      "        0.3154, 0.2695, 0.2579, 0.2206, 0.1487, 0.3193, 0.2442, 0.1930, 0.2227,\n",
+      "        0.2643, 0.2350, 0.2659, 0.2029, 0.2899, 0.2024, 0.1553, 0.2088, 0.2470,\n",
+      "        0.2122, 0.2348, 0.2612, 0.1982, 0.2769, 0.2814, 0.2160, 0.2504, 0.2261,\n",
+      "        0.2453, 0.1883, 0.2578, 0.2341, 0.1776, 0.1651, 0.2410, 0.2254, 0.2887,\n",
+      "        0.2250, 0.3199, 0.2007, 0.2044, 0.2251, 0.2109, 0.2759, 0.2780, 0.2468,\n",
+      "        0.2109, 0.2107, 0.2871, 0.2672, 0.2379, 0.2302, 0.2008, 0.2177, 0.1912,\n",
+      "        0.2311, 0.2133, 0.1509, 0.1973, 0.3061, 0.2101, 0.2156, 0.2568, 0.2013,\n",
+      "        0.2513, 0.1798, 0.1959, 0.2206, 0.2380, 0.1982, 0.2766, 0.2352, 0.2195,\n",
+      "        0.1826, 0.2870, 0.2888, 0.2633, 0.2203, 0.2825, 0.2512, 0.2525, 0.2958,\n",
+      "        0.1811, 0.3352, 0.3160, 0.2223, 0.2123, 0.2430, 0.1612, 0.2377, 0.2257,\n",
+      "        0.1932, 0.2109, 0.2168, 0.2317, 0.1912, 0.1688, 0.1634, 0.1840, 0.2182,\n",
+      "        0.3062, 0.1921, 0.1873, 0.2473, 0.3056, 0.2280, 0.2209, 0.2397, 0.2112,\n",
+      "        0.2178, 0.2219, 0.2819, 0.2386, 0.2617, 0.2335, 0.2678, 0.1753, 0.2584,\n",
+      "        0.2696, 0.1454, 0.1981, 0.1613, 0.2225, 0.3048, 0.1433, 0.2510, 0.2041,\n",
+      "        0.2062, 0.2186, 0.2594, 0.1964, 0.1752, 0.3244, 0.2140, 0.2084, 0.1413,\n",
+      "        0.1139, 0.2011, 0.2321, 0.2417, 0.2049, 0.1645, 0.2055, 0.2055, 0.2294,\n",
+      "        0.1863, 0.1958, 0.2834, 0.2072, 0.2917, 0.1986, 0.1917, 0.2527, 0.3927,\n",
+      "        0.3045, 0.2326, 0.3321, 0.2429, 0.2108, 0.2298, 0.3224, 0.1775])), ('pretrained_model.layer4.1.bn2.bias', tensor([-8.6793e-02, -1.3273e-01, -6.6725e-02, -4.2735e-02, -1.4354e-01,\n",
+      "        -6.6567e-02,  5.3201e-04, -3.2495e-02,  3.5679e-03,  2.1317e-02,\n",
+      "        -2.6205e-02, -1.8638e-01, -1.0399e-01, -1.2792e-01, -1.7936e-02,\n",
+      "        -9.0310e-02,  3.4338e-02, -1.1248e-01, -1.3061e-01, -1.1366e-01,\n",
+      "        -9.6061e-02, -1.3805e-01, -2.2406e-02, -1.0630e-01, -1.6438e-01,\n",
+      "        -1.2332e-01,  2.8991e-02, -5.0817e-02, -1.1709e-01, -9.8772e-02,\n",
+      "        -8.4649e-03, -9.1181e-02, -5.3188e-02,  3.3847e-02, -1.5827e-01,\n",
+      "         9.3885e-04, -1.7985e-02,  1.3735e-03,  1.8477e-02, -3.4805e-02,\n",
+      "        -1.6260e-01, -6.5041e-02,  8.5000e-03, -4.7929e-02, -1.3295e-01,\n",
+      "         3.8878e-02, -1.3947e-01, -8.4026e-02, -1.1630e-01, -1.3717e-01,\n",
+      "        -1.2400e-01,  2.1457e-02,  2.4031e-02, -8.1050e-02, -1.5324e-01,\n",
+      "        -8.9163e-02, -4.7711e-02, -7.0807e-02, -9.0961e-02, -2.6770e-01,\n",
+      "        -6.5917e-04, -1.0183e-01, -1.3217e-01, -4.2975e-02,  2.3859e-02,\n",
+      "         1.6115e-02, -1.3844e-01, -1.5313e-01, -3.4059e-02, -7.5220e-02,\n",
+      "        -6.4607e-02,  7.2636e-03, -1.2776e-01, -1.0458e-01,  2.5047e-02,\n",
+      "        -1.6031e-01, -2.9688e-02,  5.0777e-02, -3.5272e-02, -2.6390e-02,\n",
+      "        -1.6408e-01, -3.0431e-02, -1.2528e-01, -1.7649e-02,  6.7263e-02,\n",
+      "        -1.6655e-02, -3.1804e-02, -9.8243e-02, -8.8797e-02, -1.1087e-01,\n",
+      "        -7.3897e-02, -1.9555e-01, -1.6022e-01, -2.4057e-02, -2.3284e-02,\n",
+      "        -7.0602e-02, -1.0347e-02,  8.8440e-03, -1.1729e-01, -1.3889e-01,\n",
+      "         8.0252e-03, -8.2669e-03, -1.1022e-01, -7.4807e-02,  1.2940e-02,\n",
+      "         3.4162e-02,  8.3212e-03, -1.2754e-01, -1.9855e-01,  1.2358e-02,\n",
+      "        -9.0342e-02, -1.0242e-01, -7.2511e-02,  3.6299e-02, -1.3972e-01,\n",
+      "        -5.6527e-02, -1.5872e-01, -4.9781e-03, -2.1046e-02, -1.1638e-02,\n",
+      "        -2.1501e-01, -4.7430e-02, -1.0276e-01,  2.1549e-02, -1.3335e-01,\n",
+      "         1.3701e-02, -1.4441e-01, -1.0542e-01, -1.4748e-02, -4.0317e-02,\n",
+      "         7.7617e-03, -1.2679e-01, -1.6909e-01, -1.9766e-03,  2.1808e-03,\n",
+      "        -3.0815e-01,  5.3459e-03, -4.5972e-02,  1.9380e-02, -9.7949e-02,\n",
+      "        -7.2912e-02, -1.8447e-01, -1.2318e-01, -1.9240e-01, -1.6579e-01,\n",
+      "        -5.5770e-02, -1.1687e-01, -1.1833e-02, -1.0228e-01,  2.2002e-02,\n",
+      "        -1.0304e-01, -1.0377e-01, -1.3162e-01,  3.6941e-03, -1.1690e-01,\n",
+      "        -2.3378e-01, -1.5269e-01, -7.5032e-04, -9.7745e-02, -8.4455e-02,\n",
+      "        -2.7888e-02, -2.3773e-01, -2.1653e-02, -1.7573e-01, -1.8061e-01,\n",
+      "        -2.1561e-02, -1.1722e-01, -1.4737e-01,  2.9742e-03, -4.0794e-03,\n",
+      "        -5.8864e-02,  1.6823e-02, -1.3799e-01,  5.1067e-03, -8.3120e-02,\n",
+      "        -1.3382e-01, -1.5652e-01, -3.3586e-03, -7.9880e-02,  1.3757e-02,\n",
+      "         1.7219e-02, -3.7654e-02, -8.4988e-02, -1.5814e-01, -6.3047e-02,\n",
+      "         2.7168e-02, -8.5419e-02, -1.0654e-01, -1.1296e-01, -2.6001e-02,\n",
+      "        -2.1829e-01, -1.0431e-01, -2.9761e-02, -2.4192e-02, -1.1936e-01,\n",
+      "        -1.2771e-02, -1.1051e-01, -1.2422e-01, -7.8099e-02, -1.4582e-01,\n",
+      "        -1.0356e-01, -3.1691e-03,  9.3719e-03, -4.3484e-02, -1.5974e-01,\n",
+      "        -1.4964e-01,  2.4661e-02, -4.3233e-02, -3.8468e-02, -1.8815e-01,\n",
+      "        -1.3391e-01, -1.2735e-01, -9.1254e-02, -2.1824e-02, -5.5526e-02,\n",
+      "         1.3637e-02, -8.3396e-02, -1.0058e-01,  4.5114e-03, -2.9954e-02,\n",
+      "        -1.0805e-01, -6.2895e-02, -8.7442e-03, -1.7255e-01, -1.5905e-01,\n",
+      "        -4.3197e-02, -7.5031e-03, -2.4771e-02, -2.2847e-02, -1.6216e-01,\n",
+      "        -1.6504e-01, -1.5654e-01,  2.4271e-02,  4.0282e-02, -1.3848e-01,\n",
+      "        -2.8814e-03, -6.9546e-02,  2.6762e-03, -9.1765e-02,  3.2434e-03,\n",
+      "        -9.5676e-03, -8.0506e-02, -2.0220e-02, -1.7308e-01,  9.5298e-03,\n",
+      "        -1.1707e-01, -8.8820e-02, -2.2955e-02, -1.5173e-01, -2.2106e-02,\n",
+      "         2.0946e-02, -8.9295e-02, -4.8848e-02,  3.5032e-03,  2.0475e-02,\n",
+      "        -1.5258e-01,  1.4960e-02, -1.0382e-01, -5.0632e-02, -1.1576e-01,\n",
+      "        -6.9290e-02,  1.6039e-02, -4.6172e-02, -7.5359e-02,  9.4630e-03,\n",
+      "        -8.4750e-02,  4.4169e-02, -1.8787e-02, -1.1167e-01, -5.8317e-02,\n",
+      "        -1.4528e-01,  1.2048e-01, -9.2659e-03, -1.3281e-01, -1.3917e-01,\n",
+      "        -1.5302e-01, -1.3957e-01,  4.6806e-02,  1.4137e-02,  6.4283e-02,\n",
+      "        -1.4666e-01, -1.5984e-01, -8.4985e-02, -8.8646e-02, -1.6962e-01,\n",
+      "        -1.2399e-01, -1.3601e-01, -1.2960e-01, -1.3476e-02, -1.0489e-03,\n",
+      "        -1.6581e-01, -2.8887e-01, -1.6468e-01, -1.0765e-02, -1.5016e-01,\n",
+      "        -1.8598e-01, -1.5628e-01, -1.7524e-03, -1.2980e-01, -5.1223e-02,\n",
+      "        -1.0351e-01, -5.2355e-02,  4.7348e-02,  7.3378e-03,  2.3500e-02,\n",
+      "        -1.1931e-01, -1.2308e-02,  2.7727e-02, -2.4918e-02, -8.2557e-02,\n",
+      "        -2.0596e-02, -1.1749e-01, -5.8370e-02, -9.6944e-02, -4.8841e-02,\n",
+      "         9.3331e-02, -1.5909e-01, -9.6716e-03, -1.2862e-01, -1.5507e-01,\n",
+      "         8.2452e-03, -1.6377e-01, -3.7257e-02, -6.3470e-02, -1.4220e-01,\n",
+      "         2.2751e-02, -1.3745e-01, -1.8487e-01, -4.6629e-02, -4.6447e-02,\n",
+      "        -1.8257e-02, -1.6756e-02, -2.1092e-04, -8.8882e-02, -6.2106e-03,\n",
+      "         4.4052e-03,  2.0088e-02, -8.8539e-02, -9.8805e-02, -4.9552e-04,\n",
+      "        -1.3909e-01, -5.7617e-02, -5.0809e-02, -3.2587e-02,  1.6859e-02,\n",
+      "         1.6628e-03, -1.3163e-01, -9.8775e-02, -1.1770e-01, -1.2868e-01,\n",
+      "        -1.0007e-01,  2.0767e-02, -1.3349e-01, -3.5170e-02,  2.0593e-03,\n",
+      "        -1.0743e-01, -3.2216e-02, -9.0504e-02, -1.0324e-01, -1.3489e-02,\n",
+      "        -1.3809e-01, -1.3354e-01,  4.3896e-03, -1.0349e-01,  1.0057e-02,\n",
+      "        -1.1921e-01, -7.1377e-02, -1.7668e-01, -1.3155e-01, -1.1010e-01,\n",
+      "        -2.1758e-02, -6.7443e-02, -1.9857e-01, -3.9443e-02,  1.0188e-02,\n",
+      "        -1.3338e-01, -6.5046e-03, -1.5402e-01, -1.2429e-01, -9.7352e-02,\n",
+      "        -9.3424e-02, -1.3016e-01, -1.1442e-01,  2.3610e-02, -2.2624e-02,\n",
+      "        -1.1876e-01, -2.7071e-02, -3.8532e-03, -5.2687e-03, -1.8727e-01,\n",
+      "         1.5263e-02, -1.3267e-01, -1.4611e-01, -1.8200e-02,  2.6524e-02,\n",
+      "        -7.8443e-02, -1.3597e-01, -9.1986e-02, -3.4268e-01, -3.6533e-03,\n",
+      "         2.5433e-03, -1.4556e-01, -8.8069e-02, -1.6032e-01, -1.2185e-01,\n",
+      "        -4.2159e-02,  1.1752e-02,  2.7158e-02, -1.2127e-01, -3.0320e-02,\n",
+      "        -8.9966e-02, -2.1102e-02, -1.1617e-01, -1.0452e-01,  1.4813e-02,\n",
+      "        -1.1594e-01, -1.2214e-01, -8.1924e-02, -9.0659e-02, -7.8940e-02,\n",
+      "        -1.1861e-01,  4.8014e-02, -1.3239e-01, -9.8400e-02,  3.1934e-02,\n",
+      "        -9.3123e-03, -1.2877e-02, -1.4978e-01, -1.1753e-02, -2.6972e-02,\n",
+      "        -1.6143e-02,  1.1838e-02, -1.0849e-01,  2.1663e-02, -5.2694e-03,\n",
+      "        -1.0112e-01,  2.0767e-02,  2.9808e-02, -3.7478e-02, -2.7882e-02,\n",
+      "        -1.8796e-01, -1.5680e-01, -6.6272e-02, -4.1012e-02, -1.6795e-01,\n",
+      "        -1.9606e-01, -3.2236e-03,  3.3073e-02, -4.2285e-02, -6.8336e-02,\n",
+      "         1.3026e-02, -7.0526e-02, -1.0927e-01, -3.3128e-02, -1.0472e-02,\n",
+      "        -5.1627e-02, -1.6136e-01, -1.4362e-01, -1.5438e-01, -8.6351e-02,\n",
+      "        -1.7900e-01,  2.6719e-02, -2.7368e-02, -1.1545e-01,  2.1914e-02,\n",
+      "        -4.9949e-02, -1.3104e-01,  1.7021e-02, -2.3603e-02, -1.2089e-01,\n",
+      "        -1.1016e-01, -8.6719e-02, -9.5369e-02,  2.0299e-02, -6.9706e-02,\n",
+      "         1.3145e-02, -8.5437e-02, -2.0602e-01, -1.8441e-02, -2.0861e-02,\n",
+      "        -9.0065e-02, -1.6669e-01,  3.7740e-03, -1.1280e-01, -1.0118e-01,\n",
+      "        -1.2569e-01, -8.2540e-02, -1.5700e-01, -1.1236e-01, -4.4521e-02,\n",
+      "        -5.2705e-02,  4.1703e-02, -1.7006e-01, -1.1992e-01, -1.7238e-02,\n",
+      "        -1.0878e-01, -1.4495e-01, -5.5130e-02, -1.3219e-01,  1.6080e-02,\n",
+      "        -1.1666e-01, -1.0328e-01, -5.0498e-02,  2.5734e-02,  2.0206e-02,\n",
+      "        -1.0861e-01, -2.0157e-02,  2.9221e-02, -6.5266e-02,  7.1984e-02,\n",
+      "         1.4062e-02,  9.5662e-04])), ('pretrained_model.layer4.1.bn2.running_mean', tensor([-0.0895, -0.0581, -0.0675, -0.0428, -0.0343, -0.0192, -0.0375, -0.0264,\n",
+      "        -0.0167, -0.0206, -0.0146, -0.1105, -0.0420, -0.0870, -0.0196, -0.0370,\n",
+      "        -0.0364, -0.0526, -0.0529, -0.0980, -0.0358, -0.0363, -0.0323, -0.0425,\n",
+      "        -0.0438, -0.0823, -0.0838, -0.0437, -0.0202, -0.0484, -0.0227, -0.0775,\n",
+      "        -0.0501, -0.0300, -0.0702, -0.0399, -0.0309, -0.0288, -0.0222, -0.0217,\n",
+      "        -0.0558, -0.0757, -0.0272, -0.0393, -0.0518, -0.0061,  0.0455, -0.0175,\n",
+      "        -0.0909, -0.0143, -0.0442, -0.0102,  0.1616, -0.0080, -0.0631, -0.0502,\n",
+      "        -0.0079, -0.0254, -0.0556, -0.0681, -0.0403, -0.0405, -0.0321,  0.0476,\n",
+      "        -0.0290, -0.0270, -0.0617, -0.0679, -0.0473, -0.0920, -0.0247, -0.0480,\n",
+      "        -0.0365, -0.0178, -0.0340, -0.0522, -0.0366, -0.0285, -0.0199, -0.0379,\n",
+      "        -0.0584, -0.0167, -0.0540, -0.0187, -0.0291, -0.0399, -0.0145, -0.0288,\n",
+      "        -0.0365, -0.0392, -0.0363, -0.1045, -0.0775,  0.0183, -0.0265, -0.0232,\n",
+      "        -0.0333, -0.0181, -0.0193, -0.0744, -0.0195, -0.0496, -0.0762, -0.0213,\n",
+      "        -0.0298, -0.0534, -0.0267, -0.0645, -0.0794, -0.0213, -0.0741, -0.0362,\n",
+      "        -0.1131, -0.0007, -0.0429, -0.0347, -0.0742, -0.0375, -0.0437, -0.0297,\n",
+      "        -0.0154, -0.0297, -0.0143, -0.0280, -0.0716, -0.0171, -0.0442, -0.1097,\n",
+      "        -0.0332, -0.0125, -0.0400, -0.0661, -0.0686, -0.0257, -0.0184, -0.1708,\n",
+      "        -0.0297, -0.0537, -0.0282, -0.0293, -0.0372, -0.0839, -0.0493, -0.0744,\n",
+      "        -0.0643, -0.0516, -0.0653, -0.0567, -0.0274, -0.0237, -0.0638, -0.1904,\n",
+      "        -0.0413, -0.0162, -0.1100,  0.0042, -0.0721, -0.0038, -0.0559, -0.0230,\n",
+      "        -0.0277, -0.0742, -0.0109, -0.0451, -0.0826, -0.0226, -0.0467, -0.0394,\n",
+      "        -0.0106, -0.0246, -0.0310, -0.0145, -0.0153, -0.0247, -0.1016, -0.0908,\n",
+      "        -0.0304, -0.0267, -0.0270, -0.0202, -0.0187, -0.0572, -0.0520, -0.0666,\n",
+      "        -0.0316, -0.0154, -0.0393, -0.0230, -0.0909, -0.0280, -0.0999, -0.0707,\n",
+      "        -0.0362, -0.0126, -0.0201, -0.0045, -0.0008, -0.0770, -0.0267, -0.0667,\n",
+      "        -0.0987, -0.0232, -0.0137, -0.0290, -0.0511, -0.0289, -0.0059, -0.0264,\n",
+      "        -0.0266, -0.0485, -0.0495, -0.0448, -0.1681, -0.0402, -0.0397, -0.0248,\n",
+      "        -0.1178, -0.0921, -0.0421, -0.0196, -0.0803, -0.0133, -0.0269, -0.0046,\n",
+      "        -0.0714, -0.0195, -0.0752, -0.0300, -0.0264, -0.0639, -0.0953, -0.0127,\n",
+      "        -0.0228, -0.0339, -0.0823, -0.0250, -0.0861, -0.0214, -0.0707, -0.0173,\n",
+      "        -0.0268, -0.0495, -0.0323, -0.0187, -0.0051, -0.0798, -0.0311, -0.0530,\n",
+      "        -0.0412, -0.0277, -0.0279, -0.0629, -0.0074, -0.0356, -0.0220, -0.0729,\n",
+      "        -0.0217, -0.0323, -0.0638, -0.0452, -0.0226, -0.0346, -0.0135, -0.0398,\n",
+      "        -0.0026, -0.0503, -0.0371, -0.0245, -0.0385, -0.0256, -0.0491, -0.1216,\n",
+      "        -0.0275, -0.0807, -0.0564, -0.0664, -0.0161, -0.0487, -0.0125, -0.0367,\n",
+      "        -0.0463, -0.0623, -0.0849, -0.0128, -0.0958, -0.0305, -0.0312, -0.0825,\n",
+      "        -0.0573, -0.0340, -0.0563, -0.0083, -0.0333, -0.0091, -0.0587, -0.0539,\n",
+      "        -0.0646, -0.0256, -0.0545, -0.0283, -0.0824, -0.0328, -0.0166, -0.0386,\n",
+      "        -0.0119, -0.0837, -0.0691, -0.0168, -0.0011, -0.0129, -0.0106, -0.0739,\n",
+      "        -0.0164, -0.0415, -0.0422, -0.0102, -0.0717, -0.0159, -0.0964, -0.1068,\n",
+      "        -0.0261, -0.0218, -0.0198, -0.0265, -0.0931, -0.0277, -0.0289, -0.0966,\n",
+      "        -0.0115, -0.0365, -0.0434, -0.0194, -0.0173, -0.0585, -0.0152, -0.0252,\n",
+      "        -0.0218, -0.0396, -0.0737, -0.0456, -0.0940, -0.1548, -0.0491, -0.0122,\n",
+      "        -0.0310, -0.0289, -0.0172, -0.0561, -0.0283, -0.0318, -0.0231, -0.0227,\n",
+      "        -0.0213, -0.0296, -0.0309, -0.0710, -0.0311, -0.0476, -0.0732, -0.0513,\n",
+      "        -0.0328, -0.0509, -0.0172, -0.1093, -0.0494, -0.0677, -0.0600, -0.0661,\n",
+      "        -0.0196,  0.0162, -0.0340, -0.0349, -0.0474, -0.0363, -0.0191, -0.0165,\n",
+      "        -0.0294, -0.0780, -0.0245, -0.0361, -0.0425, -0.0704, -0.0821, -0.0164,\n",
+      "        -0.0360, -0.0547, -0.0396, -0.0244, -0.0345, -0.0949, -0.0139, -0.0542,\n",
+      "        -0.0542, -0.0164, -0.0315, -0.0326, -0.0504, -0.0537, -0.3005, -0.0204,\n",
+      "        -0.0379, -0.0625, -0.0917, -0.0743, -0.0426, -0.0217, -0.0273, -0.0608,\n",
+      "        -0.0516, -0.0255, -0.0049, -0.0267, -0.0355, -0.0516, -0.0173, -0.0543,\n",
+      "        -0.0012, -0.0411, -0.0460, -0.0374, -0.0529, -0.0397, -0.0529, -0.0576,\n",
+      "        -0.0226, -0.0174, -0.0243, -0.0805, -0.0386, -0.0409, -0.0059, -0.0155,\n",
+      "        -0.0651, -0.0336, -0.0162, -0.0352, -0.0091, -0.0318, -0.0515, -0.0143,\n",
+      "        -0.0453, -0.0661, -0.0717, -0.0048, -0.0477, -0.0633, -0.0209, -0.0475,\n",
+      "        -0.0106, -0.0476, -0.0300, -0.0480, -0.0781, -0.0223, -0.0194, -0.0176,\n",
+      "        -0.0764, -0.0690, -0.0348, -0.0160, -0.0630, -0.0373, -0.0473, -0.0424,\n",
+      "        -0.0359, -0.0249, -0.0713, -0.0097, -0.0227,  0.1386, -0.0650, -0.0333,\n",
+      "        -0.0039, -0.0457, -0.0348, -0.0247, -0.0427, -0.0418,  0.0029, -0.0224,\n",
+      "        -0.0363, -0.0869, -0.0330, -0.0756, -0.0771, -0.0961, -0.0275, -0.0825,\n",
+      "        -0.0538, -0.0252, -0.0480, -0.0255, -0.0275, -0.0371, -0.0107, -0.0529,\n",
+      "        -0.0778, -0.0136, -0.0513, -0.0292, -0.0466, -0.0766, -0.0088, -0.0233,\n",
+      "        -0.0298, -0.0347, -0.0449, -0.0314, -0.0649, -0.0302, -0.0322, -0.0372])), ('pretrained_model.layer4.1.bn2.running_var', tensor([0.0456, 0.0112, 0.0117, 0.0120, 0.0096, 0.0137, 0.0104, 0.0065, 0.0092,\n",
+      "        0.0187, 0.0138, 0.0178, 0.0107, 0.0139, 0.0172, 0.0139, 0.0288, 0.0097,\n",
+      "        0.0107, 0.0124, 0.0158, 0.0049, 0.0089, 0.0080, 0.0081, 0.0083, 0.0165,\n",
+      "        0.0160, 0.0138, 0.0096, 0.0143, 0.0173, 0.0148, 0.0088, 0.0080, 0.0236,\n",
+      "        0.0106, 0.0095, 0.0100, 0.0139, 0.0086, 0.0135, 0.0099, 0.0052, 0.0119,\n",
+      "        0.0150, 0.0251, 0.0068, 0.0170, 0.0071, 0.0083, 0.0123, 0.0213, 0.0096,\n",
+      "        0.0102, 0.0067, 0.0087, 0.0121, 0.0088, 0.0153, 0.0121, 0.0150, 0.0091,\n",
+      "        0.0087, 0.0122, 0.0125, 0.0109, 0.0085, 0.0105, 0.0119, 0.0109, 0.0104,\n",
+      "        0.0099, 0.0077, 0.0105, 0.0126, 0.0114, 0.0125, 0.0139, 0.0084, 0.0149,\n",
+      "        0.0093, 0.0089, 0.0125, 0.0220, 0.0143, 0.0103, 0.0101, 0.0041, 0.0075,\n",
+      "        0.0120, 0.0166, 0.0166, 0.0144, 0.0181, 0.0068, 0.0155, 0.0153, 0.0074,\n",
+      "        0.0118, 0.0105, 0.0140, 0.0105, 0.0081, 0.0098, 0.0099, 0.0119, 0.0081,\n",
+      "        0.0099, 0.0099, 0.0129, 0.0058, 0.0151, 0.0121, 0.0142, 0.0089, 0.0126,\n",
+      "        0.0166, 0.0150, 0.0092, 0.0075, 0.0111, 0.0053, 0.0044, 0.0168, 0.0129,\n",
+      "        0.0106, 0.0180, 0.0171, 0.0126, 0.0135, 0.0146, 0.0122, 0.0113, 0.0088,\n",
+      "        0.0743, 0.0063, 0.0083, 0.0108, 0.0106, 0.0065, 0.0147, 0.0098, 0.0125,\n",
+      "        0.0166, 0.0129, 0.0087, 0.0147, 0.0074, 0.0172, 0.0144, 0.0135, 0.0087,\n",
+      "        0.0175, 0.0190, 0.0130, 0.0121, 0.0094, 0.0160, 0.0090, 0.0094, 0.0115,\n",
+      "        0.0087, 0.0109, 0.0107, 0.0122, 0.0108, 0.0109, 0.0136, 0.0137, 0.0104,\n",
+      "        0.0133, 0.0071, 0.0106, 0.0317, 0.0139, 0.0057, 0.0148, 0.0108, 0.0093,\n",
+      "        0.0083, 0.0146, 0.0048, 0.0116, 0.0093, 0.0133, 0.0080, 0.0068, 0.0173,\n",
+      "        0.0091, 0.0101, 0.0075, 0.0081, 0.0164, 0.0041, 0.0095, 0.0046, 0.0084,\n",
+      "        0.0072, 0.0114, 0.0160, 0.0190, 0.0093, 0.0084, 0.0092, 0.0054, 0.0156,\n",
+      "        0.0090, 0.0082, 0.0084, 0.0111, 0.0133, 0.0134, 0.0131, 0.0095, 0.0160,\n",
+      "        0.0117, 0.0173, 0.0137, 0.0113, 0.0082, 0.0118, 0.0162, 0.0073, 0.0072,\n",
+      "        0.0088, 0.0103, 0.0103, 0.0114, 0.0136, 0.0170, 0.0093, 0.0188, 0.0117,\n",
+      "        0.0132, 0.0182, 0.0167, 0.0127, 0.0110, 0.0268, 0.0089, 0.0077, 0.0166,\n",
+      "        0.0050, 0.0141, 0.0087, 0.0086, 0.0068, 0.0093, 0.0130, 0.0076, 0.0218,\n",
+      "        0.0176, 0.0151, 0.0068, 0.0114, 0.0165, 0.0123, 0.0149, 0.0099, 0.0082,\n",
+      "        0.0186, 0.0044, 0.0099, 0.0145, 0.0108, 0.0178, 0.0105, 0.0095, 0.0140,\n",
+      "        0.0127, 0.0244, 0.0148, 0.0144, 0.0090, 0.0098, 0.0072, 0.0183, 0.0150,\n",
+      "        0.0127, 0.0052, 0.0137, 0.0164, 0.0068, 0.0151, 0.0091, 0.0076, 0.0157,\n",
+      "        0.0150, 0.0184, 0.0091, 0.0292, 0.0059, 0.0091, 0.0086, 0.0163, 0.0078,\n",
+      "        0.0135, 0.0092, 0.0134, 0.0190, 0.0111, 0.0151, 0.0205, 0.0160, 0.0140,\n",
+      "        0.0203, 0.0167, 0.0152, 0.0093, 0.0150, 0.0155, 0.0050, 0.0114, 0.0076,\n",
+      "        0.0182, 0.0111, 0.0148, 0.0118, 0.0131, 0.0129, 0.0094, 0.0110, 0.0092,\n",
+      "        0.0094, 0.0154, 0.0084, 0.0173, 0.0148, 0.0078, 0.0088, 0.0099, 0.0141,\n",
+      "        0.0093, 0.0081, 0.0136, 0.0218, 0.0102, 0.0306, 0.0154, 0.0134, 0.0227,\n",
+      "        0.0143, 0.0117, 0.0183, 0.0141, 0.0144, 0.0150, 0.0069, 0.0090, 0.0083,\n",
+      "        0.0143, 0.0078, 0.0148, 0.0157, 0.0053, 0.0173, 0.0096, 0.0112, 0.0165,\n",
+      "        0.0107, 0.0099, 0.0093, 0.0312, 0.0195, 0.0211, 0.0102, 0.0102, 0.0098,\n",
+      "        0.0116, 0.0078, 0.0128, 0.0112, 0.0119, 0.0155, 0.0101, 0.0105, 0.0171,\n",
+      "        0.0097, 0.0103, 0.0088, 0.0102, 0.0100, 0.0058, 0.0137, 0.0140, 0.0176,\n",
+      "        0.0103, 0.0168, 0.0219, 0.0115, 0.0105, 0.0143, 0.0106, 0.0179, 0.0071,\n",
+      "        0.0108, 0.0099, 0.0385, 0.0176, 0.0131, 0.0086, 0.0141, 0.0106, 0.0064,\n",
+      "        0.0095, 0.0142, 0.0158, 0.0059, 0.0142, 0.0108, 0.0075, 0.0149, 0.0122,\n",
+      "        0.0114, 0.0102, 0.0108, 0.0126, 0.0111, 0.0072, 0.0163, 0.0137, 0.0115,\n",
+      "        0.0097, 0.0145, 0.0135, 0.0137, 0.0162, 0.0151, 0.0132, 0.0122, 0.0151,\n",
+      "        0.0125, 0.0250, 0.0134, 0.0113, 0.0119, 0.0166, 0.0100, 0.0120, 0.0119,\n",
+      "        0.0083, 0.0135, 0.0082, 0.0107, 0.0080, 0.0095, 0.0084, 0.0067, 0.0103,\n",
+      "        0.0186, 0.0152, 0.0159, 0.0123, 0.0165, 0.0104, 0.0135, 0.0189, 0.0072,\n",
+      "        0.0077, 0.0122, 0.0185, 0.0120, 0.0110, 0.0114, 0.0104, 0.0107, 0.0163,\n",
+      "        0.0151, 0.0204, 0.0115, 0.0044, 0.0084, 0.0201, 0.0057, 0.0136, 0.0122,\n",
+      "        0.0114, 0.0153, 0.0154, 0.0070, 0.0128, 0.0133, 0.0158, 0.0105, 0.0152,\n",
+      "        0.0069, 0.0140, 0.0088, 0.0104, 0.0122, 0.0073, 0.0072, 0.0083, 0.0132,\n",
+      "        0.0079, 0.0155, 0.0096, 0.0078, 0.0142, 0.0088, 0.0169, 0.0141, 0.0263,\n",
+      "        0.0181, 0.0097, 0.0245, 0.0191, 0.0142, 0.0116, 0.0189, 0.0106])), ('pretrained_model.layer4.1.bn2.num_batches_tracked', tensor(0)), ('pretrained_model.layer4.1.conv3.weight', tensor([[[[ 0.0049]],\n",
+      "\n",
+      "         [[-0.0033]],\n",
+      "\n",
+      "         [[-0.0001]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0071]],\n",
+      "\n",
+      "         [[ 0.0101]],\n",
+      "\n",
+      "         [[ 0.0012]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0114]],\n",
+      "\n",
+      "         [[-0.0464]],\n",
+      "\n",
+      "         [[ 0.0240]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0221]],\n",
+      "\n",
+      "         [[-0.0157]],\n",
+      "\n",
+      "         [[ 0.0219]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0003]],\n",
+      "\n",
+      "         [[-0.0033]],\n",
+      "\n",
+      "         [[-0.0219]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0027]],\n",
+      "\n",
+      "         [[-0.0135]],\n",
+      "\n",
+      "         [[-0.0017]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0152]],\n",
+      "\n",
+      "         [[-0.0238]],\n",
+      "\n",
+      "         [[ 0.0073]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0121]],\n",
+      "\n",
+      "         [[ 0.0227]],\n",
+      "\n",
+      "         [[ 0.0107]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0006]],\n",
+      "\n",
+      "         [[ 0.0203]],\n",
+      "\n",
+      "         [[ 0.0024]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0119]],\n",
+      "\n",
+      "         [[ 0.0266]],\n",
+      "\n",
+      "         [[-0.0009]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0033]],\n",
+      "\n",
+      "         [[-0.0007]],\n",
+      "\n",
+      "         [[-0.0110]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0033]],\n",
+      "\n",
+      "         [[ 0.0206]],\n",
+      "\n",
+      "         [[ 0.0128]]]])), ('pretrained_model.layer4.1.bn3.weight', tensor([0.3383, 0.5598, 0.3699,  ..., 0.3047, 0.3639, 0.3090])), ('pretrained_model.layer4.1.bn3.bias', tensor([-0.0739, -0.0660, -0.0634,  ..., -0.0507, -0.0743, -0.0522])), ('pretrained_model.layer4.1.bn3.running_mean', tensor([-0.0014,  0.0102, -0.0123,  ..., -0.0072, -0.0034, -0.0041])), ('pretrained_model.layer4.1.bn3.running_var', tensor([0.0004, 0.0008, 0.0005,  ..., 0.0003, 0.0005, 0.0003])), ('pretrained_model.layer4.1.bn3.num_batches_tracked', tensor(0)), ('pretrained_model.layer4.2.conv1.weight', tensor([[[[ 0.0101]],\n",
+      "\n",
+      "         [[ 0.0186]],\n",
+      "\n",
+      "         [[ 0.0059]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0180]],\n",
+      "\n",
+      "         [[ 0.0186]],\n",
+      "\n",
+      "         [[ 0.0066]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0229]],\n",
+      "\n",
+      "         [[ 0.0066]],\n",
+      "\n",
+      "         [[-0.0170]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0275]],\n",
+      "\n",
+      "         [[-0.0051]],\n",
+      "\n",
+      "         [[ 0.0050]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0010]],\n",
+      "\n",
+      "         [[-0.0216]],\n",
+      "\n",
+      "         [[-0.0189]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0019]],\n",
+      "\n",
+      "         [[ 0.0025]],\n",
+      "\n",
+      "         [[ 0.0019]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-0.0056]],\n",
+      "\n",
+      "         [[ 0.0225]],\n",
+      "\n",
+      "         [[-0.0162]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0094]],\n",
+      "\n",
+      "         [[ 0.0265]],\n",
+      "\n",
+      "         [[ 0.0177]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0154]],\n",
+      "\n",
+      "         [[-0.0058]],\n",
+      "\n",
+      "         [[-0.0097]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0043]],\n",
+      "\n",
+      "         [[ 0.0095]],\n",
+      "\n",
+      "         [[ 0.0395]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0064]],\n",
+      "\n",
+      "         [[ 0.0027]],\n",
+      "\n",
+      "         [[-0.0332]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0282]],\n",
+      "\n",
+      "         [[-0.0339]],\n",
+      "\n",
+      "         [[ 0.0075]]]])), ('pretrained_model.layer4.2.bn1.weight', tensor([0.2164, 0.1908, 0.2731, 0.2301, 0.2288, 0.2732, 0.2695, 0.2168, 0.1729,\n",
+      "        0.1833, 0.2188, 0.1831, 0.2689, 0.2332, 0.2376, 0.2931, 0.3103, 0.2483,\n",
+      "        0.2239, 0.2383, 0.2086, 0.2519, 0.1847, 0.2670, 0.2344, 0.2096, 0.2175,\n",
+      "        0.2089, 0.2392, 0.2366, 0.2163, 0.2873, 0.2942, 0.2289, 0.2813, 0.1863,\n",
+      "        0.2190, 0.2280, 0.2086, 0.0487, 0.2462, 0.2727, 0.2315, 0.2445, 0.2231,\n",
+      "        0.2318, 0.2815, 0.2216, 0.2334, 0.3498, 0.2438, 0.2105, 0.2176, 0.3222,\n",
+      "        0.2425, 0.2385, 0.2953, 0.2966, 0.2478, 0.1967, 0.2622, 0.2948, 0.2620,\n",
+      "        0.1567, 0.2515, 0.2277, 0.2409, 0.1908, 0.1777, 0.2283, 0.2526, 0.3153,\n",
+      "        0.1265, 0.2665, 0.1587, 0.2248, 0.1952, 0.2397, 0.3078, 0.2892, 0.1873,\n",
+      "        0.2170, 0.1928, 0.1279, 0.2252, 0.2984, 0.1842, 0.2391, 0.2414, 0.2519,\n",
+      "        0.2054, 0.3124, 0.2886, 0.2357, 0.3008, 0.3302, 0.2777, 0.2753, 0.2939,\n",
+      "        0.3030, 0.2314, 0.2806, 0.2621, 0.2961, 0.2481, 0.2337, 0.2205, 0.2558,\n",
+      "        0.1551, 0.2504, 0.2486, 0.2595, 0.2464, 0.2826, 0.2144, 0.2283, 0.2370,\n",
+      "        0.2446, 0.2490, 0.2275, 0.2029, 0.2241, 0.2667, 0.1128, 0.1611, 0.2283,\n",
+      "        0.2953, 0.1445, 0.2838, 0.2865, 0.2334, 0.2228, 0.2383, 0.2191, 0.2341,\n",
+      "        0.3029, 0.2578, 0.2499, 0.2731, 0.0957, 0.2641, 0.1700, 0.1965, 0.1991,\n",
+      "        0.2546, 0.2232, 0.2618, 0.2541, 0.2731, 0.3145, 0.1722, 0.3582, 0.2274,\n",
+      "        0.2320, 0.2427, 0.2507, 0.2183, 0.2855, 0.2541, 0.2873, 0.2052, 0.0975,\n",
+      "        0.2244, 0.2564, 0.2838, 0.2367, 0.2036, 0.2096, 0.2324, 0.2080, 0.3336,\n",
+      "        0.2781, 0.2448, 0.2345, 0.3179, 0.2348, 0.2288, 0.2346, 0.2412, 0.2608,\n",
+      "        0.1365, 0.2482, 0.2361, 0.2693, 0.1779, 0.1838, 0.2789, 0.2575, 0.2564,\n",
+      "        0.1833, 0.2132, 0.2776, 0.1315, 0.2350, 0.2673, 0.2888, 0.1893, 0.2289,\n",
+      "        0.2194, 0.2580, 0.3014, 0.2114, 0.1907, 0.2641, 0.1675, 0.2652, 0.1843,\n",
+      "        0.2540, 0.1579, 0.2516, 0.2493, 0.2035, 0.2474, 0.2209, 0.2480, 0.2510,\n",
+      "        0.2121, 0.2228, 0.2979, 0.2076, 0.2552, 0.2538, 0.1045, 0.0945, 0.1965,\n",
+      "        0.2760, 0.1879, 0.2299, 0.2021, 0.1996, 0.2302, 0.2899, 0.2355, 0.2285,\n",
+      "        0.2442, 0.2792, 0.2489, 0.2703, 0.2402, 0.3297, 0.2755, 0.2419, 0.2031,\n",
+      "        0.2312, 0.2710, 0.2305, 0.2191, 0.2917, 0.2234, 0.2699, 0.2229, 0.3324,\n",
+      "        0.1899, 0.2558, 0.2558, 0.2558, 0.2307, 0.2654, 0.2716, 0.2564, 0.2930,\n",
+      "        0.2271, 0.3170, 0.1513, 0.1970, 0.2979, 0.2329, 0.2777, 0.1893, 0.2742,\n",
+      "        0.2913, 0.2734, 0.2492, 0.3071, 0.3141, 0.2087, 0.3670, 0.1685, 0.2648,\n",
+      "        0.2705, 0.2826, 0.2023, 0.0927, 0.0831, 0.2267, 0.2512, 0.2258, 0.3054,\n",
+      "        0.2527, 0.2222, 0.3151, 0.2621, 0.2819, 0.3125, 0.2617, 0.1111, 0.2698,\n",
+      "        0.1970, 0.2008, 0.2072, 0.2001, 0.3113, 0.1264, 0.1944, 0.2754, 0.2651,\n",
+      "        0.2308, 0.3103, 0.1068, 0.2453, 0.2012, 0.2749, 0.1430, 0.2652, 0.2000,\n",
+      "        0.2110, 0.2935, 0.2885, 0.1497, 0.2112, 0.2613, 0.2654, 0.2016, 0.1855,\n",
+      "        0.2299, 0.3125, 0.2023, 0.2645, 0.3055, 0.2494, 0.2885, 0.2477, 0.2624,\n",
+      "        0.2299, 0.2173, 0.2505, 0.2306, 0.1751, 0.3099, 0.3142, 0.1569, 0.2611,\n",
+      "        0.2124, 0.2355, 0.2626, 0.2746, 0.1483, 0.3125, 0.2379, 0.2389, 0.1588,\n",
+      "        0.1836, 0.1975, 0.2667, 0.2396, 0.1070, 0.2580, 0.2683, 0.2174, 0.2215,\n",
+      "        0.2740, 0.2186, 0.2860, 0.1921, 0.2659, 0.2178, 0.2432, 0.2218, 0.2278,\n",
+      "        0.2579, 0.7103, 0.2102, 0.2202, 0.2245, 0.2579, 0.2285, 0.2811, 0.2108,\n",
+      "        0.2333, 0.1989, 0.2355, 0.1854, 0.2948, 0.2504, 0.2080, 0.3233, 0.2522,\n",
+      "        0.2575, 0.2327, 0.2882, 0.2891, 0.2507, 0.2010, 0.1724, 0.2107, 0.1495,\n",
+      "        0.2682, 0.2115, 0.2456, 0.2915, 0.2186, 0.2995, 0.2499, 0.3011, 0.3092,\n",
+      "        0.2232, 0.2383, 0.2484, 0.2268, 0.2387, 0.2018, 0.1924, 0.2010, 0.1550,\n",
+      "        0.2213, 0.2556, 0.1188, 0.2169, 0.2027, 0.2569, 0.1988, 0.2081, 0.2850,\n",
+      "        0.2127, 0.2085, 0.1510, 0.2682, 0.2805, 0.2977, 0.1518, 0.2401, 0.1405,\n",
+      "        0.2525, 0.2474, 0.2519, 0.3248, 0.2640, 0.2422, 0.2375, 0.2092, 0.2776,\n",
+      "        0.2677, 0.2939, 0.2843, 0.1943, 0.2325, 0.2462, 0.3189, 0.2582, 0.2057,\n",
+      "        0.2494, 0.2434, 0.2184, 0.2843, 0.2719, 0.2858, 0.2481, 0.2379, 0.1982,\n",
+      "        0.2965, 0.2861, 0.2309, 0.2339, 0.2730, 0.2853, 0.1987, 0.3017, 0.2153,\n",
+      "        0.2480, 0.2260, 0.1964, 0.2026, 0.2309, 0.2491, 0.2272, 0.2189, 0.2147,\n",
+      "        0.2280, 0.2897, 0.3053, 0.2645, 0.2257, 0.2764, 0.2757, 0.3300, 0.2862,\n",
+      "        0.1575, 0.2718, 0.1852, 0.1724, 0.2155, 0.2515, 0.1680, 0.2668, 0.3401,\n",
+      "        0.1187, 0.2570, 0.2493, 0.2506, 0.2222, 0.2369, 0.2601, 0.1616, 0.2663,\n",
+      "        0.2890, 0.2592, 0.1994, 0.2115, 0.2492, 0.2336, 0.2514, 0.2630])), ('pretrained_model.layer4.2.bn1.bias', tensor([-0.1207, -0.1559, -0.1073, -0.1735, -0.1079, -0.1242, -0.1615, -0.1920,\n",
+      "        -0.0704, -0.0961, -0.1044, -0.1510, -0.1854, -0.2120, -0.1447, -0.1184,\n",
+      "        -0.0212, -0.1120, -0.1369, -0.1233, -0.0920, -0.1277, -0.0786, -0.1166,\n",
+      "        -0.1491, -0.1279, -0.1762, -0.1623, -0.1197, -0.1194, -0.0657, -0.2029,\n",
+      "        -0.1329, -0.1832, -0.1228, -0.0449, -0.1725, -0.1327, -0.1154,  0.0085,\n",
+      "        -0.1302, -0.1316, -0.1762, -0.1176, -0.1139, -0.1404, -0.1470, -0.1423,\n",
+      "        -0.1561, -0.1986, -0.1477, -0.0789, -0.1115, -0.1746, -0.1974, -0.1012,\n",
+      "        -0.1769, -0.1727, -0.1442, -0.1178, -0.0846, -0.1555, -0.1258, -0.0369,\n",
+      "        -0.1708, -0.2012, -0.0911, -0.0896, -0.1097, -0.1870, -0.1477, -0.1448,\n",
+      "        -0.0259, -0.1316, -0.0319, -0.1376, -0.1392, -0.1486, -0.1584, -0.1582,\n",
+      "        -0.0912, -0.1597, -0.0805, -0.0303, -0.1255, -0.1756, -0.0947, -0.2036,\n",
+      "        -0.1428, -0.1954, -0.0985, -0.2258, -0.1761, -0.1616, -0.1628, -0.2052,\n",
+      "        -0.1306, -0.2010, -0.1792, -0.1628, -0.1403, -0.0950, -0.1405, -0.1877,\n",
+      "        -0.0975, -0.1378, -0.1181, -0.1782, -0.0701, -0.2463, -0.2077, -0.1270,\n",
+      "        -0.1090, -0.1391, -0.0741, -0.1392, -0.1369, -0.1451, -0.2223, -0.1866,\n",
+      "        -0.1643, -0.1588, -0.1101, -0.0457, -0.0362, -0.0954, -0.2010, -0.0235,\n",
+      "        -0.1118, -0.1378, -0.1122, -0.1828, -0.2587, -0.1386, -0.1045, -0.1250,\n",
+      "        -0.1446, -0.1110, -0.2347, -0.0819, -0.1600, -0.1557, -0.2086, -0.1223,\n",
+      "        -0.1124, -0.1808, -0.1085, -0.1298, -0.1694, -0.1725, -0.1281, -0.1583,\n",
+      "        -0.1849, -0.1300, -0.1378, -0.1035, -0.1529, -0.1801, -0.1184, -0.1678,\n",
+      "        -0.1459,  0.0521, -0.1321, -0.1387, -0.1506, -0.1610, -0.0965, -0.2032,\n",
+      "        -0.1499, -0.1857, -0.1449, -0.1824, -0.0925, -0.0898, -0.1666, -0.1425,\n",
+      "        -0.0561, -0.1121, -0.1083, -0.1238, -0.0574, -0.1293, -0.1909, -0.1738,\n",
+      "        -0.1103, -0.1106, -0.1553, -0.1029, -0.1617, -0.1022, -0.1002, -0.2335,\n",
+      "        -0.0008, -0.2310, -0.1776, -0.1490, -0.1557, -0.1563, -0.1838, -0.1506,\n",
+      "        -0.1316, -0.0920, -0.1497, -0.2202, -0.0707, -0.2406, -0.1481, -0.1511,\n",
+      "        -0.0585, -0.2539, -0.1386, -0.1342, -0.1577, -0.1189, -0.1138, -0.1934,\n",
+      "        -0.1116, -0.1836, -0.1947, -0.1152, -0.1517, -0.1934, -0.0128, -0.0249,\n",
+      "        -0.0560, -0.1374, -0.0609, -0.1125, -0.1283, -0.1123, -0.0616, -0.1361,\n",
+      "        -0.1387, -0.1678, -0.1155, -0.2308, -0.1301, -0.1225, -0.1175, -0.1495,\n",
+      "        -0.1549, -0.1027, -0.1685, -0.0863, -0.1178, -0.1371, -0.1691, -0.1297,\n",
+      "        -0.1119, -0.2198, -0.0517, -0.2582, -0.1456, -0.1944, -0.1589, -0.1893,\n",
+      "        -0.1082, -0.1832, -0.1717, -0.1591, -0.1741, -0.1439, -0.1756, -0.0340,\n",
+      "        -0.1685, -0.1612, -0.1135, -0.1935, -0.1206, -0.1924, -0.1360, -0.1411,\n",
+      "        -0.0867, -0.1220, -0.1805, -0.1115, -0.1949, -0.0367, -0.1402, -0.1092,\n",
+      "        -0.1631, -0.1154, -0.0549,  0.0160, -0.1132, -0.1843, -0.0847, -0.1622,\n",
+      "        -0.1266, -0.1056, -0.1622, -0.1135, -0.1265, -0.1406, -0.1897, -0.0794,\n",
+      "        -0.1426, -0.2015, -0.1694, -0.0836, -0.1146, -0.1334,  0.0696, -0.1262,\n",
+      "        -0.1825, -0.1833, -0.1518, -0.1832, -0.0228, -0.2287,  0.0642, -0.1759,\n",
+      "         0.0658, -0.1453, -0.1610, -0.1122, -0.1514, -0.1480, -0.1351, -0.1218,\n",
+      "        -0.1911, -0.1237, -0.1492, -0.1623, -0.1887, -0.1472, -0.1214, -0.1539,\n",
+      "        -0.1619, -0.1727, -0.1865, -0.1831, -0.1009, -0.1511, -0.1834, -0.2074,\n",
+      "        -0.0915, -0.1309, -0.1794,  0.1830, -0.1005, -0.0913, -0.1045, -0.0876,\n",
+      "        -0.2105, -0.1490, -0.0277, -0.2186, -0.1897, -0.1147, -0.0765, -0.0642,\n",
+      "        -0.1639, -0.1125, -0.1592, -0.0444, -0.1115, -0.1068, -0.1776, -0.1689,\n",
+      "        -0.2403, -0.1026, -0.1091, -0.0694, -0.2131, -0.1967, -0.1586, -0.1551,\n",
+      "        -0.1012, -0.1958, -0.2963, -0.1449, -0.1586, -0.0854, -0.1600, -0.0934,\n",
+      "        -0.1633, -0.0745, -0.1174, -0.0860, -0.1575, -0.0748, -0.1489, -0.1905,\n",
+      "        -0.1621,  0.0109, -0.0722, -0.1303, -0.1547, -0.1167, -0.1685, -0.1890,\n",
+      "        -0.1492, -0.0418, -0.1016, -0.0665, -0.1312, -0.0708, -0.1997, -0.1804,\n",
+      "        -0.1434, -0.1443, -0.1788, -0.2034, -0.2107, -0.1677, -0.1780, -0.1462,\n",
+      "        -0.1456, -0.1422, -0.1313, -0.1642, -0.0778, -0.0586, -0.1408, -0.1713,\n",
+      "         0.0402, -0.1810, -0.0852, -0.1439, -0.0749, -0.1761, -0.1486, -0.1267,\n",
+      "        -0.1566, -0.0524, -0.1093, -0.1223, -0.1912, -0.0629, -0.1620, -0.0695,\n",
+      "        -0.1074, -0.1105, -0.1611, -0.2026, -0.1402, -0.0939, -0.1973, -0.0940,\n",
+      "        -0.1265, -0.1048, -0.1698, -0.1972, -0.1029, -0.1426, -0.1523, -0.1765,\n",
+      "        -0.1201, -0.1450, -0.0761, -0.1682,  0.0123, -0.1277, -0.1378, -0.1300,\n",
+      "        -0.1451, -0.1605, -0.0658, -0.1219, -0.1941, -0.1300, -0.1178, -0.1067,\n",
+      "        -0.2292, -0.0864, -0.2415, -0.0473, -0.1626, -0.0681, -0.1274, -0.1260,\n",
+      "        -0.0837, -0.1926, -0.1426, -0.1447, -0.1232, -0.1161, -0.1446, -0.2319,\n",
+      "        -0.1499, -0.1536, -0.1238, -0.1567, -0.1674, -0.1966, -0.0622,  0.0103,\n",
+      "        -0.0585, -0.1043, -0.0717, -0.1514, -0.1498, -0.1537, -0.1816,  0.0153,\n",
+      "        -0.1713, -0.1512, -0.1507, -0.0583, -0.1037, -0.1720, -0.0515, -0.1479,\n",
+      "        -0.3102, -0.2418, -0.0840, -0.1068, -0.1615, -0.0769, -0.1388, -0.1729])), ('pretrained_model.layer4.2.bn1.running_mean', tensor([-0.1340, -0.5334, -0.2355, -0.2476, -0.2293, -0.3010, -0.2252, -0.3625,\n",
+      "        -0.1580, -0.1946, -0.2440, -0.3656, -0.5462, -0.3478, -0.4663, -0.3773,\n",
+      "         0.3425, -0.2663, -0.3928, -0.1455, -0.1752, -0.2975, -0.1684, -0.1608,\n",
+      "        -0.2578, -0.3180, -0.4022, -0.5058, -0.4065, -0.2590, -0.0710, -0.3984,\n",
+      "        -0.2076, -0.3754, -0.3398, -0.0599, -0.4776, -0.3624, -0.1350,  0.0259,\n",
+      "        -0.3357, -0.2401, -0.4970, -0.3569, -0.2126, -0.3149, -0.1988, -0.3719,\n",
+      "        -0.3247, -0.4814, -0.4333, -0.2474, -0.3682, -0.3176, -0.5159, -0.2952,\n",
+      "        -0.1977, -0.4060, -0.3943, -0.3201,  0.0014, -0.3707, -0.2726,  0.1106,\n",
+      "        -0.3370, -0.5680,  0.0643, -0.1510, -0.2361, -0.2723, -0.2538, -0.3116,\n",
+      "         0.1283, -0.2757,  0.1132, -0.2898, -0.3299, -0.3471, -0.2290, -0.3760,\n",
+      "        -0.2524, -0.3877, -0.2900, -0.1405, -0.2817, -0.4168, -0.2972, -0.4938,\n",
+      "        -0.3448, -0.5208, -0.3895, -0.5462, -0.2941, -0.2623, -0.3954, -0.4832,\n",
+      "        -0.2327, -0.4118, -0.4876, -0.3363, -0.3811, -0.1279, -0.3690, -0.4280,\n",
+      "        -0.2734, -0.3648, -0.2398, -0.1053, -0.2103, -0.4089, -0.5401, -0.3229,\n",
+      "        -0.2484, -0.2484, -0.1783, -0.3400, -0.1841, -0.3878, -0.3703, -0.4170,\n",
+      "        -0.2997, -0.3657, -0.2283, -0.1357, -0.0466, -0.1955, -0.3577,  0.0114,\n",
+      "        -0.1579, -0.3704, -0.3092, -0.4044, -0.6108, -0.2819, -0.2706, -0.2423,\n",
+      "        -0.3664, -0.1727, -0.5124, -0.4255, -0.2855, -0.4838, -0.5065, -0.2809,\n",
+      "        -0.2537, -0.5191, -0.2973, -0.2954, -0.4254, -0.3716, -0.3944, -0.3727,\n",
+      "        -0.5176, -0.3120, -0.3141, -0.2467, -0.3375, -0.4095, -0.3321, -0.3151,\n",
+      "        -0.3552,  0.4763, -0.2766, -0.3962, -0.4081, -0.3712, -0.1980, -0.5154,\n",
+      "        -0.3043, -0.5233, -0.2612, -0.2438, -0.0629, -0.1195, -0.3049, -0.2993,\n",
+      "        -0.1113, -0.2766, -0.2551, -0.2993, -0.2751, -0.2498, -0.5019, -0.4646,\n",
+      "        -0.3248, -0.3360, -0.2627, -0.1923, -0.2020, -0.1749, -0.0722, -0.5393,\n",
+      "         0.3502, -0.5454, -0.3813, -0.2134, -0.3852, -0.3680, -0.5229, -0.3706,\n",
+      "        -0.3157, -0.2004, -0.3982, -0.3023, -0.0356, -0.3733, -0.5849, -0.3209,\n",
+      "        -0.1606, -0.3908, -0.2846, -0.3472, -0.3712, -0.1957, -0.2268, -0.5395,\n",
+      "        -0.1429, -0.5548, -0.3685, -0.3919, -0.4183, -0.3984,  0.0213,  0.0108,\n",
+      "        -0.0619, -0.3509, -0.0835, -0.1955, -0.3099, -0.1948, -0.0932, -0.3425,\n",
+      "        -0.1790, -0.4048, -0.2001, -0.3885, -0.4078, -0.2630, -0.2465, -0.2983,\n",
+      "        -0.2563, -0.2512, -0.3913, -0.1921, -0.1728, -0.3405, -0.4308, -0.1720,\n",
+      "        -0.2686, -0.3587,  0.0700, -0.3839, -0.3175, -0.3846, -0.3222, -0.3322,\n",
+      "        -0.2296, -0.4076, -0.2208, -0.3755, -0.3458, -0.4232, -0.3628,  0.0840,\n",
+      "        -0.4492, -0.3606, -0.0629, -0.3878, -0.3831, -0.3916, -0.3199, -0.3475,\n",
+      "        -0.1520, -0.1779, -0.3317, -0.3670, -0.1336,  0.0968, -0.3333, -0.1556,\n",
+      "        -0.2271, -0.2351, -0.1987,  0.2151, -0.1884, -0.3557, -0.0329, -0.3683,\n",
+      "        -0.2878, -0.2002, -0.1663, -0.1963, -0.1939, -0.4036, -0.4291, -0.3731,\n",
+      "        -0.2494, -0.5629, -0.5514, -0.2275, -0.2624, -0.1910,  0.6228, -0.3428,\n",
+      "        -0.4091, -0.4659, -0.3609, -0.3473,  0.1480, -0.4685,  0.3688, -0.3366,\n",
+      "         0.3304, -0.2671, -0.5395, -0.2866, -0.3375, -0.3381, -0.6704, -0.3797,\n",
+      "        -0.4461, -0.2362, -0.4183, -0.5013, -0.3764, -0.3267, -0.3266, -0.3037,\n",
+      "        -0.3943, -0.3830, -0.3163, -0.4154, -0.1093, -0.4552, -0.4428, -0.4623,\n",
+      "        -0.1056, -0.4875, -0.4074,  0.7274, -0.3229, -0.1577, -0.2525, -0.1663,\n",
+      "        -0.3504, -0.2446,  0.0303, -0.5086, -0.4262, -0.2051, -0.1649, -0.1313,\n",
+      "        -0.4835, -0.1868, -0.4608, -0.1165, -0.2387, -0.1529, -0.4390, -0.4604,\n",
+      "        -0.5380, -0.0556, -0.2704, -0.0563, -0.4792, -0.4775, -0.3650, -0.4128,\n",
+      "        -0.2170, -0.3357,  0.4668, -0.2805, -0.2872, -0.2065, -0.2448, -0.1833,\n",
+      "        -0.2265, -0.2028, -0.3636, -0.1602, -0.1978, -0.2376, -0.3105, -0.4905,\n",
+      "        -0.5095,  0.1370,  0.0103, -0.4192, -0.2739, -0.2165, -0.3385, -0.2161,\n",
+      "        -0.4948, -0.0248, -0.1489, -0.2436, -0.2229,  0.0201, -0.5181, -0.3510,\n",
+      "        -0.3825, -0.2922, -0.4053, -0.2795, -0.3317, -0.2478, -0.4004, -0.3536,\n",
+      "        -0.4713, -0.3391, -0.3631, -0.5550, -0.2339, -0.2208, -0.3164, -0.4410,\n",
+      "         0.4964, -0.2751, -0.1735, -0.2454, -0.1284, -0.4457, -0.3373, -0.3610,\n",
+      "        -0.4717, -0.1393, -0.2322, -0.2804, -0.4545,  0.0140, -0.3558, -0.1363,\n",
+      "        -0.3558, -0.1582, -0.2372, -0.1932, -0.3634, -0.0942, -0.3044, -0.2311,\n",
+      "        -0.2916, -0.0050, -0.3882, -0.3874, -0.1207, -0.2802, -0.2724, -0.4023,\n",
+      "        -0.2736, -0.3436, -0.1184, -0.3177,  0.1915, -0.2390, -0.3521, -0.1908,\n",
+      "        -0.3759, -0.4858, -0.1036, -0.1870, -0.4559, -0.2036, -0.2989, -0.0985,\n",
+      "        -0.3360, -0.2436, -0.5661, -0.3883, -0.3133, -0.0292, -0.4092, -0.3201,\n",
+      "        -0.1652, -0.4626, -0.1404, -0.5052, -0.3766, -0.2752, -0.2744, -0.3400,\n",
+      "        -0.2699, -0.3151, -0.4310, -0.3794, -0.3019, -0.3744, -0.1527,  0.3431,\n",
+      "        -0.0815, -0.1813, -0.2209, -0.4202, -0.4427, -0.3805, -0.2933,  0.1832,\n",
+      "        -0.4021, -0.3429, -0.3768, -0.0430, -0.2063, -0.3382, -0.1184, -0.3106,\n",
+      "        -0.4725, -0.4553, -0.1002, -0.3143, -0.4208, -0.1576, -0.2873, -0.3993])), ('pretrained_model.layer4.2.bn1.running_var', tensor([0.9093, 1.0921, 1.4250, 0.5835, 1.2732, 1.2479, 1.0081, 0.5593, 1.1542,\n",
+      "        0.8968, 1.0002, 0.6031, 0.9150, 0.6723, 1.0539, 1.9795, 2.4133, 1.3051,\n",
+      "        0.9094, 1.2904, 0.9965, 1.1975, 0.6845, 0.9323, 1.2983, 0.9938, 0.5449,\n",
+      "        0.7870, 1.6758, 1.0854, 1.4974, 0.8521, 1.7596, 0.7467, 1.5563, 1.0127,\n",
+      "        0.6716, 1.2115, 0.7701, 1.3248, 0.7742, 1.2582, 0.9108, 1.2246, 1.2934,\n",
+      "        0.7741, 1.0013, 0.7700, 1.0489, 1.3563, 1.5577, 1.4076, 1.0088, 1.3011,\n",
+      "        0.9189, 1.7029, 1.2111, 1.4097, 1.3854, 0.6684, 1.7295, 1.4646, 1.1430,\n",
+      "        2.9265, 0.8850, 0.8122, 1.4937, 0.8826, 0.5839, 0.7831, 0.8458, 1.8453,\n",
+      "        1.3511, 1.1893, 1.8890, 0.6391, 0.5181, 0.9424, 1.3151, 1.1323, 1.1403,\n",
+      "        0.7219, 1.3772, 1.3329, 1.0878, 1.3825, 0.7867, 0.6983, 0.7394, 0.9603,\n",
+      "        1.1391, 1.0531, 1.0252, 0.6549, 1.3441, 1.0986, 1.2704, 0.8610, 1.2911,\n",
+      "        1.1552, 0.9591, 1.7482, 1.2392, 1.0935, 1.2719, 1.1370, 0.9011, 0.7490,\n",
+      "        0.8948, 0.5459, 0.8137, 1.3984, 1.6779, 1.2209, 1.7987, 0.9079, 1.1569,\n",
+      "        1.2231, 0.6318, 0.5023, 0.5693, 0.6539, 1.2664, 0.7160, 1.7614, 1.3735,\n",
+      "        0.9794, 1.8091, 1.5423, 1.5344, 0.9447, 0.7355, 0.7744, 0.7528, 1.3997,\n",
+      "        1.9137, 1.1401, 1.0534, 1.0551, 0.7190, 1.0286, 0.5900, 0.5831, 0.7935,\n",
+      "        1.3708, 0.7827, 1.3641, 0.9787, 1.1578, 1.4247, 0.6930, 1.7029, 0.6897,\n",
+      "        0.9565, 1.2414, 2.0753, 0.7922, 1.1709, 1.2671, 1.2206, 0.6907, 1.6033,\n",
+      "        0.8931, 1.0673, 1.3121, 0.9396, 1.0641, 0.7990, 0.8173, 0.8432, 1.7016,\n",
+      "        1.0697, 1.4448, 1.1274, 1.5575, 0.8341, 1.4456, 1.0578, 1.1378, 1.2499,\n",
+      "        1.0985, 1.1114, 0.7213, 1.1664, 0.7610, 0.9644, 0.8890, 2.0997, 0.9041,\n",
+      "        0.7213, 1.0549, 0.8378, 1.5317, 0.7492, 0.8409, 0.9323, 0.5484, 0.9224,\n",
+      "        0.7255, 1.2338, 1.7322, 1.2659, 0.7321, 0.6360, 1.0700, 0.7242, 0.8745,\n",
+      "        0.9418, 0.9332, 0.6936, 1.1092, 0.6935, 0.9006, 0.9926, 1.4519, 1.2077,\n",
+      "        0.8969, 0.9934, 1.1900, 1.1341, 1.0727, 0.7714, 1.1992, 0.9305, 1.6536,\n",
+      "        1.1801, 1.4826, 0.8307, 0.5421, 0.8192, 2.0295, 2.1416, 0.8110, 0.8609,\n",
+      "        1.0520, 0.6842, 1.3437, 1.5668, 1.1942, 1.4857, 1.3986, 1.4427, 0.5772,\n",
+      "        1.4648, 1.1153, 0.8031, 0.7068, 1.4889, 1.1265, 0.7823, 2.1237, 1.0159,\n",
+      "        0.5571, 0.7286, 1.1110, 0.6995, 1.1992, 0.7359, 1.1557, 0.9133, 1.1614,\n",
+      "        0.9766, 1.6679, 2.1273, 0.5345, 1.3240, 1.6062, 0.9097, 0.7703, 0.9118,\n",
+      "        1.7551, 1.3188, 1.5252, 1.7276, 1.2220, 1.0868, 1.3264, 2.0149, 1.0191,\n",
+      "        1.5623, 1.0499, 0.6612, 0.7682, 1.0723, 1.2848, 0.7994, 0.9270, 1.4174,\n",
+      "        1.3435, 1.1069, 1.5198, 1.3717, 1.3074, 1.5736, 0.9012, 0.7558, 0.9706,\n",
+      "        0.7271, 0.8340, 1.1465, 0.5823, 1.6547, 2.9452, 0.5896, 1.0186, 1.2551,\n",
+      "        0.7097, 1.2608, 1.3075, 0.8035, 2.8716, 0.9033, 1.2977, 1.0767, 0.9702,\n",
+      "        0.8410, 1.3279, 1.3631, 1.0245, 0.9639, 1.0286, 1.2868, 0.7281, 0.6686,\n",
+      "        0.5852, 1.8439, 0.7399, 1.1463, 1.3078, 0.9153, 1.0449, 0.7306, 1.6010,\n",
+      "        0.7410, 0.6454, 0.8621, 1.0192, 0.8339, 1.3331, 2.9797, 0.7186, 1.8792,\n",
+      "        1.0017, 1.5095, 0.9857, 0.8135, 1.0945, 0.9666, 0.5923, 1.1086, 0.8167,\n",
+      "        0.9734, 0.5256, 1.4602, 1.1337, 0.5714, 1.5424, 1.5174, 0.8934, 0.7417,\n",
+      "        0.7609, 1.2117, 2.0965, 1.0148, 0.9262, 0.7574, 0.8057, 0.7863, 1.1359,\n",
+      "        0.8072, 3.1992, 0.6290, 0.7430, 1.3332, 0.9399, 1.4368, 1.1690, 1.2235,\n",
+      "        1.3339, 1.1361, 0.9442, 1.3736, 1.5344, 0.8454, 0.8497, 1.5620, 2.0146,\n",
+      "        1.3359, 0.6246, 1.1764, 0.9255, 0.7867, 0.8732, 1.1734, 0.9239, 0.7990,\n",
+      "        1.1813, 1.1207, 0.8353, 1.0635, 0.7754, 1.4395, 0.8557, 0.8158, 0.9780,\n",
+      "        0.8632, 0.8109, 0.8944, 1.0216, 0.9093, 0.7805, 0.7917, 1.4343, 0.9240,\n",
+      "        0.6996, 0.9667, 0.9434, 0.8243, 1.6961, 0.9357, 0.9925, 0.6737, 1.1230,\n",
+      "        0.7334, 0.8118, 1.4091, 1.2498, 1.3334, 1.2136, 0.8785, 0.7560, 0.7739,\n",
+      "        1.4718, 1.0995, 0.9524, 1.0549, 1.2327, 0.9647, 0.5669, 1.1219, 1.2167,\n",
+      "        1.3645, 1.3572, 0.7887, 0.8119, 1.1277, 0.9359, 1.5053, 1.2143, 0.7290,\n",
+      "        1.7980, 0.7641, 1.2991, 1.9280, 1.5320, 1.4499, 0.9859, 0.8736, 1.1663,\n",
+      "        1.5148, 1.2126, 1.1182, 1.1837, 1.7732, 0.7148, 1.1748, 1.0460, 2.2146,\n",
+      "        0.9739, 1.9353, 0.6978, 0.7869, 1.5131, 0.9117, 1.0055, 1.1048, 0.9478,\n",
+      "        1.1670, 1.1508, 1.0680, 0.8121, 1.3979, 1.8147, 1.2395, 1.3464, 0.8580,\n",
+      "        1.2794, 4.3395, 1.3030, 0.5221, 1.1968, 1.1242, 0.6126, 1.1890, 1.2811,\n",
+      "        2.2363, 0.9961, 0.9954, 0.9328, 2.4707, 1.4140, 0.9281, 0.9070, 1.1936,\n",
+      "        0.5566, 0.7317, 1.1917, 1.1556, 0.9082, 1.7250, 1.0797, 1.1006])), ('pretrained_model.layer4.2.bn1.num_batches_tracked', tensor(0)), ('pretrained_model.layer4.2.conv2.weight', tensor([[[[ 2.8622e-03,  4.3460e-03,  6.8570e-03],\n",
+      "          [ 3.7621e-03,  4.9132e-03,  8.4799e-03],\n",
+      "          [ 8.2097e-03,  5.2934e-03,  8.9883e-03]],\n",
+      "\n",
+      "         [[ 7.4876e-03,  7.4930e-03,  1.0265e-02],\n",
+      "          [ 7.3925e-03,  1.2411e-02,  5.3890e-03],\n",
+      "          [ 6.8303e-03,  1.0284e-02,  3.9352e-03]],\n",
+      "\n",
+      "         [[ 5.5359e-03,  2.7336e-03,  2.6623e-03],\n",
+      "          [-2.6599e-04, -3.3604e-03, -8.0718e-04],\n",
+      "          [-1.3668e-03, -2.0044e-03, -2.1477e-04]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-4.9640e-03,  2.4739e-03,  3.5624e-03],\n",
+      "          [ 8.6863e-04,  3.3596e-03,  7.4239e-03],\n",
+      "          [ 6.5283e-03,  1.3958e-02,  1.1191e-02]],\n",
+      "\n",
+      "         [[-3.1471e-03, -2.6395e-03, -5.3400e-03],\n",
+      "          [-5.4575e-04, -3.9557e-04, -4.2191e-03],\n",
+      "          [-8.2467e-03, -8.6885e-03, -1.1831e-02]],\n",
+      "\n",
+      "         [[-4.9236e-03, -1.0924e-02, -4.3205e-03],\n",
+      "          [-1.9257e-03, -4.8700e-03,  3.2503e-03],\n",
+      "          [ 3.8479e-04, -2.8046e-03,  2.6795e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-5.1585e-03, -3.7480e-03, -3.6516e-03],\n",
+      "          [-4.9310e-03, -4.8656e-03, -4.4243e-03],\n",
+      "          [ 1.3842e-03,  4.3667e-03,  8.0978e-04]],\n",
+      "\n",
+      "         [[ 9.0151e-03,  1.0521e-02,  1.3904e-02],\n",
+      "          [ 3.6731e-03,  7.5034e-03,  9.7238e-03],\n",
+      "          [ 1.7137e-03,  5.9445e-03,  5.9036e-03]],\n",
+      "\n",
+      "         [[ 1.5114e-02,  1.6149e-02,  2.0465e-02],\n",
+      "          [ 1.0168e-02,  5.1772e-03,  1.2459e-02],\n",
+      "          [ 1.4852e-02,  1.2942e-02,  1.9695e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-6.2787e-03, -6.3069e-03, -1.1821e-02],\n",
+      "          [-5.1576e-03, -3.5174e-03, -5.3861e-03],\n",
+      "          [ 2.4476e-03,  3.8140e-03,  2.3321e-03]],\n",
+      "\n",
+      "         [[-3.7222e-03, -8.6258e-03, -2.2908e-03],\n",
+      "          [-6.0043e-03, -6.8204e-03, -4.1543e-03],\n",
+      "          [-3.6984e-03, -5.6922e-03, -4.6917e-03]],\n",
+      "\n",
+      "         [[ 2.7850e-04,  1.1214e-03, -2.0031e-03],\n",
+      "          [ 2.3907e-03,  8.0591e-03,  2.4640e-03],\n",
+      "          [-3.6255e-03,  8.9599e-04, -6.2562e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.0159e-03,  8.8872e-04, -3.2771e-03],\n",
+      "          [-6.1087e-03, -3.1055e-03, -5.9302e-03],\n",
+      "          [-5.1283e-03, -4.0419e-03, -4.2212e-03]],\n",
+      "\n",
+      "         [[ 2.4453e-02,  1.8727e-02,  2.8171e-02],\n",
+      "          [ 1.6586e-02,  1.0890e-02,  2.0456e-02],\n",
+      "          [ 1.2508e-02,  1.0642e-02,  1.6820e-02]],\n",
+      "\n",
+      "         [[ 1.2947e-02,  6.0297e-03,  1.3157e-02],\n",
+      "          [ 1.0959e-02, -3.9737e-03,  8.8010e-03],\n",
+      "          [ 1.6061e-02,  5.6571e-03,  1.2045e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-1.9467e-02, -1.9432e-02, -2.2193e-02],\n",
+      "          [-1.0994e-02, -9.8265e-03, -1.5642e-02],\n",
+      "          [-1.6934e-02, -1.7939e-02, -2.0418e-02]],\n",
+      "\n",
+      "         [[-1.3641e-02, -1.3895e-02, -1.1743e-02],\n",
+      "          [-1.0377e-02, -1.0536e-02, -6.8997e-03],\n",
+      "          [-8.8334e-03, -1.5472e-02, -1.2379e-02]],\n",
+      "\n",
+      "         [[-1.7646e-02, -1.9963e-02, -1.7521e-02],\n",
+      "          [-1.0619e-02, -7.2389e-03, -1.0232e-02],\n",
+      "          [-1.0424e-02, -1.0923e-02, -9.7208e-03]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 1.8201e-03,  2.1317e-03, -2.7009e-04],\n",
+      "          [ 1.7733e-04,  2.9236e-05,  2.3389e-03],\n",
+      "          [-1.4565e-03, -1.0188e-03,  9.6538e-04]],\n",
+      "\n",
+      "         [[-1.3149e-02, -1.3398e-02, -1.4585e-02],\n",
+      "          [-9.0517e-03, -5.0911e-03, -9.2265e-03],\n",
+      "          [-2.0962e-03,  2.4860e-03, -5.1588e-03]],\n",
+      "\n",
+      "         [[-2.3745e-03,  1.2793e-03, -2.0331e-03],\n",
+      "          [ 5.0804e-03,  6.5050e-03,  2.1059e-03],\n",
+      "          [ 4.1150e-03,  3.0220e-03,  6.7107e-04]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 4.7894e-03,  5.4518e-03,  7.9778e-03],\n",
+      "          [ 9.9784e-03,  1.3708e-02,  1.8736e-02],\n",
+      "          [ 7.4680e-03,  1.0685e-02,  1.4561e-02]],\n",
+      "\n",
+      "         [[ 6.4314e-03,  5.5866e-03,  8.0537e-03],\n",
+      "          [ 1.0361e-03,  3.7586e-04,  3.6025e-03],\n",
+      "          [-3.6323e-03, -2.3339e-04, -1.9814e-03]],\n",
+      "\n",
+      "         [[ 2.8104e-02,  2.2643e-02,  3.4877e-02],\n",
+      "          [ 2.2292e-02,  1.4041e-02,  2.8667e-02],\n",
+      "          [ 2.7230e-02,  1.7949e-02,  3.0010e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-7.0438e-03, -1.6077e-02, -1.6491e-02],\n",
+      "          [-8.6619e-03, -1.0257e-02, -1.6277e-02],\n",
+      "          [-1.3802e-02, -1.2755e-02, -1.5084e-02]],\n",
+      "\n",
+      "         [[ 2.1555e-02,  1.8148e-02,  1.6869e-02],\n",
+      "          [ 2.2623e-02,  1.4831e-02,  2.0600e-02],\n",
+      "          [ 2.2157e-02,  1.9822e-02,  2.1906e-02]],\n",
+      "\n",
+      "         [[-7.9246e-03, -5.1434e-03, -7.6977e-03],\n",
+      "          [-2.8892e-03, -7.2441e-04, -5.9750e-03],\n",
+      "          [-5.8364e-03, -3.3364e-03, -6.3573e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 5.5542e-03,  3.0190e-03,  3.0507e-05],\n",
+      "          [ 5.9886e-03,  2.8229e-03,  1.6021e-03],\n",
+      "          [-3.9497e-04, -5.5473e-04, -7.6913e-03]],\n",
+      "\n",
+      "         [[-1.0851e-02, -1.3387e-02, -1.0642e-02],\n",
+      "          [-3.8617e-03, -8.4058e-03, -2.8962e-03],\n",
+      "          [-2.4857e-03, -5.0829e-03, -1.9132e-03]],\n",
+      "\n",
+      "         [[-5.1433e-03, -3.6635e-03, -6.7085e-03],\n",
+      "          [-4.9767e-03, -4.9525e-03, -3.2389e-03],\n",
+      "          [-3.8885e-03, -4.3711e-03, -2.0640e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 2.9893e-03,  3.1605e-03,  8.1978e-05],\n",
+      "          [-2.1595e-03, -3.8447e-05,  1.2554e-03],\n",
+      "          [-2.0709e-03, -3.0832e-04, -4.3493e-04]],\n",
+      "\n",
+      "         [[ 1.4782e-02,  1.3350e-02,  1.3493e-02],\n",
+      "          [ 1.4471e-02,  8.1213e-03,  1.5256e-02],\n",
+      "          [ 1.8969e-02,  1.8476e-02,  1.9452e-02]],\n",
+      "\n",
+      "         [[-1.2813e-02, -2.0125e-02, -2.1341e-02],\n",
+      "          [-9.9182e-03, -6.2866e-03, -1.6529e-02],\n",
+      "          [-1.2576e-02, -1.1296e-02, -1.9218e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 7.6286e-03,  5.1254e-03,  3.3873e-03],\n",
+      "          [ 3.8063e-04, -6.0684e-03, -5.3204e-03],\n",
+      "          [ 9.6354e-04, -2.9891e-03,  2.0007e-03]],\n",
+      "\n",
+      "         [[-5.9226e-04, -2.1545e-03, -5.6571e-04],\n",
+      "          [-5.5155e-03, -2.9953e-03,  1.7660e-03],\n",
+      "          [ 1.7825e-03,  5.5106e-03,  2.9869e-03]],\n",
+      "\n",
+      "         [[-7.4748e-04, -3.0366e-03, -4.2358e-03],\n",
+      "          [-5.4971e-03, -8.9303e-03, -1.1392e-02],\n",
+      "          [-1.3906e-02, -1.4200e-02, -1.8313e-02]]]])), ('pretrained_model.layer4.2.bn2.weight', tensor([0.2311, 0.2762, 0.2201, 0.2425, 0.2748, 0.1922, 0.2574, 0.2434, 0.2122,\n",
+      "        0.2519, 0.2649, 0.2752, 0.2822, 0.2141, 0.2094, 0.3142, 0.2259, 0.2124,\n",
+      "        0.2510, 0.1760, 0.2219, 0.2247, 0.1978, 0.2267, 0.2801, 0.2296, 0.2010,\n",
+      "        0.1753, 0.2377, 0.2489, 0.2742, 0.1338, 0.2806, 0.2029, 0.2834, 0.2256,\n",
+      "        0.1994, 0.2231, 0.2302, 0.2003, 0.2508, 0.2412, 0.2441, 0.2151, 0.2575,\n",
+      "        0.2265, 0.1480, 0.2121, 0.2323, 0.2363, 0.2952, 0.2372, 0.2681, 0.2101,\n",
+      "        0.2377, 0.2333, 0.2615, 0.2582, 0.1763, 0.2257, 0.2160, 0.2982, 0.2224,\n",
+      "        0.2381, 0.2438, 0.1674, 0.1783, 0.1118, 0.2460, 0.2786, 0.1963, 0.1934,\n",
+      "        0.2142, 0.2095, 0.2511, 0.3040, 0.2810, 0.2557, 0.2192, 0.2784, 0.2311,\n",
+      "        0.2577, 0.1961, 0.2422, 0.2374, 0.2325, 0.2197, 0.2282, 0.2091, 0.2574,\n",
+      "        0.2090, 0.3036, 0.2281, 0.2543, 0.2605, 0.2206, 0.2274, 0.2264, 0.2878,\n",
+      "        0.2778, 0.1800, 0.2319, 0.2023, 0.2815, 0.2849, 0.2338, 0.2267, 0.2604,\n",
+      "        0.2541, 0.1987, 0.2816, 0.2454, 0.2308, 0.2069, 0.1897, 0.2110, 0.2407,\n",
+      "        0.2292, 0.1636, 0.2293, 0.1636, 0.2659, 0.2235, 0.2519, 0.2405, 0.2180,\n",
+      "        0.2687, 0.2774, 0.2271, 0.1896, 0.2172, 0.1976, 0.2247, 0.2803, 0.1954,\n",
+      "        0.1977, 0.2144, 0.1749, 0.2222, 0.2238, 0.1746, 0.2302, 0.1999, 0.2592,\n",
+      "        0.2001, 0.2187, 0.2970, 0.2215, 0.2131, 0.1757, 0.2407, 0.2471, 0.2782,\n",
+      "        0.2744, 0.1802, 0.2108, 0.2018, 0.2712, 0.2121, 0.3086, 0.2628, 0.2327,\n",
+      "        0.2601, 0.1882, 0.2887, 0.2510, 0.2455, 0.2439, 0.1852, 0.2350, 0.2261,\n",
+      "        0.2753, 0.2483, 0.2959, 0.3121, 0.2427, 0.3135, 0.3207, 0.2725, 0.2698,\n",
+      "        0.1568, 0.2268, 0.2388, 0.2225, 0.2452, 0.3052, 0.2141, 0.2139, 0.2237,\n",
+      "        0.2443, 0.2266, 0.2305, 0.2725, 0.2570, 0.2824, 0.2172, 0.2283, 0.2271,\n",
+      "        0.2431, 0.2678, 0.2894, 0.2109, 0.2026, 0.2157, 0.2327, 0.1921, 0.2612,\n",
+      "        0.2242, 0.2288, 0.2342, 0.2101, 0.3857, 0.2127, 0.2800, 0.2023, 0.2809,\n",
+      "        0.2642, 0.1829, 0.2778, 0.2484, 0.2469, 0.2375, 0.2112, 0.2277, 0.1720,\n",
+      "        0.2923, 0.2320, 0.2890, 0.2953, 0.1490, 0.2543, 0.1731, 0.2271, 0.2003,\n",
+      "        0.2156, 0.2837, 0.2242, 0.2011, 0.1992, 0.1895, 0.2691, 0.2256, 0.2493,\n",
+      "        0.2759, 0.2069, 0.3297, 0.2093, 0.2098, 0.2142, 0.2182, 0.2238, 0.2561,\n",
+      "        0.2565, 0.2380, 0.2388, 0.1879, 0.2923, 0.2341, 0.2028, 0.1848, 0.2033,\n",
+      "        0.1737, 0.2259, 0.2346, 0.1906, 0.2229, 0.1933, 0.2287, 0.2573, 0.2563,\n",
+      "        0.2709, 0.1927, 0.2226, 0.2084, 0.2545, 0.2522, 0.2137, 0.2017, 0.2522,\n",
+      "        0.2907, 0.2467, 0.2569, 0.2074, 0.1762, 0.2138, 0.2175, 0.2043, 0.2316,\n",
+      "        0.2620, 0.2400, 0.2271, 0.1897, 0.2501, 0.2461, 0.2245, 0.2493, 0.2551,\n",
+      "        0.2241, 0.2165, 0.1928, 0.2184, 0.1915, 0.2783, 0.2629, 0.1810, 0.2254,\n",
+      "        0.2602, 0.2051, 0.2206, 0.2633, 0.2258, 0.2187, 0.2539, 0.2009, 0.2177,\n",
+      "        0.2594, 0.2842, 0.2067, 0.2838, 0.1918, 0.2355, 0.2111, 0.2093, 0.2043,\n",
+      "        0.2150, 0.2260, 0.2098, 0.2187, 0.2396, 0.2278, 0.3006, 0.2351, 0.2805,\n",
+      "        0.2682, 0.1876, 0.2317, 0.2414, 0.1863, 0.1918, 0.2250, 0.1958, 0.1816,\n",
+      "        0.1946, 0.2464, 0.2330, 0.1960, 0.2355, 0.2089, 0.2239, 0.2437, 0.2406,\n",
+      "        0.2697, 0.2331, 0.2739, 0.1995, 0.2296, 0.2461, 0.2324, 0.2270, 0.2878,\n",
+      "        0.2214, 0.2439, 0.2337, 0.2153, 0.2715, 0.2005, 0.2757, 0.1946, 0.2624,\n",
+      "        0.2138, 0.2184, 0.2148, 0.1805, 0.2237, 0.2250, 0.2235, 0.2569, 0.1969,\n",
+      "        0.2048, 0.2075, 0.2636, 0.2540, 0.2617, 0.2227, 0.2692, 0.2522, 0.2780,\n",
+      "        0.2028, 0.2480, 0.2161, 0.1928, 0.2301, 0.2244, 0.2598, 0.2813, 0.1921,\n",
+      "        0.2378, 0.2287, 0.2558, 0.2464, 0.2205, 0.2482, 0.2189, 0.2551, 0.2244,\n",
+      "        0.2424, 0.2249, 0.2431, 0.2320, 0.2061, 0.2006, 0.2133, 0.2314, 0.2378,\n",
+      "        0.2304, 0.1981, 0.2322, 0.2488, 0.2191, 0.2388, 0.2100, 0.2094, 0.1764,\n",
+      "        0.2099, 0.2218, 0.2288, 0.3257, 0.2697, 0.1884, 0.2760, 0.2246, 0.3147,\n",
+      "        0.2399, 0.2474, 0.2165, 0.3232, 0.1880, 0.2420, 0.2022, 0.2222, 0.1917,\n",
+      "        0.2434, 0.2099, 0.2115, 0.2278, 0.2102, 0.2154, 0.1949, 0.2691, 0.2340,\n",
+      "        0.2451, 0.1863, 0.2503, 0.2623, 0.1891, 0.2136, 0.2222, 0.2657, 0.1531,\n",
+      "        0.2655, 0.2259, 0.2000, 0.1838, 0.2712, 0.2386, 0.1927, 0.2517, 0.2341,\n",
+      "        0.2209, 0.2126, 0.2444, 0.2305, 0.2173, 0.2678, 0.2478, 0.2661, 0.1995,\n",
+      "        0.2302, 0.2275, 0.2777, 0.2491, 0.1688, 0.1473, 0.2242, 0.2808, 0.2339,\n",
+      "        0.2545, 0.2270, 0.2093, 0.2348, 0.2907, 0.2638, 0.2075, 0.2035, 0.2400,\n",
+      "        0.2400, 0.3115, 0.2563, 0.2472, 0.2077, 0.2425, 0.2110, 0.2183, 0.2688,\n",
+      "        0.2513, 0.2477, 0.2272, 0.1967, 0.1908, 0.2337, 0.2346, 0.2381])), ('pretrained_model.layer4.2.bn2.bias', tensor([-3.8596e-02,  8.6706e-03, -8.8934e-03, -6.1567e-02, -6.5767e-02,\n",
+      "        -2.4319e-02, -6.7862e-02, -7.8586e-02, -2.1824e-02, -2.5539e-02,\n",
+      "        -2.8572e-02, -7.9416e-02, -1.5781e-02, -2.9143e-02, -3.3755e-02,\n",
+      "        -6.9968e-02, -3.4594e-02, -1.1352e-02, -1.0355e-02, -1.3103e-02,\n",
+      "        -1.1929e-02, -1.2694e-02, -6.6532e-03, -9.0186e-02, -3.6522e-02,\n",
+      "        -1.3252e-01, -2.8352e-02, -2.8082e-02, -2.7034e-02, -3.5813e-02,\n",
+      "        -2.2831e-02, -2.2446e-02, -2.3214e-01, -1.5765e-01, -4.9593e-02,\n",
+      "        -9.2071e-03, -1.3139e-02, -2.0589e-02, -1.5120e-01, -1.4013e-02,\n",
+      "         8.5973e-03, -2.5530e-02, -2.2489e-02, -5.6634e-02, -3.0019e-02,\n",
+      "        -4.1595e-02, -3.1187e-02, -3.8780e-02, -3.6629e-02, -2.2318e-02,\n",
+      "         1.6367e-02,  9.2515e-03, -3.6938e-02, -6.0452e-02, -4.2735e-03,\n",
+      "        -1.6342e-02, -3.3149e-02, -1.6012e-02, -1.7026e-02, -4.3295e-02,\n",
+      "        -4.2432e-02, -2.7761e-02, -1.5528e-02, -2.9065e-02, -1.6186e-02,\n",
+      "        -1.1006e-02, -1.8258e-03,  9.5592e-02, -3.2231e-02, -4.6929e-02,\n",
+      "        -1.1410e-01, -1.3929e-02, -1.2188e-01, -4.1134e-02, -1.3097e-02,\n",
+      "        -6.5626e-03, -6.6948e-02,  2.4133e-02, -4.4243e-02, -3.6017e-02,\n",
+      "        -1.7116e-02, -6.8880e-03,  2.2758e-03, -3.1085e-02, -1.0629e-01,\n",
+      "         1.9292e-04,  5.1383e-03, -1.9420e-02,  2.3883e-03, -5.9509e-02,\n",
+      "        -3.1620e-02, -1.7759e-02, -1.6901e-02, -6.0300e-03, -2.3337e-02,\n",
+      "        -2.5777e-03, -2.2012e-02, -6.9368e-02, -4.3822e-02, -4.0957e-02,\n",
+      "        -1.0504e-02, -3.7039e-02, -6.6790e-02, -1.1786e-02, -1.6045e-02,\n",
+      "        -2.7185e-02, -9.6056e-03,  2.2793e-03, -3.6036e-03, -3.4393e-02,\n",
+      "        -2.6257e-02, -1.4445e-02, -5.8868e-02, -7.2231e-03, -3.2794e-02,\n",
+      "        -4.8251e-02, -4.2873e-02, -1.6876e-01,  7.5314e-03, -3.1267e-02,\n",
+      "        -9.1540e-03, -2.2095e-02, -5.0264e-02,  5.1787e-03, -4.0356e-02,\n",
+      "        -1.6893e-01, -1.7008e-02, -1.3669e-02, -1.1153e-02, -3.5091e-02,\n",
+      "         1.4985e-02, -2.9181e-02, -3.3947e-02, -1.2577e-02, -2.3690e-02,\n",
+      "        -3.6310e-02, -5.3527e-02, -3.7106e-02, -2.7903e-02, -4.0786e-02,\n",
+      "        -2.9557e-02, -1.8554e-01, -1.4745e-02,  1.1319e-02, -3.6357e-02,\n",
+      "        -3.4659e-02, -4.8118e-02,  8.1830e-03, -3.9990e-02, -1.0460e-02,\n",
+      "        -2.6011e-02, -2.6799e-02, -2.5369e-02, -4.4867e-02, -9.2240e-03,\n",
+      "        -1.6053e-02, -1.8737e-02, -1.0840e-02, -4.4731e-02, -1.1528e-01,\n",
+      "         1.6224e-02, -6.9801e-02, -2.9702e-02, -3.0871e-02, -2.7892e-02,\n",
+      "        -2.1580e-02, -3.2745e-02,  3.6277e-03, -2.6493e-02, -2.9277e-02,\n",
+      "        -7.0665e-02, -2.8333e-02, -6.9106e-02, -2.2791e-01, -6.9556e-02,\n",
+      "        -2.0144e-02, -3.0602e-02,  4.7350e-04, -2.0764e-02, -1.9240e-02,\n",
+      "        -5.0730e-03, -3.0544e-02, -1.1796e-01, -1.1664e-01, -2.5142e-02,\n",
+      "        -3.0200e-02, -1.1321e-02, -1.7123e-01, -1.3086e-01, -4.7148e-02,\n",
+      "        -2.1755e-02,  5.3004e-03, -2.6211e-02, -5.0842e-02,  4.3171e-03,\n",
+      "        -4.3078e-03, -3.5100e-02, -3.8862e-02,  3.1254e-03, -2.1452e-02,\n",
+      "         8.1311e-03, -3.7325e-02, -5.0068e-03, -1.4193e-02, -7.5310e-03,\n",
+      "        -1.8775e-02, -1.8173e-04,  1.3678e-03,  1.5667e-03, -6.1274e-03,\n",
+      "        -3.4370e-02,  7.8302e-03, -2.4781e-02, -2.8044e-02, -4.7920e-02,\n",
+      "        -8.8874e-02, -1.7281e-01, -1.2772e-02, -5.1402e-02, -4.0906e-02,\n",
+      "        -1.1587e-02, -1.3525e-02,  1.6110e-02, -3.1690e-02, -8.0082e-03,\n",
+      "        -1.9201e-02, -7.0304e-03, -5.7813e-02, -2.7064e-02, -1.3430e-02,\n",
+      "        -1.3301e-02, -3.6368e-02,  2.2221e-02, -1.8344e-02, -1.1481e-02,\n",
+      "        -1.6233e-02, -3.7782e-02, -1.1743e-02, -4.4495e-03, -1.9682e-02,\n",
+      "        -9.0114e-03, -1.3017e-02, -3.3379e-02, -6.2934e-03,  1.0330e-01,\n",
+      "        -2.9971e-02, -1.3096e-02, -1.5962e-01, -4.0068e-02, -1.4390e-02,\n",
+      "        -8.8001e-02, -3.5798e-02, -1.4311e-02, -7.8518e-03, -3.2214e-02,\n",
+      "        -2.2701e-02, -1.3672e-01, -1.5085e-01, -6.7656e-02, -8.8933e-02,\n",
+      "        -7.0968e-03, -1.8520e-02, -1.2826e-02, -8.4449e-02,  8.0809e-03,\n",
+      "         4.4991e-03, -2.3456e-02, -3.7367e-02, -2.4565e-02, -1.9120e-02,\n",
+      "        -1.2855e-01, -2.5160e-02,  5.8839e-03, -4.2386e-02, -7.7241e-05,\n",
+      "        -2.3035e-02,  1.5316e-03, -2.9633e-02, -3.7725e-02, -6.3837e-02,\n",
+      "        -1.1285e-02, -2.2838e-02,  4.5068e-03, -1.7675e-02, -2.0170e-02,\n",
+      "        -1.9500e-02, -2.4221e-02, -2.5728e-02, -4.2052e-02, -9.8745e-03,\n",
+      "        -4.2147e-02,  9.8425e-03,  2.5189e-02, -5.0504e-02, -2.2322e-02,\n",
+      "        -1.1777e-02,  8.1397e-03, -2.1839e-02,  4.5018e-03, -2.0076e-02,\n",
+      "        -1.9082e-02, -3.1652e-02, -1.4395e-02, -2.8456e-02, -3.8957e-02,\n",
+      "        -3.2614e-03, -2.0745e-02, -8.2204e-02,  1.0739e-02, -5.6891e-02,\n",
+      "         2.8131e-03,  2.5036e-02, -1.8144e-02, -2.2630e-02, -1.9303e-02,\n",
+      "         6.9820e-03, -1.7760e-02, -8.3291e-02, -3.8955e-03, -3.8006e-02,\n",
+      "        -3.2329e-02, -2.2783e-02,  1.2545e-02, -1.7192e-02, -5.4621e-02,\n",
+      "        -1.0552e-02, -2.3394e-02, -1.6289e-02, -1.4099e-01, -1.5966e-01,\n",
+      "        -1.4462e-02, -1.6903e-02, -3.3337e-02, -6.3006e-02, -1.1056e-02,\n",
+      "         4.3974e-03, -1.5799e-03, -1.2300e-01, -1.0163e-01, -9.6553e-02,\n",
+      "        -3.8570e-02, -9.7801e-02, -1.6904e-02, -4.5741e-02, -3.1879e-02,\n",
+      "        -1.8221e-02, -4.6214e-02,  4.8510e-03, -3.1154e-02,  1.1176e-02,\n",
+      "        -3.7308e-02, -1.9544e-02, -6.5991e-03, -1.7536e-02,  8.2969e-04,\n",
+      "        -8.0468e-02,  6.4584e-03, -2.3511e-02, -2.4431e-03, -1.4355e-01,\n",
+      "        -5.4058e-03, -1.9346e-02, -4.7828e-03, -1.8226e-02, -4.6412e-02,\n",
+      "         1.6143e-02, -2.2520e-02, -8.7874e-02, -4.9484e-02, -2.9680e-03,\n",
+      "        -1.6585e-02, -1.1371e-01, -2.1658e-02, -5.1732e-02,  8.0124e-04,\n",
+      "        -2.8938e-02, -2.2157e-02, -8.1122e-02, -2.5502e-02, -3.2518e-02,\n",
+      "        -4.8346e-02, -5.0330e-02, -6.6838e-02, -1.5588e-02, -6.9268e-02,\n",
+      "        -6.6926e-02,  1.6697e-05, -1.0440e-02, -1.2216e-02,  1.5794e-02,\n",
+      "         2.8501e-04, -2.5368e-02, -2.5171e-02, -1.2350e-01, -3.6919e-02,\n",
+      "        -2.4915e-02, -2.4980e-02, -5.8566e-03, -7.6766e-02,  7.6988e-03,\n",
+      "        -1.2623e-01, -2.5012e-02, -3.7473e-02, -5.9619e-02, -1.9912e-02,\n",
+      "        -3.7467e-03, -3.8315e-02, -5.5325e-02,  6.6042e-04, -1.6814e-02,\n",
+      "        -3.5212e-02, -3.7100e-02, -1.1754e-02,  8.7486e-03, -2.2323e-02,\n",
+      "        -1.2899e-03, -4.1059e-02, -6.6046e-02, -1.8142e-02, -6.1744e-02,\n",
+      "        -1.2962e-03, -2.7045e-02, -4.3241e-02, -4.0180e-02, -1.2106e-03,\n",
+      "        -8.5330e-03, -4.3310e-02,  4.5585e-03, -1.8420e-02, -2.7171e-02,\n",
+      "        -3.2159e-02, -1.5528e-01, -2.2906e-02, -3.4177e-02, -1.5861e-01,\n",
+      "        -2.0123e-02, -2.3298e-02,  1.0020e-03, -1.3583e-02,  7.1186e-03,\n",
+      "        -4.5620e-02, -2.3757e-02, -1.6820e-02, -3.3990e-02, -1.6989e-02,\n",
+      "        -3.2194e-03, -3.7685e-02, -2.3451e-02, -2.0078e-02, -3.1419e-02,\n",
+      "        -1.1734e-02,  9.4996e-03, -3.6332e-02, -5.2627e-02, -2.1792e-02,\n",
+      "        -1.5049e-01, -1.4717e-02, -1.9361e-02, -2.3776e-02, -1.1212e-02,\n",
+      "        -7.7451e-04, -1.4076e-02, -8.0714e-03, -1.9481e-02, -1.3622e-01,\n",
+      "        -4.0141e-02, -2.0514e-02, -6.2883e-02,  5.2099e-04, -5.3551e-02,\n",
+      "         9.0225e-03, -1.8437e-02, -1.0911e-02, -1.6949e-02, -2.0545e-01,\n",
+      "        -3.2998e-02,  1.3214e-02, -1.1114e-03, -1.8827e-02, -3.0316e-02,\n",
+      "        -1.7221e-03, -2.5796e-02, -2.6791e-02, -2.2063e-02, -3.2878e-02,\n",
+      "        -6.5850e-03, -3.1210e-02, -7.7003e-02, -2.2050e-02, -4.4825e-02,\n",
+      "        -2.3153e-02, -1.6829e-02, -2.9851e-03, -1.4277e-03, -3.5948e-02,\n",
+      "        -2.2893e-02, -2.9415e-01, -2.2804e-02, -1.8373e-02, -1.1848e-02,\n",
+      "        -3.9367e-02, -1.1426e-01, -1.6900e-02, -2.6385e-02, -3.3328e-02,\n",
+      "        -6.1753e-02, -2.1419e-02, -2.8006e-02, -1.3336e-02, -1.1049e-02,\n",
+      "        -2.5890e-02, -2.6198e-02])), ('pretrained_model.layer4.2.bn2.running_mean', tensor([-0.0957, -0.0919, -0.0755, -0.0876, -0.0991, -0.0687, -0.1019, -0.0860,\n",
+      "        -0.0625, -0.0865, -0.1056, -0.0909, -0.0792, -0.0850, -0.0861, -0.1088,\n",
+      "        -0.0949, -0.0829, -0.0888, -0.0726, -0.0872, -0.0991, -0.0899, -0.0835,\n",
+      "        -0.1002, -0.0746, -0.0756, -0.0797, -0.0802, -0.1014, -0.0964, -0.0925,\n",
+      "        -0.0918, -0.0661, -0.0891, -0.0704, -0.1016, -0.0844, -0.1198, -0.0758,\n",
+      "        -0.0730, -0.0685, -0.0844, -0.1032, -0.0845, -0.0905, -0.0686, -0.0905,\n",
+      "        -0.0983, -0.0950, -0.0896, -0.0791, -0.0931, -0.0989, -0.0711, -0.0668,\n",
+      "        -0.0778, -0.0765, -0.0918, -0.0832, -0.0995, -0.0991, -0.0798, -0.0783,\n",
+      "        -0.0903, -0.0894, -0.0583, -0.0238, -0.0747, -0.0961, -0.0931, -0.0677,\n",
+      "        -0.0924, -0.0783, -0.1022, -0.0888, -0.0891, -0.0847, -0.0899, -0.0981,\n",
+      "        -0.0738, -0.0803, -0.0872, -0.0861, -0.0997, -0.0949, -0.0881, -0.0675,\n",
+      "        -0.0868, -0.0902, -0.1040, -0.0761, -0.0812, -0.0834, -0.0993, -0.0884,\n",
+      "        -0.0752, -0.0808, -0.0884, -0.0787, -0.0615, -0.0996, -0.1092, -0.0983,\n",
+      "        -0.0718, -0.0964, -0.0778, -0.0883, -0.0841, -0.1012, -0.0885, -0.0982,\n",
+      "        -0.0870, -0.0753, -0.0875, -0.0962, -0.1105, -0.1204, -0.0892, -0.0905,\n",
+      "        -0.0699, -0.0802, -0.0987, -0.0925, -0.0789, -0.1005, -0.0757, -0.0999,\n",
+      "        -0.0765, -0.0723, -0.0795, -0.0735, -0.0854, -0.0839, -0.0944, -0.0888,\n",
+      "        -0.1100, -0.0927, -0.0898, -0.1171, -0.0813, -0.0877, -0.0768, -0.0806,\n",
+      "        -0.1017, -0.0773, -0.1043, -0.0836, -0.0844, -0.0846, -0.0813, -0.0799,\n",
+      "        -0.1026, -0.0971, -0.0749, -0.0766, -0.0693, -0.0774, -0.0979, -0.1016,\n",
+      "        -0.0707, -0.0886, -0.1053, -0.1015, -0.0962, -0.0764, -0.0742, -0.0953,\n",
+      "        -0.0741, -0.0875, -0.0954, -0.0848, -0.0835, -0.0724, -0.1054, -0.0836,\n",
+      "        -0.0741, -0.0871, -0.0893, -0.0833, -0.0643, -0.0933, -0.0638, -0.0896,\n",
+      "        -0.0855, -0.0897, -0.0693, -0.0885, -0.0974, -0.0928, -0.0942, -0.0787,\n",
+      "        -0.0866, -0.0963, -0.0819, -0.0775, -0.0859, -0.0964, -0.0685, -0.0897,\n",
+      "        -0.0949, -0.0859, -0.0640, -0.0785, -0.0816, -0.0848, -0.0854, -0.0789,\n",
+      "        -0.0633, -0.0754, -0.0826, -0.1553, -0.0652, -0.0874, -0.0954, -0.1157,\n",
+      "        -0.0794, -0.0760, -0.1048, -0.0929, -0.0953, -0.1077, -0.0595, -0.0762,\n",
+      "        -0.0757, -0.0945, -0.0870, -0.1041, -0.0996, -0.0758, -0.0768, -0.1175,\n",
+      "        -0.0752, -0.0848, -0.0843, -0.1032, -0.0688, -0.0758, -0.0969, -0.0746,\n",
+      "        -0.0900, -0.0943, -0.0808, -0.0817, -0.0815, -0.0768, -0.0583, -0.0842,\n",
+      "        -0.0850, -0.0651, -0.0959, -0.0983, -0.0829, -0.0828, -0.0705, -0.0857,\n",
+      "        -0.0963, -0.0900, -0.1198, -0.1009, -0.0680, -0.0659, -0.0728, -0.1097,\n",
+      "        -0.0910, -0.0845, -0.0836, -0.0935, -0.0794, -0.0740, -0.0974, -0.0990,\n",
+      "        -0.0852, -0.1007, -0.0772, -0.0877, -0.0711, -0.0760, -0.0667, -0.0918,\n",
+      "        -0.0849, -0.0881, -0.0755, -0.0806, -0.0758, -0.0692, -0.0762, -0.0842,\n",
+      "        -0.0965, -0.1005, -0.1054, -0.0815, -0.0745, -0.1250, -0.0914, -0.0808,\n",
+      "        -0.0705, -0.0902, -0.0770, -0.0861, -0.0931, -0.0907, -0.0762, -0.0758,\n",
+      "        -0.0692, -0.0852, -0.0821, -0.1173, -0.0799, -0.0939, -0.0825, -0.0615,\n",
+      "        -0.0610, -0.0755, -0.0861, -0.0940, -0.0865, -0.0795, -0.0799, -0.0905,\n",
+      "        -0.0987, -0.0885, -0.0999, -0.0931, -0.0961, -0.0770, -0.0733, -0.0995,\n",
+      "        -0.0875, -0.0928, -0.0970, -0.0924, -0.0971, -0.1028, -0.0641, -0.0721,\n",
+      "        -0.0832, -0.1002, -0.1132, -0.0921, -0.0965, -0.0962, -0.0811, -0.1171,\n",
+      "        -0.0702, -0.0857, -0.1085, -0.0859, -0.0862, -0.1025, -0.0841, -0.0720,\n",
+      "        -0.0968, -0.0867, -0.0727, -0.1002, -0.0806, -0.0857, -0.0891, -0.1044,\n",
+      "        -0.0757, -0.0728, -0.0676, -0.0864, -0.1011, -0.0800, -0.0897, -0.0926,\n",
+      "        -0.0847, -0.0973, -0.0868, -0.0976, -0.0784, -0.0711, -0.0993, -0.0849,\n",
+      "        -0.0861, -0.1083, -0.0714, -0.0841, -0.1075, -0.0838, -0.0938, -0.0627,\n",
+      "        -0.1077, -0.0940, -0.0943, -0.0811, -0.0762, -0.0744, -0.0859, -0.0860,\n",
+      "        -0.0921, -0.0825, -0.0844, -0.0976, -0.0862, -0.0716, -0.0975, -0.0858,\n",
+      "        -0.0858, -0.0871, -0.0930, -0.1039, -0.1072, -0.0753, -0.0939, -0.0818,\n",
+      "        -0.0968, -0.0779, -0.1175, -0.0766, -0.0914, -0.0722, -0.1012, -0.0795,\n",
+      "        -0.0786, -0.1034, -0.0819, -0.0933, -0.0808, -0.0935, -0.0833, -0.0824,\n",
+      "        -0.0719, -0.0947, -0.0907, -0.0833, -0.0628, -0.0783, -0.0875, -0.1013,\n",
+      "        -0.0873, -0.0887, -0.0864, -0.0914, -0.0885, -0.0747, -0.1090, -0.0761,\n",
+      "        -0.0826, -0.0888, -0.0849, -0.0855, -0.0893, -0.0807, -0.1006, -0.0818,\n",
+      "        -0.0935, -0.0772, -0.0716, -0.0762, -0.0976, -0.0760, -0.0702, -0.1051,\n",
+      "        -0.0697, -0.0807, -0.0996, -0.0972, -0.0875, -0.0844, -0.0775, -0.0777,\n",
+      "        -0.0876, -0.1100, -0.0755, -0.1023, -0.0661, -0.0896, -0.0563, -0.0629,\n",
+      "        -0.0921, -0.0907, -0.0613, -0.0889, -0.0710, -0.0718, -0.0691, -0.0926,\n",
+      "        -0.0777, -0.0974, -0.0739, -0.0756, -0.0902, -0.0793, -0.0872, -0.1230,\n",
+      "        -0.0905, -0.1019, -0.0776, -0.0747, -0.0902, -0.0723, -0.0891, -0.0840,\n",
+      "        -0.1032, -0.0856, -0.0751, -0.0747, -0.0902, -0.0957, -0.0940, -0.1015,\n",
+      "        -0.0844, -0.0872, -0.0828, -0.0704, -0.0890, -0.1051, -0.0980, -0.0727])), ('pretrained_model.layer4.2.bn2.running_var', tensor([0.0613, 0.0398, 0.0326, 0.0538, 0.0747, 0.0389, 0.0621, 0.0650, 0.0415,\n",
+      "        0.0474, 0.0316, 0.0685, 0.0406, 0.0694, 0.0468, 0.0918, 0.0710, 0.0569,\n",
+      "        0.0528, 0.0380, 0.0385, 0.0564, 0.0394, 0.0564, 0.0770, 0.0559, 0.0294,\n",
+      "        0.0359, 0.0306, 0.0562, 0.0561, 0.0308, 0.0763, 0.0438, 0.0483, 0.0420,\n",
+      "        0.0737, 0.0514, 0.0790, 0.0424, 0.0446, 0.0489, 0.0445, 0.0628, 0.0541,\n",
+      "        0.0816, 0.0503, 0.0817, 0.0645, 0.0623, 0.0453, 0.0349, 0.0655, 0.0860,\n",
+      "        0.0318, 0.0334, 0.0450, 0.0645, 0.0571, 0.0576, 0.0707, 0.0586, 0.0444,\n",
+      "        0.0291, 0.0560, 0.0448, 0.0430, 0.0492, 0.0412, 0.0670, 0.0602, 0.0387,\n",
+      "        0.0657, 0.0528, 0.0597, 0.0496, 0.0681, 0.0407, 0.0609, 0.0353, 0.0326,\n",
+      "        0.0502, 0.0388, 0.0459, 0.0630, 0.0474, 0.0376, 0.0394, 0.0359, 0.0562,\n",
+      "        0.0614, 0.0452, 0.0551, 0.0446, 0.0533, 0.0501, 0.0449, 0.0581, 0.0577,\n",
+      "        0.0519, 0.0352, 0.0574, 0.0588, 0.0535, 0.0521, 0.0690, 0.0411, 0.0397,\n",
+      "        0.0447, 0.0676, 0.0555, 0.0449, 0.0750, 0.0469, 0.0586, 0.0643, 0.0301,\n",
+      "        0.1053, 0.0300, 0.0510, 0.0337, 0.0446, 0.1001, 0.0389, 0.0529, 0.0798,\n",
+      "        0.0582, 0.0841, 0.0460, 0.0442, 0.0371, 0.0379, 0.0493, 0.0518, 0.0506,\n",
+      "        0.0529, 0.1094, 0.0797, 0.0398, 0.0942, 0.0586, 0.0627, 0.0560, 0.0435,\n",
+      "        0.0800, 0.0525, 0.0537, 0.0543, 0.0508, 0.0433, 0.0706, 0.0551, 0.0819,\n",
+      "        0.0609, 0.0368, 0.0255, 0.0294, 0.0408, 0.0609, 0.0982, 0.0244, 0.0564,\n",
+      "        0.0677, 0.0739, 0.0641, 0.0335, 0.0431, 0.0437, 0.0393, 0.0449, 0.0702,\n",
+      "        0.0497, 0.0575, 0.0550, 0.0689, 0.0423, 0.0313, 0.0450, 0.0633, 0.0590,\n",
+      "        0.0390, 0.0596, 0.0462, 0.0651, 0.0574, 0.0551, 0.0332, 0.0656, 0.0634,\n",
+      "        0.0541, 0.0480, 0.0370, 0.0511, 0.0581, 0.0386, 0.0455, 0.0518, 0.0374,\n",
+      "        0.0293, 0.0397, 0.0662, 0.0414, 0.0381, 0.0409, 0.0328, 0.0371, 0.0371,\n",
+      "        0.0271, 0.0330, 0.0345, 0.0602, 0.0322, 0.0370, 0.0560, 0.0507, 0.0947,\n",
+      "        0.0684, 0.0496, 0.0664, 0.0709, 0.0485, 0.0417, 0.0252, 0.0613, 0.0388,\n",
+      "        0.0465, 0.0425, 0.0848, 0.0590, 0.0567, 0.0326, 0.0606, 0.0312, 0.0428,\n",
+      "        0.0420, 0.0651, 0.0448, 0.0294, 0.0449, 0.0310, 0.0519, 0.0503, 0.0469,\n",
+      "        0.0419, 0.0365, 0.0557, 0.0413, 0.0618, 0.0688, 0.0382, 0.0574, 0.0547,\n",
+      "        0.0458, 0.0391, 0.0698, 0.0425, 0.0421, 0.0696, 0.0818, 0.0947, 0.0268,\n",
+      "        0.0409, 0.0419, 0.0986, 0.0421, 0.0514, 0.0520, 0.0591, 0.0463, 0.0397,\n",
+      "        0.0718, 0.0558, 0.0462, 0.0542, 0.0337, 0.0424, 0.0349, 0.0448, 0.0375,\n",
+      "        0.0581, 0.0336, 0.0430, 0.0289, 0.0446, 0.0442, 0.0294, 0.0423, 0.0391,\n",
+      "        0.0583, 0.0648, 0.0619, 0.0394, 0.0411, 0.0955, 0.0532, 0.0358, 0.0378,\n",
+      "        0.0521, 0.0419, 0.0479, 0.0395, 0.0531, 0.0371, 0.0352, 0.0504, 0.0392,\n",
+      "        0.0402, 0.0726, 0.0505, 0.0559, 0.0347, 0.0300, 0.0393, 0.0582, 0.0483,\n",
+      "        0.0429, 0.0465, 0.0559, 0.0438, 0.0721, 0.0594, 0.0476, 0.0538, 0.0516,\n",
+      "        0.0560, 0.0567, 0.0446, 0.0615, 0.0708, 0.0674, 0.0529, 0.0527, 0.0610,\n",
+      "        0.0675, 0.0296, 0.0323, 0.0443, 0.0828, 0.0599, 0.0558, 0.0671, 0.0797,\n",
+      "        0.0394, 0.0600, 0.0432, 0.0449, 0.0733, 0.0439, 0.0570, 0.0582, 0.0543,\n",
+      "        0.0433, 0.0369, 0.0425, 0.0300, 0.0663, 0.0577, 0.0538, 0.0369, 0.0528,\n",
+      "        0.0402, 0.0387, 0.0442, 0.0635, 0.0627, 0.0358, 0.0563, 0.0339, 0.0469,\n",
+      "        0.0526, 0.0374, 0.0747, 0.0418, 0.0458, 0.0444, 0.0501, 0.0469, 0.0755,\n",
+      "        0.0366, 0.0563, 0.0945, 0.0557, 0.0747, 0.0383, 0.0847, 0.0628, 0.0795,\n",
+      "        0.0495, 0.0371, 0.0476, 0.0309, 0.0482, 0.0726, 0.0555, 0.0469, 0.0474,\n",
+      "        0.0487, 0.0344, 0.0867, 0.0443, 0.0594, 0.0574, 0.0517, 0.0648, 0.0705,\n",
+      "        0.0351, 0.0700, 0.0605, 0.0335, 0.0394, 0.0648, 0.0556, 0.0416, 0.0371,\n",
+      "        0.0934, 0.0357, 0.0395, 0.0683, 0.0436, 0.0765, 0.0401, 0.0484, 0.0546,\n",
+      "        0.0527, 0.0407, 0.0476, 0.0662, 0.0465, 0.0377, 0.0517, 0.0492, 0.0535,\n",
+      "        0.0569, 0.0482, 0.0631, 0.0610, 0.0551, 0.0325, 0.0553, 0.0272, 0.0625,\n",
+      "        0.0452, 0.0560, 0.0526, 0.0433, 0.0484, 0.0672, 0.0516, 0.0574, 0.0519,\n",
+      "        0.0354, 0.0426, 0.0786, 0.0475, 0.0392, 0.0942, 0.0361, 0.0567, 0.0594,\n",
+      "        0.0567, 0.0411, 0.0370, 0.0426, 0.0354, 0.0534, 0.0780, 0.0369, 0.0954,\n",
+      "        0.0344, 0.0840, 0.0384, 0.0315, 0.0658, 0.0569, 0.0625, 0.0715, 0.0315,\n",
+      "        0.0346, 0.0392, 0.0534, 0.0396, 0.0896, 0.0430, 0.0362, 0.0464, 0.0448,\n",
+      "        0.0617, 0.1012, 0.0469, 0.0632, 0.0479, 0.0396, 0.0413, 0.0384, 0.0513,\n",
+      "        0.0265, 0.0791, 0.0344, 0.0353, 0.0521, 0.0596, 0.0593, 0.0566, 0.0650,\n",
+      "        0.0487, 0.0726, 0.0490, 0.0366, 0.0400, 0.0726, 0.0566, 0.0325])), ('pretrained_model.layer4.2.bn2.num_batches_tracked', tensor(0)), ('pretrained_model.layer4.2.conv3.weight', tensor([[[[ 0.0036]],\n",
+      "\n",
+      "         [[ 0.0224]],\n",
+      "\n",
+      "         [[-0.0231]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0144]],\n",
+      "\n",
+      "         [[-0.0243]],\n",
+      "\n",
+      "         [[ 0.0139]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0033]],\n",
+      "\n",
+      "         [[-0.0077]],\n",
+      "\n",
+      "         [[ 0.0095]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0102]],\n",
+      "\n",
+      "         [[ 0.0177]],\n",
+      "\n",
+      "         [[-0.0031]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0007]],\n",
+      "\n",
+      "         [[-0.0117]],\n",
+      "\n",
+      "         [[ 0.0202]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0025]],\n",
+      "\n",
+      "         [[ 0.0005]],\n",
+      "\n",
+      "         [[-0.0052]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0018]],\n",
+      "\n",
+      "         [[ 0.0055]],\n",
+      "\n",
+      "         [[ 0.0004]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0034]],\n",
+      "\n",
+      "         [[-0.0042]],\n",
+      "\n",
+      "         [[-0.0208]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0386]],\n",
+      "\n",
+      "         [[-0.0174]],\n",
+      "\n",
+      "         [[ 0.0012]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0171]],\n",
+      "\n",
+      "         [[ 0.0119]],\n",
+      "\n",
+      "         [[-0.0257]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0103]],\n",
+      "\n",
+      "         [[-0.0131]],\n",
+      "\n",
+      "         [[-0.0030]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0010]],\n",
+      "\n",
+      "         [[ 0.0204]],\n",
+      "\n",
+      "         [[ 0.0029]]]])), ('pretrained_model.layer4.2.bn3.weight', tensor([0.7237, 0.9305, 0.8529,  ..., 0.6466, 0.8521, 0.6350])), ('pretrained_model.layer4.2.bn3.bias', tensor([0.0011, 0.0255, 0.0165,  ..., 0.0237, 0.0125, 0.0065])), ('pretrained_model.layer4.2.bn3.running_mean', tensor([-0.0046, -0.0101, -0.0082,  ..., -0.0067, -0.0086, -0.0078])), ('pretrained_model.layer4.2.bn3.running_var', tensor([0.0001, 0.0003, 0.0002,  ..., 0.0002, 0.0003, 0.0002])), ('pretrained_model.layer4.2.bn3.num_batches_tracked', tensor(0)), ('pretrained_model.fc.weight', tensor([[-0.0179,  0.0206, -0.0089,  ..., -0.0239,  0.0378,  0.0010],\n",
+      "        [-0.0147, -0.0364,  0.0588,  ..., -0.0453,  0.0421,  0.0001],\n",
+      "        [-0.0230, -0.0122, -0.0220,  ...,  0.0085,  0.0424,  0.0046],\n",
+      "        ...,\n",
+      "        [ 0.0411, -0.0351, -0.0202,  ...,  0.0378,  0.0361,  0.0102],\n",
+      "        [-0.0464, -0.0419, -0.0197,  ...,  0.0331, -0.0108,  0.0210],\n",
+      "        [-0.0064, -0.0146, -0.0419,  ..., -0.0104,  0.0057,  0.0218]])), ('pretrained_model.fc.bias', tensor([-6.0810e-03, -4.3914e-03,  4.2568e-02,  3.1667e-02, -4.6709e-03,\n",
+      "        -2.9743e-02, -2.8938e-02,  1.8838e-02, -1.7498e-02,  7.3044e-03,\n",
+      "        -2.9303e-03,  9.0803e-03, -1.7263e-02,  6.4857e-03, -2.3060e-02,\n",
+      "         7.2594e-03,  1.8395e-02, -2.8773e-02, -1.6835e-02,  2.5746e-02,\n",
+      "        -4.9871e-03,  4.0421e-02,  1.5614e-02,  4.6675e-04,  2.1544e-02,\n",
+      "         1.5847e-02,  2.6462e-02,  1.9089e-02, -1.2576e-05,  1.4312e-02,\n",
+      "         3.5600e-02,  2.8982e-02,  2.4462e-02, -3.2309e-02, -2.1366e-02,\n",
+      "        -1.6291e-02,  2.9000e-02,  1.6554e-02, -3.3803e-03,  3.2547e-03,\n",
+      "         4.0663e-02,  7.9760e-03,  1.4558e-02,  4.8931e-03,  1.4269e-02,\n",
+      "        -1.7005e-02, -1.8596e-02, -3.0916e-02,  1.7918e-02,  2.7464e-02,\n",
+      "         1.4191e-02,  4.8954e-03,  1.4268e-02,  6.2366e-04, -2.4048e-02,\n",
+      "        -2.0425e-02, -1.5570e-02, -3.8880e-03,  3.2057e-02, -1.6357e-02,\n",
+      "        -2.7964e-02,  2.2478e-02,  2.6848e-02, -1.4333e-02, -1.1962e-02,\n",
+      "        -3.3345e-02,  1.4941e-02, -1.8678e-02,  1.9361e-02,  9.8828e-03,\n",
+      "         2.8885e-02, -1.1842e-02, -3.3838e-02, -4.5445e-03,  8.0401e-03,\n",
+      "         6.6028e-03, -1.6012e-02, -1.4331e-03,  3.1575e-02,  3.1799e-03,\n",
+      "        -1.1633e-02, -1.9655e-03,  3.2695e-03,  8.1086e-03,  4.9272e-03,\n",
+      "         2.4278e-02, -5.5466e-02, -1.5015e-02, -3.5039e-02,  1.3631e-02,\n",
+      "        -1.2555e-02,  6.0103e-03,  2.7380e-03,  3.6318e-03, -1.9710e-02,\n",
+      "        -9.5754e-03,  8.7955e-03, -2.0481e-02, -9.4773e-03, -2.2414e-02,\n",
+      "        -1.3503e-02, -4.9365e-03,  2.6873e-02,  1.1292e-02,  3.8218e-02,\n",
+      "         1.4987e-02,  1.5758e-02,  1.1530e-03, -1.6456e-03, -1.1895e-02,\n",
+      "         2.2850e-02,  1.9054e-02,  3.9222e-03,  1.6563e-03,  1.2903e-02,\n",
+      "        -1.7254e-03, -5.2634e-03,  3.1496e-04, -8.4711e-03, -2.5130e-02,\n",
+      "        -8.6197e-03, -3.1576e-02, -2.0316e-02,  2.4023e-02,  1.6608e-02,\n",
+      "         4.0191e-03, -3.8579e-03, -2.1615e-02, -1.7987e-02, -2.4782e-02,\n",
+      "        -2.2722e-03, -2.0335e-02, -1.3375e-02,  1.5037e-03, -2.9930e-03,\n",
+      "         1.0136e-02,  2.0545e-02, -1.0756e-02,  8.1506e-03,  8.8448e-03,\n",
+      "        -1.6057e-02,  1.0929e-02,  6.9697e-03,  1.9162e-02,  7.0015e-03,\n",
+      "        -3.9951e-03,  1.3337e-02, -9.1403e-03, -1.0925e-02, -2.7130e-02,\n",
+      "         1.2495e-02,  1.3994e-03, -8.6481e-04,  4.0796e-03,  3.1892e-02,\n",
+      "         1.5968e-04,  1.6301e-02, -5.0630e-03, -3.7881e-04, -2.3800e-02,\n",
+      "         2.2742e-02, -1.9851e-03,  8.6927e-03, -1.4997e-02, -5.8832e-03,\n",
+      "        -2.1765e-02, -1.1884e-03,  3.4008e-03, -3.4369e-02, -2.8802e-02,\n",
+      "        -2.4075e-02,  2.4717e-02,  2.0203e-02, -6.5440e-03, -3.1184e-02,\n",
+      "        -1.9407e-02,  1.5069e-02,  5.6322e-03,  2.4553e-02,  3.5908e-03,\n",
+      "         6.1993e-03,  1.7143e-02,  1.8353e-02, -2.1758e-02, -2.3789e-02,\n",
+      "        -1.1242e-02,  6.3809e-03,  1.2344e-02, -3.2317e-02,  4.0285e-03,\n",
+      "        -1.4081e-02, -1.4257e-02,  1.4040e-02, -1.2960e-02, -3.5998e-03,\n",
+      "        -1.1228e-02,  3.4831e-03, -1.8045e-02,  1.0394e-02,  1.4190e-02])), ('proposal_net.down1.weight', tensor([[[[-8.7985e-03, -1.2036e-02,  4.1091e-03],\n",
+      "          [-3.6008e-03, -2.0451e-02, -6.8082e-03],\n",
+      "          [-9.5487e-04,  3.3529e-03, -1.0840e-02]],\n",
+      "\n",
+      "         [[ 1.0375e-02,  7.6790e-04,  8.1383e-04],\n",
+      "          [ 1.0750e-02, -3.3876e-03,  4.7525e-03],\n",
+      "          [-3.3486e-03, -7.8308e-03, -5.2293e-03]],\n",
+      "\n",
+      "         [[ 4.2827e-03, -9.4029e-04, -8.8401e-03],\n",
+      "          [ 1.0638e-02, -2.9153e-03, -5.0955e-03],\n",
+      "          [ 1.7564e-03, -1.1867e-02, -1.0585e-02]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 6.4930e-03,  5.5541e-04,  4.0998e-04],\n",
+      "          [ 9.6579e-03, -8.2728e-03, -3.2293e-03],\n",
+      "          [-4.9785e-03, -6.3694e-04,  2.6200e-03]],\n",
+      "\n",
+      "         [[-4.3377e-03, -1.2539e-02, -2.2741e-03],\n",
+      "          [-3.0105e-03, -9.7062e-03, -3.2200e-03],\n",
+      "          [ 2.7193e-03,  4.2614e-03,  1.2944e-03]],\n",
+      "\n",
+      "         [[ 3.6408e-03, -1.3031e-05, -6.0431e-03],\n",
+      "          [-8.5802e-03, -9.0647e-03,  2.9550e-03],\n",
+      "          [-2.4555e-03, -1.2801e-02, -1.3798e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-3.0626e-03,  6.8857e-04,  2.2049e-03],\n",
+      "          [ 3.3591e-03, -7.6747e-03,  4.7262e-03],\n",
+      "          [ 4.2542e-03, -1.8614e-03, -7.2900e-03]],\n",
+      "\n",
+      "         [[-1.8791e-03, -6.1298e-03, -6.8080e-03],\n",
+      "          [-3.1374e-03, -6.0061e-03,  1.7415e-03],\n",
+      "          [-6.9681e-03,  4.7260e-03, -6.7576e-03]],\n",
+      "\n",
+      "         [[-3.3329e-03,  5.6077e-03,  6.4123e-03],\n",
+      "          [-5.5495e-03,  3.0009e-03, -1.3746e-03],\n",
+      "          [-6.4151e-03,  4.7303e-03,  5.3631e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-4.4827e-03,  6.7388e-03, -3.7411e-03],\n",
+      "          [-6.2754e-03,  3.7452e-03,  6.9071e-03],\n",
+      "          [ 1.6019e-03,  3.8102e-03,  1.3000e-03]],\n",
+      "\n",
+      "         [[ 4.6214e-03,  1.1330e-03, -2.5270e-03],\n",
+      "          [ 5.4647e-03, -5.5145e-03,  3.5660e-03],\n",
+      "          [ 1.8436e-03, -3.4009e-04, -7.3283e-03]],\n",
+      "\n",
+      "         [[-3.0403e-03,  1.8562e-04,  3.0055e-03],\n",
+      "          [-2.5167e-03,  4.8232e-03,  6.5897e-03],\n",
+      "          [-4.8377e-03,  7.8031e-03,  4.3044e-05]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.9510e-03, -2.1263e-03, -2.7503e-03],\n",
+      "          [-2.4099e-03,  3.2283e-03, -2.7358e-03],\n",
+      "          [ 5.1778e-05,  4.6005e-03, -4.3360e-03]],\n",
+      "\n",
+      "         [[-4.5828e-03,  4.6847e-03,  5.2883e-03],\n",
+      "          [-4.6123e-03,  1.3223e-03, -1.1680e-03],\n",
+      "          [ 6.7850e-03, -4.8891e-03,  1.8154e-03]],\n",
+      "\n",
+      "         [[ 1.9999e-03, -7.7437e-03,  4.0370e-03],\n",
+      "          [-2.9881e-03,  6.3209e-03,  4.5908e-03],\n",
+      "          [-4.2558e-03,  5.6532e-03,  8.4177e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 4.9130e-03, -6.9541e-03,  2.6618e-03],\n",
+      "          [ 4.4169e-05, -6.5781e-03,  1.9060e-03],\n",
+      "          [ 2.0231e-03,  4.2747e-03, -3.6801e-03]],\n",
+      "\n",
+      "         [[ 2.9405e-03,  2.1369e-03,  3.4836e-03],\n",
+      "          [-3.6619e-03,  6.3322e-04, -7.7436e-03],\n",
+      "          [-1.4596e-03, -2.0482e-03, -6.4353e-03]],\n",
+      "\n",
+      "         [[-8.9162e-03, -8.4297e-03, -8.3016e-03],\n",
+      "          [ 4.2869e-03, -5.7690e-03,  4.4146e-03],\n",
+      "          [ 2.9827e-03, -2.1469e-03, -4.0018e-04]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 4.8613e-03, -4.6376e-04,  7.2563e-03],\n",
+      "          [ 9.5016e-03, -4.2066e-03,  1.1257e-02],\n",
+      "          [-5.5223e-03, -1.8968e-03,  2.5096e-03]],\n",
+      "\n",
+      "         [[-3.5539e-03, -8.8958e-03,  4.5866e-03],\n",
+      "          [ 1.0424e-02, -1.3903e-03, -4.9863e-04],\n",
+      "          [ 9.4694e-03,  1.2822e-04,  1.9317e-03]],\n",
+      "\n",
+      "         [[ 2.5299e-03,  2.5051e-03,  7.8560e-03],\n",
+      "          [-8.0124e-04, -1.6068e-04,  1.7558e-02],\n",
+      "          [-5.5893e-03, -9.0502e-03,  4.4290e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-5.8265e-03,  3.3497e-03, -2.6156e-03],\n",
+      "          [ 4.9054e-03, -5.3736e-03,  1.0254e-02],\n",
+      "          [ 1.5120e-02,  8.9030e-03,  1.4218e-02]],\n",
+      "\n",
+      "         [[ 6.3826e-03, -5.5340e-03,  6.4193e-03],\n",
+      "          [ 3.4024e-05,  4.2618e-03,  3.1737e-04],\n",
+      "          [ 3.7025e-03, -2.8493e-03, -1.4299e-03]],\n",
+      "\n",
+      "         [[-2.5114e-03,  1.0549e-02,  9.7228e-03],\n",
+      "          [ 7.3298e-03,  5.2680e-03,  4.8072e-03],\n",
+      "          [ 2.1294e-03, -1.2351e-02, -7.5000e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[-6.0363e-03,  4.5892e-03, -5.4560e-03],\n",
+      "          [ 3.7080e-03,  4.5272e-03, -1.5427e-03],\n",
+      "          [ 3.0823e-03,  2.5086e-03, -1.9804e-03]],\n",
+      "\n",
+      "         [[ 3.6226e-03,  6.7425e-03,  5.3714e-03],\n",
+      "          [-3.4348e-03, -2.6157e-03, -4.7047e-03],\n",
+      "          [-5.8578e-04, -7.1535e-03, -3.6273e-03]],\n",
+      "\n",
+      "         [[-2.5493e-03,  2.8052e-04,  4.5615e-03],\n",
+      "          [ 5.6967e-03,  2.1703e-04,  2.7160e-03],\n",
+      "          [-4.1168e-03,  4.1925e-03, -5.9660e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 3.8292e-03, -4.8132e-03, -5.2358e-03],\n",
+      "          [ 1.1553e-03, -2.8097e-03,  1.6099e-03],\n",
+      "          [-2.7460e-04,  2.8963e-03, -2.2361e-03]],\n",
+      "\n",
+      "         [[-5.6692e-03, -4.7001e-03, -6.1810e-04],\n",
+      "          [-6.7301e-03, -7.9483e-03,  1.1510e-03],\n",
+      "          [ 1.3051e-03, -4.3010e-03,  4.7936e-03]],\n",
+      "\n",
+      "         [[-6.3859e-03,  1.5968e-03,  1.9504e-03],\n",
+      "          [ 2.2836e-03, -3.2770e-03, -1.2503e-03],\n",
+      "          [-9.7786e-04,  3.1416e-03,  2.0747e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 3.5629e-03, -6.9226e-03,  4.6234e-03],\n",
+      "          [-1.4920e-03,  7.9455e-04, -2.4402e-03],\n",
+      "          [-5.0052e-03,  4.2335e-03,  1.0624e-03]],\n",
+      "\n",
+      "         [[ 3.8140e-04, -1.9619e-03, -4.1983e-03],\n",
+      "          [-5.1875e-03,  6.0800e-03,  2.9276e-03],\n",
+      "          [-5.8086e-03,  6.3856e-03, -3.1727e-03]],\n",
+      "\n",
+      "         [[ 1.2428e-03,  3.1290e-03, -2.2240e-03],\n",
+      "          [-6.0682e-03, -7.9125e-04,  2.4515e-03],\n",
+      "          [ 2.8189e-03,  5.5121e-03,  1.7141e-03]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-2.4883e-04, -6.6329e-03, -4.5439e-04],\n",
+      "          [ 1.7945e-03,  6.6163e-03, -6.3879e-03],\n",
+      "          [-4.5777e-04, -6.2375e-03,  6.0675e-04]],\n",
+      "\n",
+      "         [[ 6.0290e-03, -4.7979e-03,  3.6858e-03],\n",
+      "          [-6.7797e-03,  2.0910e-03,  2.2258e-03],\n",
+      "          [ 2.4934e-03, -1.7905e-03, -1.1292e-04]],\n",
+      "\n",
+      "         [[-8.9033e-04, -4.7318e-03,  8.0525e-04],\n",
+      "          [-2.2467e-04, -1.2334e-03,  9.3291e-04],\n",
+      "          [ 1.3003e-03, -4.3248e-03,  5.3308e-03]]]])), ('proposal_net.down1.bias', tensor([-5.6030e-03, -1.3971e-03,  7.3174e-03, -1.5485e-02, -5.6170e-03,\n",
+      "         1.1261e-03, -4.5611e-03, -1.4172e-03, -3.1953e-03, -6.6231e-03,\n",
+      "         6.0404e-03, -6.0697e-03,  1.1602e-03, -1.7026e-03, -2.7907e-02,\n",
+      "        -4.0254e-03, -6.2672e-03,  2.1717e-03,  3.5011e-03, -3.4200e-02,\n",
+      "         2.8521e-03, -5.7202e-03, -7.7595e-05, -6.9229e-03, -7.8992e-04,\n",
+      "         4.6750e-03, -4.0032e-03,  3.1540e-03, -3.8012e-03,  3.6858e-03,\n",
+      "         3.4648e-03, -8.2115e-03,  5.8765e-03, -6.1123e-03, -2.3954e-03,\n",
+      "         2.7160e-03,  3.4873e-03, -4.6733e-03, -5.0677e-04, -7.6919e-03,\n",
+      "        -4.4160e-03,  3.4228e-03,  8.1689e-03, -2.1483e-02,  6.0071e-03,\n",
+      "        -1.2947e-02, -6.2107e-03, -2.2159e-02, -4.6824e-03, -7.6121e-03,\n",
+      "        -1.5390e+00,  2.1494e-01, -1.5437e-03, -1.1209e-02, -1.5844e-03,\n",
+      "        -8.2174e-03,  8.0506e-04, -1.0184e-01,  7.2670e-04,  1.8978e-04,\n",
+      "        -2.5613e-03,  7.0298e-04, -3.2218e-03, -1.9413e-03, -4.3390e-03,\n",
+      "         1.1851e-01, -1.0813e-03, -6.4102e-03,  2.4775e-03,  3.3832e-04,\n",
+      "         3.5424e-03, -1.4647e-03,  1.9831e-02,  1.6366e-01, -3.0998e-03,\n",
+      "        -8.0047e-03, -3.1784e-03,  4.4514e-03, -9.3555e-03,  5.3183e-04,\n",
+      "         1.8340e-03,  2.5025e-03,  1.1473e-01, -1.1535e-03, -4.9559e-03,\n",
+      "        -9.4253e-03, -5.4996e-03, -2.8899e-03, -6.7197e-02, -5.6220e-03,\n",
+      "        -8.4366e-04, -7.9744e-03,  2.3241e-02,  1.5016e-02,  3.2505e-03,\n",
+      "         2.8363e-03, -4.7484e-03, -6.8041e-03, -1.1440e-03,  7.5306e-01,\n",
+      "        -3.9629e-03, -4.4260e-03, -1.1411e-01,  1.0586e-03,  2.2246e-02,\n",
+      "        -2.5117e-02, -7.5262e-03,  5.5586e-04, -1.1442e-01,  2.4182e-03,\n",
+      "         2.2507e+00,  3.6222e-02, -7.0169e-03,  2.1379e-03,  4.5862e-03,\n",
+      "         6.1554e-03,  2.9710e-03,  6.3001e-04, -4.1319e-03, -8.3811e-04,\n",
+      "         3.1528e-01,  3.9323e-04, -3.8894e-03,  3.8688e-03,  7.5710e-03,\n",
+      "        -4.2826e-03, -5.6939e-03, -5.0364e-03])), ('proposal_net.down2.weight', tensor([[[[-0.0023, -0.0134, -0.0098],\n",
+      "          [-0.0334, -0.0108, -0.0157],\n",
+      "          [ 0.0016, -0.0145, -0.0016]],\n",
+      "\n",
+      "         [[ 0.0109,  0.0203,  0.0056],\n",
+      "          [ 0.0031, -0.0186,  0.0244],\n",
+      "          [-0.0026,  0.0003, -0.0263]],\n",
+      "\n",
+      "         [[-0.0014,  0.0157,  0.0093],\n",
+      "          [ 0.0153, -0.0222, -0.0204],\n",
+      "          [ 0.0056, -0.0150,  0.0211]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0326, -0.0269, -0.0403],\n",
+      "          [-0.0072, -0.0210,  0.0099],\n",
+      "          [ 0.0008,  0.0030,  0.0108]],\n",
+      "\n",
+      "         [[ 0.0011,  0.0126,  0.0129],\n",
+      "          [ 0.0036,  0.0004, -0.0073],\n",
+      "          [ 0.0199, -0.0282, -0.0155]],\n",
+      "\n",
+      "         [[ 0.0082, -0.0001, -0.0251],\n",
+      "          [ 0.0261, -0.0159,  0.0234],\n",
+      "          [ 0.0061, -0.0153, -0.0190]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0297,  0.0394,  0.0192],\n",
+      "          [-0.0121,  0.0274,  0.0236],\n",
+      "          [ 0.0024, -0.0220, -0.0261]],\n",
+      "\n",
+      "         [[-0.0124,  0.0172, -0.0218],\n",
+      "          [-0.0066,  0.0281,  0.0055],\n",
+      "          [-0.0160,  0.0076, -0.0275]],\n",
+      "\n",
+      "         [[ 0.0147, -0.0094,  0.0160],\n",
+      "          [-0.0086, -0.0202, -0.0188],\n",
+      "          [ 0.0202, -0.0126, -0.0103]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0065,  0.0198, -0.0198],\n",
+      "          [ 0.0022,  0.0130, -0.0150],\n",
+      "          [ 0.0261, -0.0116, -0.0038]],\n",
+      "\n",
+      "         [[-0.0064, -0.0035,  0.0193],\n",
+      "          [-0.0241, -0.0070,  0.0024],\n",
+      "          [-0.0187,  0.0140, -0.0139]],\n",
+      "\n",
+      "         [[-0.0209, -0.0240, -0.0005],\n",
+      "          [-0.0135,  0.0114,  0.0081],\n",
+      "          [ 0.0009, -0.0225, -0.0094]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0317,  0.0162, -0.0068],\n",
+      "          [ 0.0211, -0.0303, -0.0193],\n",
+      "          [-0.0246, -0.0275,  0.0126]],\n",
+      "\n",
+      "         [[-0.0173,  0.0078, -0.0246],\n",
+      "          [-0.0064,  0.0003, -0.0064],\n",
+      "          [-0.0188, -0.0094, -0.0181]],\n",
+      "\n",
+      "         [[ 0.0278,  0.0082,  0.0044],\n",
+      "          [ 0.0042, -0.0243,  0.0261],\n",
+      "          [ 0.0190,  0.0080,  0.0185]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0160,  0.0020,  0.0091],\n",
+      "          [ 0.0167,  0.0115,  0.0054],\n",
+      "          [ 0.0047,  0.0064, -0.0240]],\n",
+      "\n",
+      "         [[ 0.0266,  0.0142, -0.0007],\n",
+      "          [-0.0082, -0.0142,  0.0227],\n",
+      "          [-0.0280,  0.0188, -0.0234]],\n",
+      "\n",
+      "         [[ 0.0026,  0.0250,  0.0215],\n",
+      "          [ 0.0282, -0.0156, -0.0177],\n",
+      "          [ 0.0141,  0.0079, -0.0078]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0121, -0.0241,  0.0092],\n",
+      "          [-0.0163, -0.0111, -0.0323],\n",
+      "          [-0.0274, -0.0031, -0.0314]],\n",
+      "\n",
+      "         [[ 0.0183,  0.0231, -0.0167],\n",
+      "          [-0.0120, -0.0021, -0.0103],\n",
+      "          [ 0.0065,  0.0196,  0.0113]],\n",
+      "\n",
+      "         [[ 0.0062,  0.0190,  0.0207],\n",
+      "          [-0.0095,  0.0221, -0.0134],\n",
+      "          [ 0.0125, -0.0212,  0.0043]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0255, -0.0303,  0.0093],\n",
+      "          [ 0.0224, -0.0038,  0.0144],\n",
+      "          [ 0.0028,  0.0123, -0.0243]],\n",
+      "\n",
+      "         [[-0.0012,  0.0025,  0.0032],\n",
+      "          [-0.0187, -0.0201,  0.0063],\n",
+      "          [ 0.0074, -0.0031,  0.0165]],\n",
+      "\n",
+      "         [[ 0.0006,  0.0122,  0.0048],\n",
+      "          [-0.0114, -0.0065,  0.0065],\n",
+      "          [ 0.0041,  0.0101,  0.0250]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0061, -0.0130, -0.0003],\n",
+      "          [-0.0146, -0.0062,  0.0099],\n",
+      "          [-0.0070, -0.0244,  0.0096]],\n",
+      "\n",
+      "         [[ 0.0074,  0.0074, -0.0237],\n",
+      "          [-0.0079,  0.0201, -0.0251],\n",
+      "          [ 0.0004, -0.0276,  0.0010]],\n",
+      "\n",
+      "         [[-0.0031, -0.0212, -0.0159],\n",
+      "          [-0.0106, -0.0112,  0.0025],\n",
+      "          [-0.0118, -0.0146, -0.0265]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0113, -0.0369,  0.0066],\n",
+      "          [-0.0352,  0.0007, -0.0093],\n",
+      "          [-0.0202,  0.0142,  0.0018]],\n",
+      "\n",
+      "         [[ 0.0104,  0.0089,  0.0093],\n",
+      "          [-0.0094,  0.0227, -0.0104],\n",
+      "          [-0.0095, -0.0164, -0.0021]],\n",
+      "\n",
+      "         [[-0.0043,  0.0144, -0.0140],\n",
+      "          [ 0.0161, -0.0112, -0.0044],\n",
+      "          [-0.0031,  0.0204, -0.0282]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0065, -0.0017, -0.0150],\n",
+      "          [ 0.0066,  0.0128,  0.0186],\n",
+      "          [-0.0294, -0.0300, -0.0140]],\n",
+      "\n",
+      "         [[ 0.0106,  0.0016, -0.0125],\n",
+      "          [ 0.0047,  0.0183,  0.0281],\n",
+      "          [ 0.0257,  0.0121,  0.0074]],\n",
+      "\n",
+      "         [[-0.0072, -0.0192, -0.0184],\n",
+      "          [ 0.0283,  0.0164, -0.0080],\n",
+      "          [ 0.0058, -0.0083,  0.0177]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0241,  0.0054, -0.0352],\n",
+      "          [-0.0186,  0.0131, -0.0077],\n",
+      "          [-0.0301, -0.0021, -0.0088]],\n",
+      "\n",
+      "         [[ 0.0156, -0.0216, -0.0281],\n",
+      "          [ 0.0086,  0.0102, -0.0030],\n",
+      "          [ 0.0125, -0.0050,  0.0244]],\n",
+      "\n",
+      "         [[-0.0077, -0.0072, -0.0109],\n",
+      "          [ 0.0161,  0.0091,  0.0276],\n",
+      "          [-0.0262, -0.0242, -0.0103]]]])), ('proposal_net.down2.bias', tensor([-1.9015e-02,  1.8406e-02,  1.2595e+00,  5.3272e-03,  1.9320e-02,\n",
+      "         4.3898e-02, -2.4365e-03,  2.8485e-02,  2.6266e-01,  1.0760e-01,\n",
+      "         2.5320e+00, -1.0663e-02, -8.2300e-02,  1.2232e-04,  1.3226e-02,\n",
+      "         1.1544e+00,  8.3155e-03, -3.5688e-02, -2.1155e-02,  3.5793e-02,\n",
+      "         2.6975e-01,  2.3461e-01,  4.3339e-02,  9.2079e-04, -2.4042e-02,\n",
+      "        -3.3348e-02,  1.5323e-01, -4.3114e-02, -2.0226e-03,  1.6105e-01,\n",
+      "         1.6350e-02,  2.7029e-01, -1.1507e-03,  6.1492e-02,  2.2707e-01,\n",
+      "        -1.0274e-02, -3.2067e-02,  7.3224e-02,  3.3263e-02, -4.6948e-02,\n",
+      "         1.6178e-02, -2.3632e-02,  1.1347e-01,  5.5012e-02, -4.0409e-02,\n",
+      "        -1.9930e-02, -4.1546e-02,  6.8258e-02, -2.3798e-02, -6.9527e-02,\n",
+      "         1.7363e-01,  1.3510e-03,  6.9097e-04, -4.4034e-02, -1.3105e-01,\n",
+      "        -1.0845e-01,  1.4291e-01, -3.1132e-02,  8.6497e-02,  5.6571e-01,\n",
+      "        -1.1269e-03,  7.6874e-02, -1.4243e-03, -1.3671e-03, -1.3158e-01,\n",
+      "        -9.2217e-03,  1.2341e-01,  4.4222e-02, -5.9624e-03,  1.8334e-01,\n",
+      "        -3.0962e-02, -1.8542e-02,  6.4316e-02,  1.6645e-01,  3.6336e-02,\n",
+      "         4.6582e-03,  1.1239e-01,  7.0341e-02, -7.5626e-03,  4.2594e-03,\n",
+      "         1.3146e-02,  4.0374e-02, -6.3529e-02, -1.9637e-03,  1.0095e-01,\n",
+      "         1.1359e-01,  2.1858e-01, -1.9171e-02, -1.8522e-02, -9.9099e-04,\n",
+      "        -8.8665e-02,  8.0141e-03, -3.5868e-02,  9.2695e-02, -1.3984e-02,\n",
+      "         3.5933e-02, -5.9559e-02,  2.3226e-04,  2.4486e-01,  1.9730e-02,\n",
+      "         2.5411e-01, -5.1895e-03, -9.8483e-03,  1.0793e-01, -2.2430e-02,\n",
+      "        -5.7219e-04,  9.7583e-01, -4.2521e-02,  1.1288e-01, -1.4912e-02,\n",
+      "        -3.2362e-03,  1.1352e-01,  6.1153e-02, -3.6866e-02,  7.3034e-01,\n",
+      "        -7.2544e-02, -1.0465e-02,  3.6955e-01,  8.4393e-02,  8.3846e-02,\n",
+      "         1.6017e-01,  1.9582e-02,  2.5518e-02,  3.3927e-02, -6.9292e-03,\n",
+      "         1.0885e-01, -6.7815e-02, -4.2447e-02])), ('proposal_net.down3.weight', tensor([[[[-0.0315, -0.0426,  0.0050],\n",
+      "          [-0.0347,  0.0037, -0.0286],\n",
+      "          [ 0.0133, -0.0385, -0.0242]],\n",
+      "\n",
+      "         [[ 0.0129, -0.0251, -0.0295],\n",
+      "          [ 0.0237,  0.0090,  0.0240],\n",
+      "          [ 0.0224,  0.0139,  0.0289]],\n",
+      "\n",
+      "         [[-0.0529, -0.0901,  0.0767],\n",
+      "          [-0.0527,  0.1164,  0.0793],\n",
+      "          [-0.0964,  0.0081, -0.0008]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0129,  0.0458,  0.0327],\n",
+      "          [-0.0214,  0.0387,  0.0220],\n",
+      "          [-0.0206,  0.0024, -0.0224]],\n",
+      "\n",
+      "         [[-0.0273, -0.0248, -0.0040],\n",
+      "          [-0.0247, -0.0394, -0.0293],\n",
+      "          [-0.0259,  0.0189,  0.0005]],\n",
+      "\n",
+      "         [[ 0.0257,  0.0059, -0.0124],\n",
+      "          [ 0.0150,  0.0269, -0.0063],\n",
+      "          [ 0.0187, -0.0274,  0.0028]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0102, -0.0272, -0.0225],\n",
+      "          [ 0.0238, -0.0225, -0.0123],\n",
+      "          [ 0.0017, -0.0007, -0.0249]],\n",
+      "\n",
+      "         [[ 0.0224,  0.0204, -0.0503],\n",
+      "          [ 0.0172, -0.0230,  0.0191],\n",
+      "          [-0.0241,  0.0197,  0.0269]],\n",
+      "\n",
+      "         [[-0.0482, -0.0429, -0.0218],\n",
+      "          [-0.0358, -0.0432, -0.0585],\n",
+      "          [-0.0026, -0.0045, -0.0630]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0204,  0.0186, -0.0082],\n",
+      "          [-0.0245, -0.0300, -0.0258],\n",
+      "          [ 0.0254,  0.0254, -0.0015]],\n",
+      "\n",
+      "         [[-0.0067, -0.0274, -0.0107],\n",
+      "          [-0.0055, -0.0108,  0.0149],\n",
+      "          [-0.0091,  0.0201,  0.0029]],\n",
+      "\n",
+      "         [[-0.0146,  0.0139, -0.0234],\n",
+      "          [ 0.0101, -0.0083,  0.0213],\n",
+      "          [ 0.0039,  0.0072, -0.0230]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0074, -0.0077,  0.0109],\n",
+      "          [-0.0368,  0.0282, -0.0271],\n",
+      "          [-0.0065,  0.0060, -0.0606]],\n",
+      "\n",
+      "         [[ 0.0212,  0.0165,  0.0299],\n",
+      "          [ 0.0319,  0.0129,  0.0391],\n",
+      "          [ 0.0296, -0.0207,  0.0008]],\n",
+      "\n",
+      "         [[ 0.0095, -0.0952, -0.0514],\n",
+      "          [-0.0450, -0.1635, -0.1358],\n",
+      "          [-0.0281, -0.1484,  0.0172]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0083, -0.0015,  0.0060],\n",
+      "          [-0.0004,  0.0434,  0.0233],\n",
+      "          [ 0.0391, -0.0275,  0.0171]],\n",
+      "\n",
+      "         [[ 0.0143, -0.0212,  0.0034],\n",
+      "          [ 0.0182, -0.0286,  0.0045],\n",
+      "          [ 0.0437,  0.0043, -0.0011]],\n",
+      "\n",
+      "         [[ 0.0251,  0.0093,  0.0064],\n",
+      "          [-0.0093, -0.0394, -0.0360],\n",
+      "          [ 0.0270,  0.0268, -0.0360]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0064, -0.0172,  0.0168],\n",
+      "          [-0.0031,  0.0116, -0.0039],\n",
+      "          [-0.0252, -0.0217,  0.0236]],\n",
+      "\n",
+      "         [[ 0.0150, -0.0274, -0.0091],\n",
+      "          [ 0.0028,  0.0013, -0.0226],\n",
+      "          [-0.0316, -0.0132, -0.0233]],\n",
+      "\n",
+      "         [[-0.0312, -0.0072, -0.0161],\n",
+      "          [-0.0536, -0.1140, -0.0666],\n",
+      "          [-0.0468,  0.0273,  0.0412]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0114, -0.0199, -0.0273],\n",
+      "          [-0.0287,  0.0232,  0.0232],\n",
+      "          [-0.0074,  0.0206, -0.0213]],\n",
+      "\n",
+      "         [[ 0.0240, -0.0299, -0.0099],\n",
+      "          [-0.0140, -0.0030, -0.0414],\n",
+      "          [-0.0024,  0.0254,  0.0088]],\n",
+      "\n",
+      "         [[-0.0284, -0.0287,  0.0130],\n",
+      "          [-0.0288, -0.0074,  0.0221],\n",
+      "          [-0.0217, -0.0073, -0.0014]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0059, -0.0172,  0.0038],\n",
+      "          [ 0.0115, -0.0206, -0.0243],\n",
+      "          [-0.0090,  0.0013, -0.0120]],\n",
+      "\n",
+      "         [[ 0.0435,  0.0065,  0.0378],\n",
+      "          [ 0.0241,  0.0007,  0.0007],\n",
+      "          [-0.0120, -0.0050,  0.0058]],\n",
+      "\n",
+      "         [[-0.0839, -0.0301,  0.0941],\n",
+      "          [-0.1083, -0.0678, -0.0267],\n",
+      "          [-0.0644,  0.0479, -0.0655]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0038, -0.0101, -0.0258],\n",
+      "          [-0.0332, -0.0408,  0.0013],\n",
+      "          [ 0.0002,  0.0321, -0.0142]],\n",
+      "\n",
+      "         [[-0.0109, -0.0035,  0.0283],\n",
+      "          [ 0.0080,  0.0095, -0.0281],\n",
+      "          [ 0.0227, -0.0019, -0.0146]],\n",
+      "\n",
+      "         [[ 0.0412, -0.0123, -0.0093],\n",
+      "          [-0.0124, -0.0330,  0.0164],\n",
+      "          [-0.0482, -0.0402, -0.0019]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0310, -0.0113,  0.0268],\n",
+      "          [-0.0139, -0.0359,  0.0008],\n",
+      "          [-0.0177, -0.0117, -0.0148]],\n",
+      "\n",
+      "         [[ 0.0025,  0.0147,  0.0465],\n",
+      "          [-0.0183,  0.0080,  0.0008],\n",
+      "          [ 0.0060,  0.0107, -0.0179]],\n",
+      "\n",
+      "         [[ 0.0108,  0.0258, -0.0404],\n",
+      "          [ 0.0285, -0.0388, -0.0474],\n",
+      "          [-0.1183, -0.1075, -0.0027]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.0112,  0.0060,  0.0068],\n",
+      "          [-0.0140, -0.0295, -0.0120],\n",
+      "          [-0.0256, -0.0436, -0.0013]],\n",
+      "\n",
+      "         [[ 0.0076,  0.0201, -0.0149],\n",
+      "          [ 0.0013, -0.0136,  0.0291],\n",
+      "          [-0.0345, -0.0055, -0.0021]],\n",
+      "\n",
+      "         [[-0.0012,  0.0042,  0.0264],\n",
+      "          [-0.0164,  0.0122,  0.0190],\n",
+      "          [-0.0045,  0.0108, -0.0283]]]])), ('proposal_net.down3.bias', tensor([-2.3546e-02, -6.8755e-03,  9.0805e-02, -4.9150e-02,  1.7842e-02,\n",
+      "        -5.6562e-02, -2.3455e-02,  1.8012e-02,  1.9590e-03,  5.7582e-01,\n",
+      "        -6.2861e-02,  4.9750e-02,  4.2572e-03,  5.7844e-04, -4.7065e-02,\n",
+      "        -3.4044e-02,  3.8798e-02,  1.7186e-01,  6.3128e-02,  2.6313e-01,\n",
+      "         4.6156e-02, -8.1236e-02, -3.7435e-03,  1.4834e-02, -7.0078e-02,\n",
+      "         3.0028e-01,  1.9089e-02,  5.7831e-01,  6.0334e-02, -7.0956e-02,\n",
+      "         1.7525e-01,  2.7016e-01,  2.0643e-01,  5.6499e-02,  3.7715e-01,\n",
+      "        -1.8644e-01,  4.6728e-01,  2.5820e-01, -2.3426e-02,  9.1810e-01,\n",
+      "         3.5422e-01,  3.0445e-02,  9.5870e-01,  1.3706e-01,  5.3246e-03,\n",
+      "         9.3801e-01, -3.0336e-02,  6.7215e-01, -2.1588e-02,  1.0696e-02,\n",
+      "         8.1131e-01, -4.5619e-02,  3.8899e-02,  1.0576e-01,  2.6999e-02,\n",
+      "         4.3337e-02, -3.9184e-02, -1.8793e-03,  5.3697e-02,  2.6885e-04,\n",
+      "         7.1269e-02,  5.5533e-04, -8.7667e-02,  2.2471e-01, -4.4813e-03,\n",
+      "         1.8605e-03,  2.5775e-01,  3.7467e-02,  2.7843e-01,  1.3644e-01,\n",
+      "         6.0175e-01,  1.3628e-02, -4.4218e-02,  2.9093e-02, -2.0800e-02,\n",
+      "         8.0170e-02,  9.9220e-02,  3.2244e-01,  2.2024e-02,  2.5900e-01,\n",
+      "        -1.3954e-02, -5.5670e-03,  1.9385e-01,  1.6158e-02,  1.2551e-01,\n",
+      "        -6.9780e-03,  1.1697e-02,  5.8757e-02,  1.0446e+00, -2.7941e-02,\n",
+      "        -2.9804e-02,  1.8481e-01, -4.8646e-02, -1.3503e-01,  4.0563e-01,\n",
+      "         9.3330e-02,  2.9834e-02,  2.2239e-02,  7.6560e-02,  1.2756e-01,\n",
+      "        -1.0277e-01,  6.0982e-02,  1.4334e-02, -2.4554e-03,  8.5141e-02,\n",
+      "         7.0774e-04,  2.4765e-02, -3.6794e-02, -3.1478e-03,  2.3807e-01,\n",
+      "         6.9062e-02, -3.9902e-02,  1.5965e-01, -2.8719e-02, -4.6757e-02,\n",
+      "         7.4699e-01, -1.4721e-01,  5.5149e-03,  3.0687e-02,  2.3880e-01,\n",
+      "         6.6022e-01,  2.2540e-01, -5.7363e-02,  1.1479e-01,  8.6728e-02,\n",
+      "        -2.9614e-02,  7.1633e-02,  1.1967e-01])), ('proposal_net.tidy1.weight', tensor([[[[ 5.7664e-03]],\n",
+      "\n",
+      "         [[ 4.0652e-02]],\n",
+      "\n",
+      "         [[-1.6948e-03]],\n",
+      "\n",
+      "         [[-9.0297e-02]],\n",
+      "\n",
+      "         [[-1.5474e-01]],\n",
+      "\n",
+      "         [[ 7.4755e-02]],\n",
+      "\n",
+      "         [[-5.1841e-02]],\n",
+      "\n",
+      "         [[-2.6579e-02]],\n",
+      "\n",
+      "         [[ 3.3591e-02]],\n",
+      "\n",
+      "         [[-5.1510e-02]],\n",
+      "\n",
+      "         [[-4.5578e-02]],\n",
+      "\n",
+      "         [[ 5.5738e-02]],\n",
+      "\n",
+      "         [[ 7.2160e-02]],\n",
+      "\n",
+      "         [[ 2.3748e-02]],\n",
+      "\n",
+      "         [[-8.7142e-01]],\n",
+      "\n",
+      "         [[-4.6808e-02]],\n",
+      "\n",
+      "         [[ 3.7911e-02]],\n",
+      "\n",
+      "         [[ 5.0955e-02]],\n",
+      "\n",
+      "         [[ 2.9199e-02]],\n",
+      "\n",
+      "         [[-4.8104e-01]],\n",
+      "\n",
+      "         [[-4.3023e-02]],\n",
+      "\n",
+      "         [[ 7.7165e-02]],\n",
+      "\n",
+      "         [[ 5.0224e-02]],\n",
+      "\n",
+      "         [[-3.0799e-02]],\n",
+      "\n",
+      "         [[-4.2366e-02]],\n",
+      "\n",
+      "         [[-6.4340e-03]],\n",
+      "\n",
+      "         [[-5.4762e-03]],\n",
+      "\n",
+      "         [[-4.1098e-02]],\n",
+      "\n",
+      "         [[ 6.3507e-02]],\n",
+      "\n",
+      "         [[-3.7080e-02]],\n",
+      "\n",
+      "         [[ 8.0720e-02]],\n",
+      "\n",
+      "         [[-3.4380e-02]],\n",
+      "\n",
+      "         [[ 6.9855e-02]],\n",
+      "\n",
+      "         [[ 2.2412e-04]],\n",
+      "\n",
+      "         [[ 2.6829e-02]],\n",
+      "\n",
+      "         [[ 1.0052e-02]],\n",
+      "\n",
+      "         [[-4.4928e-02]],\n",
+      "\n",
+      "         [[ 2.5454e-02]],\n",
+      "\n",
+      "         [[-8.5182e-02]],\n",
+      "\n",
+      "         [[ 1.1653e-02]],\n",
+      "\n",
+      "         [[-5.9781e-03]],\n",
+      "\n",
+      "         [[ 7.9455e-02]],\n",
+      "\n",
+      "         [[-3.8812e-02]],\n",
+      "\n",
+      "         [[-2.4620e-02]],\n",
+      "\n",
+      "         [[ 9.1508e-03]],\n",
+      "\n",
+      "         [[-2.9805e-01]],\n",
+      "\n",
+      "         [[-3.9501e-02]],\n",
+      "\n",
+      "         [[-4.9623e-02]],\n",
+      "\n",
+      "         [[ 5.8765e-02]],\n",
+      "\n",
+      "         [[-2.6738e-02]],\n",
+      "\n",
+      "         [[-1.9132e-01]],\n",
+      "\n",
+      "         [[-1.8013e-01]],\n",
+      "\n",
+      "         [[ 1.7872e-02]],\n",
+      "\n",
+      "         [[-1.9461e-01]],\n",
+      "\n",
+      "         [[ 5.2714e-02]],\n",
+      "\n",
+      "         [[ 5.4087e-02]],\n",
+      "\n",
+      "         [[ 1.2764e-02]],\n",
+      "\n",
+      "         [[-3.3857e-01]],\n",
+      "\n",
+      "         [[ 3.2194e-02]],\n",
+      "\n",
+      "         [[ 6.8542e-02]],\n",
+      "\n",
+      "         [[ 1.1942e-02]],\n",
+      "\n",
+      "         [[ 6.2252e-02]],\n",
+      "\n",
+      "         [[-5.0730e-02]],\n",
+      "\n",
+      "         [[-3.0198e-03]],\n",
+      "\n",
+      "         [[ 2.9330e-02]],\n",
+      "\n",
+      "         [[-5.0291e-02]],\n",
+      "\n",
+      "         [[-7.2163e-02]],\n",
+      "\n",
+      "         [[-2.2647e-03]],\n",
+      "\n",
+      "         [[ 7.8373e-02]],\n",
+      "\n",
+      "         [[-4.6273e-02]],\n",
+      "\n",
+      "         [[ 1.0073e-02]],\n",
+      "\n",
+      "         [[ 8.7991e-03]],\n",
+      "\n",
+      "         [[-1.6591e-01]],\n",
+      "\n",
+      "         [[-1.3791e-02]],\n",
+      "\n",
+      "         [[-6.8273e-02]],\n",
+      "\n",
+      "         [[-4.2815e-02]],\n",
+      "\n",
+      "         [[ 6.4358e-02]],\n",
+      "\n",
+      "         [[ 3.4267e-02]],\n",
+      "\n",
+      "         [[ 6.5303e-02]],\n",
+      "\n",
+      "         [[-4.9030e-02]],\n",
+      "\n",
+      "         [[-1.0868e-02]],\n",
+      "\n",
+      "         [[ 7.3246e-02]],\n",
+      "\n",
+      "         [[-8.9966e-02]],\n",
+      "\n",
+      "         [[ 6.7108e-02]],\n",
+      "\n",
+      "         [[-8.4038e-02]],\n",
+      "\n",
+      "         [[-9.0880e-02]],\n",
+      "\n",
+      "         [[-1.4010e-02]],\n",
+      "\n",
+      "         [[-6.5048e-02]],\n",
+      "\n",
+      "         [[-8.3908e-02]],\n",
+      "\n",
+      "         [[ 3.9448e-02]],\n",
+      "\n",
+      "         [[-5.0302e-03]],\n",
+      "\n",
+      "         [[ 1.0617e-02]],\n",
+      "\n",
+      "         [[-8.4729e-02]],\n",
+      "\n",
+      "         [[-1.9816e-03]],\n",
+      "\n",
+      "         [[-2.3211e-02]],\n",
+      "\n",
+      "         [[ 7.5223e-02]],\n",
+      "\n",
+      "         [[-4.8016e-02]],\n",
+      "\n",
+      "         [[ 2.9520e-02]],\n",
+      "\n",
+      "         [[ 7.0786e-02]],\n",
+      "\n",
+      "         [[-5.9916e-02]],\n",
+      "\n",
+      "         [[ 5.9270e-02]],\n",
+      "\n",
+      "         [[ 6.8499e-02]],\n",
+      "\n",
+      "         [[-7.6712e-02]],\n",
+      "\n",
+      "         [[-3.8004e-02]],\n",
+      "\n",
+      "         [[-1.3014e-01]],\n",
+      "\n",
+      "         [[-2.9594e-01]],\n",
+      "\n",
+      "         [[-4.8877e-02]],\n",
+      "\n",
+      "         [[ 2.3165e-02]],\n",
+      "\n",
+      "         [[-3.4145e-01]],\n",
+      "\n",
+      "         [[ 7.0113e-02]],\n",
+      "\n",
+      "         [[-5.8829e-02]],\n",
+      "\n",
+      "         [[-1.8636e-02]],\n",
+      "\n",
+      "         [[-1.1247e-02]],\n",
+      "\n",
+      "         [[-3.5401e-02]],\n",
+      "\n",
+      "         [[-1.0336e-02]],\n",
+      "\n",
+      "         [[ 4.4443e-03]],\n",
+      "\n",
+      "         [[ 1.7406e-02]],\n",
+      "\n",
+      "         [[-1.8662e-02]],\n",
+      "\n",
+      "         [[-4.5795e-02]],\n",
+      "\n",
+      "         [[-9.1231e-03]],\n",
+      "\n",
+      "         [[-7.2279e-02]],\n",
+      "\n",
+      "         [[-1.4381e-02]],\n",
+      "\n",
+      "         [[-1.4704e-02]],\n",
+      "\n",
+      "         [[-4.8707e-02]],\n",
+      "\n",
+      "         [[-2.3135e-02]],\n",
+      "\n",
+      "         [[ 3.3117e-02]],\n",
+      "\n",
+      "         [[-7.2517e-02]],\n",
+      "\n",
+      "         [[ 1.2490e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.6954e-01]],\n",
+      "\n",
+      "         [[-7.0715e-02]],\n",
+      "\n",
+      "         [[-1.8137e-02]],\n",
+      "\n",
+      "         [[-3.4264e-02]],\n",
+      "\n",
+      "         [[-9.2743e-02]],\n",
+      "\n",
+      "         [[-3.4295e-02]],\n",
+      "\n",
+      "         [[-2.7983e-02]],\n",
+      "\n",
+      "         [[ 1.2441e-02]],\n",
+      "\n",
+      "         [[-7.1985e-02]],\n",
+      "\n",
+      "         [[ 3.3650e-02]],\n",
+      "\n",
+      "         [[ 2.7354e-02]],\n",
+      "\n",
+      "         [[ 7.8401e-02]],\n",
+      "\n",
+      "         [[-8.6140e-03]],\n",
+      "\n",
+      "         [[ 1.9979e-03]],\n",
+      "\n",
+      "         [[-3.0889e-01]],\n",
+      "\n",
+      "         [[ 1.2956e-02]],\n",
+      "\n",
+      "         [[-7.4685e-03]],\n",
+      "\n",
+      "         [[-4.4693e-02]],\n",
+      "\n",
+      "         [[ 4.3695e-02]],\n",
+      "\n",
+      "         [[-9.3790e-01]],\n",
+      "\n",
+      "         [[ 1.7756e-02]],\n",
+      "\n",
+      "         [[ 3.9624e-02]],\n",
+      "\n",
+      "         [[ 4.2269e-02]],\n",
+      "\n",
+      "         [[ 2.5171e-02]],\n",
+      "\n",
+      "         [[-5.7460e-02]],\n",
+      "\n",
+      "         [[-7.2160e-02]],\n",
+      "\n",
+      "         [[-2.7902e-02]],\n",
+      "\n",
+      "         [[-7.9395e-02]],\n",
+      "\n",
+      "         [[ 7.0937e-02]],\n",
+      "\n",
+      "         [[ 1.0218e-01]],\n",
+      "\n",
+      "         [[-3.2039e-02]],\n",
+      "\n",
+      "         [[-6.6486e-02]],\n",
+      "\n",
+      "         [[-2.5666e-02]],\n",
+      "\n",
+      "         [[-4.7918e-02]],\n",
+      "\n",
+      "         [[ 1.6431e-02]],\n",
+      "\n",
+      "         [[-5.0146e-02]],\n",
+      "\n",
+      "         [[-1.0352e-02]],\n",
+      "\n",
+      "         [[ 1.7840e-02]],\n",
+      "\n",
+      "         [[-1.0223e-01]],\n",
+      "\n",
+      "         [[-4.3398e-03]],\n",
+      "\n",
+      "         [[ 8.3784e-02]],\n",
+      "\n",
+      "         [[-8.4484e-03]],\n",
+      "\n",
+      "         [[-3.1379e-02]],\n",
+      "\n",
+      "         [[-3.0429e-02]],\n",
+      "\n",
+      "         [[-6.7485e-02]],\n",
+      "\n",
+      "         [[-1.4792e-01]],\n",
+      "\n",
+      "         [[ 8.0326e-02]],\n",
+      "\n",
+      "         [[-7.4738e-02]],\n",
+      "\n",
+      "         [[-4.4372e-02]],\n",
+      "\n",
+      "         [[ 3.0644e-02]],\n",
+      "\n",
+      "         [[-1.9586e-01]],\n",
+      "\n",
+      "         [[-1.0978e-01]],\n",
+      "\n",
+      "         [[-2.9490e-02]],\n",
+      "\n",
+      "         [[-2.0899e-01]],\n",
+      "\n",
+      "         [[-7.8841e-02]],\n",
+      "\n",
+      "         [[ 3.3034e-02]],\n",
+      "\n",
+      "         [[-1.0869e-01]],\n",
+      "\n",
+      "         [[-2.3856e-01]],\n",
+      "\n",
+      "         [[-6.9895e-03]],\n",
+      "\n",
+      "         [[ 7.7923e-02]],\n",
+      "\n",
+      "         [[-4.5066e-02]],\n",
+      "\n",
+      "         [[ 4.5002e-02]],\n",
+      "\n",
+      "         [[-2.9356e-02]],\n",
+      "\n",
+      "         [[-3.1928e-02]],\n",
+      "\n",
+      "         [[-1.4659e-03]],\n",
+      "\n",
+      "         [[-2.1233e-02]],\n",
+      "\n",
+      "         [[-5.3415e-03]],\n",
+      "\n",
+      "         [[ 8.0335e-02]],\n",
+      "\n",
+      "         [[-6.2280e-02]],\n",
+      "\n",
+      "         [[-1.1212e-02]],\n",
+      "\n",
+      "         [[-3.3668e-02]],\n",
+      "\n",
+      "         [[-8.3451e-02]],\n",
+      "\n",
+      "         [[-1.9632e-01]],\n",
+      "\n",
+      "         [[-7.4606e-02]],\n",
+      "\n",
+      "         [[-5.6430e-02]],\n",
+      "\n",
+      "         [[-2.5205e-02]],\n",
+      "\n",
+      "         [[-1.1682e-01]],\n",
+      "\n",
+      "         [[ 5.5503e-02]],\n",
+      "\n",
+      "         [[-6.1286e-02]],\n",
+      "\n",
+      "         [[-7.4413e-02]],\n",
+      "\n",
+      "         [[-1.0161e-01]],\n",
+      "\n",
+      "         [[-2.7674e-02]],\n",
+      "\n",
+      "         [[-8.3460e-02]],\n",
+      "\n",
+      "         [[ 3.7636e-02]],\n",
+      "\n",
+      "         [[ 4.4116e-03]],\n",
+      "\n",
+      "         [[ 1.9435e-03]],\n",
+      "\n",
+      "         [[-5.1990e-02]],\n",
+      "\n",
+      "         [[ 6.3822e-02]],\n",
+      "\n",
+      "         [[-1.0181e-02]],\n",
+      "\n",
+      "         [[ 3.8255e-02]],\n",
+      "\n",
+      "         [[ 7.7601e-03]],\n",
+      "\n",
+      "         [[-7.6612e-02]],\n",
+      "\n",
+      "         [[-7.5283e-02]],\n",
+      "\n",
+      "         [[-9.6108e-02]],\n",
+      "\n",
+      "         [[-8.4051e-02]],\n",
+      "\n",
+      "         [[ 1.1690e-02]],\n",
+      "\n",
+      "         [[-4.0695e-02]],\n",
+      "\n",
+      "         [[-3.4682e-02]],\n",
+      "\n",
+      "         [[ 9.1887e-03]],\n",
+      "\n",
+      "         [[-6.2801e-02]],\n",
+      "\n",
+      "         [[ 2.3447e-04]],\n",
+      "\n",
+      "         [[-4.0480e-03]],\n",
+      "\n",
+      "         [[-9.2010e-02]],\n",
+      "\n",
+      "         [[ 2.9515e-02]],\n",
+      "\n",
+      "         [[-4.7576e-03]],\n",
+      "\n",
+      "         [[-9.6025e-01]],\n",
+      "\n",
+      "         [[ 7.7611e-03]],\n",
+      "\n",
+      "         [[-4.5637e-02]],\n",
+      "\n",
+      "         [[-1.2009e+00]],\n",
+      "\n",
+      "         [[ 4.1601e-02]],\n",
+      "\n",
+      "         [[-3.6928e-02]],\n",
+      "\n",
+      "         [[-1.0089e-02]],\n",
+      "\n",
+      "         [[-3.2592e-02]],\n",
+      "\n",
+      "         [[-3.1025e-02]],\n",
+      "\n",
+      "         [[-4.2478e-02]],\n",
+      "\n",
+      "         [[ 4.3422e-02]],\n",
+      "\n",
+      "         [[ 6.0269e-02]],\n",
+      "\n",
+      "         [[-5.3782e-02]],\n",
+      "\n",
+      "         [[-7.6421e-02]],\n",
+      "\n",
+      "         [[-6.1887e-02]],\n",
+      "\n",
+      "         [[-9.7398e-02]],\n",
+      "\n",
+      "         [[ 6.4090e-02]],\n",
+      "\n",
+      "         [[ 1.2477e-02]],\n",
+      "\n",
+      "         [[-3.7910e-02]],\n",
+      "\n",
+      "         [[ 2.5752e-02]],\n",
+      "\n",
+      "         [[-6.3277e-02]],\n",
+      "\n",
+      "         [[ 4.7897e-02]],\n",
+      "\n",
+      "         [[ 8.4476e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-3.6697e-01]],\n",
+      "\n",
+      "         [[-6.9503e-02]],\n",
+      "\n",
+      "         [[ 1.0967e-02]],\n",
+      "\n",
+      "         [[-8.3464e-02]],\n",
+      "\n",
+      "         [[-2.4104e-01]],\n",
+      "\n",
+      "         [[ 6.8286e-02]],\n",
+      "\n",
+      "         [[ 8.9698e-03]],\n",
+      "\n",
+      "         [[ 1.6223e-02]],\n",
+      "\n",
+      "         [[-2.0217e-02]],\n",
+      "\n",
+      "         [[ 4.4397e-02]],\n",
+      "\n",
+      "         [[-5.0821e-02]],\n",
+      "\n",
+      "         [[ 7.2318e-02]],\n",
+      "\n",
+      "         [[ 5.3341e-02]],\n",
+      "\n",
+      "         [[-5.3205e-02]],\n",
+      "\n",
+      "         [[-1.0852e+00]],\n",
+      "\n",
+      "         [[-6.3918e-02]],\n",
+      "\n",
+      "         [[-1.6644e-02]],\n",
+      "\n",
+      "         [[ 1.7406e-02]],\n",
+      "\n",
+      "         [[ 2.5429e-02]],\n",
+      "\n",
+      "         [[-3.3889e-01]],\n",
+      "\n",
+      "         [[ 2.3390e-02]],\n",
+      "\n",
+      "         [[ 4.6357e-03]],\n",
+      "\n",
+      "         [[ 5.8526e-02]],\n",
+      "\n",
+      "         [[ 6.3871e-03]],\n",
+      "\n",
+      "         [[-5.5526e-02]],\n",
+      "\n",
+      "         [[-3.4176e-02]],\n",
+      "\n",
+      "         [[-2.2311e-02]],\n",
+      "\n",
+      "         [[ 5.1081e-02]],\n",
+      "\n",
+      "         [[-5.0086e-02]],\n",
+      "\n",
+      "         [[ 4.5569e-02]],\n",
+      "\n",
+      "         [[ 5.2296e-03]],\n",
+      "\n",
+      "         [[ 2.3667e-02]],\n",
+      "\n",
+      "         [[-5.9695e-02]],\n",
+      "\n",
+      "         [[ 2.2313e-02]],\n",
+      "\n",
+      "         [[ 6.2954e-02]],\n",
+      "\n",
+      "         [[-3.6182e-02]],\n",
+      "\n",
+      "         [[-8.7310e-02]],\n",
+      "\n",
+      "         [[-2.4834e-02]],\n",
+      "\n",
+      "         [[-6.5660e-01]],\n",
+      "\n",
+      "         [[-5.4767e-02]],\n",
+      "\n",
+      "         [[-7.3067e-02]],\n",
+      "\n",
+      "         [[ 3.9207e-02]],\n",
+      "\n",
+      "         [[ 4.2402e-02]],\n",
+      "\n",
+      "         [[-2.0229e-02]],\n",
+      "\n",
+      "         [[-8.2990e-03]],\n",
+      "\n",
+      "         [[-3.3199e-01]],\n",
+      "\n",
+      "         [[ 7.4439e-02]],\n",
+      "\n",
+      "         [[-7.7198e-03]],\n",
+      "\n",
+      "         [[-7.3936e-02]],\n",
+      "\n",
+      "         [[ 7.1711e-02]],\n",
+      "\n",
+      "         [[-2.2434e-01]],\n",
+      "\n",
+      "         [[-2.0792e-01]],\n",
+      "\n",
+      "         [[-6.2233e-02]],\n",
+      "\n",
+      "         [[-7.3526e-02]],\n",
+      "\n",
+      "         [[ 4.5918e-02]],\n",
+      "\n",
+      "         [[ 4.4348e-02]],\n",
+      "\n",
+      "         [[-6.6638e-02]],\n",
+      "\n",
+      "         [[-2.3814e-01]],\n",
+      "\n",
+      "         [[-5.3624e-02]],\n",
+      "\n",
+      "         [[ 8.1335e-03]],\n",
+      "\n",
+      "         [[-1.2735e-02]],\n",
+      "\n",
+      "         [[-4.2291e-02]],\n",
+      "\n",
+      "         [[-6.3608e-02]],\n",
+      "\n",
+      "         [[ 3.8611e-02]],\n",
+      "\n",
+      "         [[-3.1344e-03]],\n",
+      "\n",
+      "         [[-2.7804e-02]],\n",
+      "\n",
+      "         [[ 6.5344e-02]],\n",
+      "\n",
+      "         [[ 8.5854e-02]],\n",
+      "\n",
+      "         [[ 5.5940e-02]],\n",
+      "\n",
+      "         [[-2.9765e-02]],\n",
+      "\n",
+      "         [[-6.4907e-02]],\n",
+      "\n",
+      "         [[ 3.8766e-02]],\n",
+      "\n",
+      "         [[-6.6949e-01]],\n",
+      "\n",
+      "         [[-3.7889e-02]],\n",
+      "\n",
+      "         [[-8.4569e-02]],\n",
+      "\n",
+      "         [[-5.4407e-02]],\n",
+      "\n",
+      "         [[-7.6328e-03]],\n",
+      "\n",
+      "         [[-7.9564e-02]],\n",
+      "\n",
+      "         [[-6.8081e-02]],\n",
+      "\n",
+      "         [[ 6.2280e-02]],\n",
+      "\n",
+      "         [[-1.1591e-02]],\n",
+      "\n",
+      "         [[-4.3724e-02]],\n",
+      "\n",
+      "         [[-1.3894e-01]],\n",
+      "\n",
+      "         [[ 4.9232e-02]],\n",
+      "\n",
+      "         [[ 1.5025e-02]],\n",
+      "\n",
+      "         [[-7.7593e-01]],\n",
+      "\n",
+      "         [[ 7.4307e-02]],\n",
+      "\n",
+      "         [[ 4.6534e-02]],\n",
+      "\n",
+      "         [[-3.8541e-02]],\n",
+      "\n",
+      "         [[ 5.4790e-02]],\n",
+      "\n",
+      "         [[-8.2643e-02]],\n",
+      "\n",
+      "         [[ 7.1741e-02]],\n",
+      "\n",
+      "         [[-1.5892e-01]],\n",
+      "\n",
+      "         [[-8.0424e-02]],\n",
+      "\n",
+      "         [[ 3.5847e-02]],\n",
+      "\n",
+      "         [[-5.0043e-02]],\n",
+      "\n",
+      "         [[ 3.2922e-02]],\n",
+      "\n",
+      "         [[ 5.5140e-02]],\n",
+      "\n",
+      "         [[ 8.1955e-02]],\n",
+      "\n",
+      "         [[-1.1600e-01]],\n",
+      "\n",
+      "         [[ 2.9437e-02]],\n",
+      "\n",
+      "         [[-1.1466e-03]],\n",
+      "\n",
+      "         [[-1.2603e-01]],\n",
+      "\n",
+      "         [[-6.3848e-02]],\n",
+      "\n",
+      "         [[-5.8009e-03]],\n",
+      "\n",
+      "         [[-6.0427e-01]],\n",
+      "\n",
+      "         [[-3.7672e-02]],\n",
+      "\n",
+      "         [[ 7.9141e-02]],\n",
+      "\n",
+      "         [[-3.9824e-01]],\n",
+      "\n",
+      "         [[-7.2506e-02]],\n",
+      "\n",
+      "         [[-4.0399e-02]],\n",
+      "\n",
+      "         [[-7.2840e-02]],\n",
+      "\n",
+      "         [[-4.5468e-02]],\n",
+      "\n",
+      "         [[ 8.1261e-02]],\n",
+      "\n",
+      "         [[ 7.1075e-02]],\n",
+      "\n",
+      "         [[-2.0987e-02]],\n",
+      "\n",
+      "         [[ 1.7637e-02]],\n",
+      "\n",
+      "         [[ 4.6899e-02]],\n",
+      "\n",
+      "         [[-1.2530e-02]],\n",
+      "\n",
+      "         [[-3.6214e-02]],\n",
+      "\n",
+      "         [[-2.7845e-02]],\n",
+      "\n",
+      "         [[ 4.2560e-02]],\n",
+      "\n",
+      "         [[-1.2723e-02]],\n",
+      "\n",
+      "         [[-7.5276e-02]],\n",
+      "\n",
+      "         [[ 8.0435e-02]],\n",
+      "\n",
+      "         [[-5.1455e-02]],\n",
+      "\n",
+      "         [[-2.0483e-03]],\n",
+      "\n",
+      "         [[ 1.5819e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-2.2585e-01]],\n",
+      "\n",
+      "         [[-1.3566e-02]],\n",
+      "\n",
+      "         [[-1.0727e-04]],\n",
+      "\n",
+      "         [[-4.4691e-01]],\n",
+      "\n",
+      "         [[-1.4095e-01]],\n",
+      "\n",
+      "         [[ 4.6821e-02]],\n",
+      "\n",
+      "         [[ 6.4292e-02]],\n",
+      "\n",
+      "         [[ 1.5510e-02]],\n",
+      "\n",
+      "         [[-3.1303e-02]],\n",
+      "\n",
+      "         [[-6.7482e-02]],\n",
+      "\n",
+      "         [[-6.4460e-02]],\n",
+      "\n",
+      "         [[-7.9185e-02]],\n",
+      "\n",
+      "         [[ 1.5859e-02]],\n",
+      "\n",
+      "         [[ 6.6976e-03]],\n",
+      "\n",
+      "         [[-1.2464e+00]],\n",
+      "\n",
+      "         [[-3.5619e-02]],\n",
+      "\n",
+      "         [[ 6.1411e-02]],\n",
+      "\n",
+      "         [[ 2.2187e-02]],\n",
+      "\n",
+      "         [[ 2.1006e-02]],\n",
+      "\n",
+      "         [[-3.2140e-01]],\n",
+      "\n",
+      "         [[ 2.0653e-02]],\n",
+      "\n",
+      "         [[-1.8086e-02]],\n",
+      "\n",
+      "         [[ 4.2532e-03]],\n",
+      "\n",
+      "         [[ 1.8468e-02]],\n",
+      "\n",
+      "         [[ 9.9415e-03]],\n",
+      "\n",
+      "         [[-5.9050e-02]],\n",
+      "\n",
+      "         [[ 7.1660e-03]],\n",
+      "\n",
+      "         [[-8.6215e-02]],\n",
+      "\n",
+      "         [[ 2.1759e-02]],\n",
+      "\n",
+      "         [[-7.0151e-02]],\n",
+      "\n",
+      "         [[ 3.4123e-02]],\n",
+      "\n",
+      "         [[-8.3240e-02]],\n",
+      "\n",
+      "         [[-8.0235e-02]],\n",
+      "\n",
+      "         [[-3.5753e-02]],\n",
+      "\n",
+      "         [[ 3.0003e-02]],\n",
+      "\n",
+      "         [[-2.9427e-02]],\n",
+      "\n",
+      "         [[-3.1303e-02]],\n",
+      "\n",
+      "         [[-2.6055e-04]],\n",
+      "\n",
+      "         [[-1.1700e-01]],\n",
+      "\n",
+      "         [[ 1.5369e-02]],\n",
+      "\n",
+      "         [[ 4.2795e-02]],\n",
+      "\n",
+      "         [[-8.6277e-02]],\n",
+      "\n",
+      "         [[ 1.6371e-02]],\n",
+      "\n",
+      "         [[-2.3894e-02]],\n",
+      "\n",
+      "         [[-8.2230e-02]],\n",
+      "\n",
+      "         [[-2.3012e-01]],\n",
+      "\n",
+      "         [[-5.7046e-02]],\n",
+      "\n",
+      "         [[-5.6904e-03]],\n",
+      "\n",
+      "         [[ 5.7631e-02]],\n",
+      "\n",
+      "         [[ 4.5921e-02]],\n",
+      "\n",
+      "         [[-8.2587e-02]],\n",
+      "\n",
+      "         [[-1.8759e-01]],\n",
+      "\n",
+      "         [[ 7.5340e-02]],\n",
+      "\n",
+      "         [[-3.0088e-01]],\n",
+      "\n",
+      "         [[ 8.5726e-03]],\n",
+      "\n",
+      "         [[-5.0467e-02]],\n",
+      "\n",
+      "         [[-1.8796e-02]],\n",
+      "\n",
+      "         [[-1.1474e+00]],\n",
+      "\n",
+      "         [[-7.1527e-02]],\n",
+      "\n",
+      "         [[-2.3426e-02]],\n",
+      "\n",
+      "         [[ 6.2792e-02]],\n",
+      "\n",
+      "         [[ 6.6162e-02]],\n",
+      "\n",
+      "         [[ 2.4319e-02]],\n",
+      "\n",
+      "         [[-3.4450e-02]],\n",
+      "\n",
+      "         [[-5.6616e-02]],\n",
+      "\n",
+      "         [[-1.3175e-01]],\n",
+      "\n",
+      "         [[-3.5433e-02]],\n",
+      "\n",
+      "         [[-6.2382e-02]],\n",
+      "\n",
+      "         [[-8.4492e-02]],\n",
+      "\n",
+      "         [[-4.4459e-02]],\n",
+      "\n",
+      "         [[-5.5899e-02]],\n",
+      "\n",
+      "         [[ 3.7586e-03]],\n",
+      "\n",
+      "         [[-2.8147e-01]],\n",
+      "\n",
+      "         [[-5.5230e-02]],\n",
+      "\n",
+      "         [[-4.8968e-02]],\n",
+      "\n",
+      "         [[-1.7867e-02]],\n",
+      "\n",
+      "         [[-7.0031e-02]],\n",
+      "\n",
+      "         [[ 1.1650e-02]],\n",
+      "\n",
+      "         [[-3.5437e-02]],\n",
+      "\n",
+      "         [[ 6.1835e-02]],\n",
+      "\n",
+      "         [[-2.7895e-02]],\n",
+      "\n",
+      "         [[-7.6989e-02]],\n",
+      "\n",
+      "         [[-1.3199e-01]],\n",
+      "\n",
+      "         [[-3.7051e-02]],\n",
+      "\n",
+      "         [[ 3.3383e-02]],\n",
+      "\n",
+      "         [[-1.9169e-01]],\n",
+      "\n",
+      "         [[-9.9866e-02]],\n",
+      "\n",
+      "         [[ 3.8021e-02]],\n",
+      "\n",
+      "         [[-9.5351e-03]],\n",
+      "\n",
+      "         [[-2.8772e-02]],\n",
+      "\n",
+      "         [[ 2.1334e-04]],\n",
+      "\n",
+      "         [[-3.9853e-03]],\n",
+      "\n",
+      "         [[-3.3818e-01]],\n",
+      "\n",
+      "         [[-6.7654e-02]],\n",
+      "\n",
+      "         [[ 1.8661e-02]],\n",
+      "\n",
+      "         [[-1.5699e-01]],\n",
+      "\n",
+      "         [[-2.6504e-02]],\n",
+      "\n",
+      "         [[ 3.7412e-02]],\n",
+      "\n",
+      "         [[ 8.4849e-02]],\n",
+      "\n",
+      "         [[-7.9148e-02]],\n",
+      "\n",
+      "         [[-3.4448e-02]],\n",
+      "\n",
+      "         [[ 6.4672e-02]],\n",
+      "\n",
+      "         [[-1.0234e-01]],\n",
+      "\n",
+      "         [[-3.3586e-02]],\n",
+      "\n",
+      "         [[-3.8798e-02]],\n",
+      "\n",
+      "         [[-3.4385e-01]],\n",
+      "\n",
+      "         [[ 5.7540e-02]],\n",
+      "\n",
+      "         [[-8.1640e-02]],\n",
+      "\n",
+      "         [[-1.8801e-01]],\n",
+      "\n",
+      "         [[-5.1659e-02]],\n",
+      "\n",
+      "         [[-7.9401e-02]],\n",
+      "\n",
+      "         [[-3.7367e-02]],\n",
+      "\n",
+      "         [[ 1.1180e-03]],\n",
+      "\n",
+      "         [[ 5.5025e-02]],\n",
+      "\n",
+      "         [[ 3.1641e-02]],\n",
+      "\n",
+      "         [[-7.4673e-02]],\n",
+      "\n",
+      "         [[ 6.2448e-03]],\n",
+      "\n",
+      "         [[-6.6220e-02]],\n",
+      "\n",
+      "         [[ 7.0260e-03]],\n",
+      "\n",
+      "         [[-1.1361e-01]],\n",
+      "\n",
+      "         [[-1.2099e-01]],\n",
+      "\n",
+      "         [[-8.2221e-03]],\n",
+      "\n",
+      "         [[-7.0681e-02]],\n",
+      "\n",
+      "         [[-7.5311e-02]],\n",
+      "\n",
+      "         [[-4.0153e-02]],\n",
+      "\n",
+      "         [[ 8.4828e-02]],\n",
+      "\n",
+      "         [[ 3.5768e-02]],\n",
+      "\n",
+      "         [[ 6.2792e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.3933e-01]],\n",
+      "\n",
+      "         [[ 1.6043e-02]],\n",
+      "\n",
+      "         [[ 2.2888e-02]],\n",
+      "\n",
+      "         [[-2.8591e-01]],\n",
+      "\n",
+      "         [[-1.4039e-01]],\n",
+      "\n",
+      "         [[ 8.2033e-02]],\n",
+      "\n",
+      "         [[ 4.5525e-02]],\n",
+      "\n",
+      "         [[ 6.3540e-03]],\n",
+      "\n",
+      "         [[-9.3947e-02]],\n",
+      "\n",
+      "         [[-6.0828e-02]],\n",
+      "\n",
+      "         [[ 2.9186e-02]],\n",
+      "\n",
+      "         [[ 4.9704e-02]],\n",
+      "\n",
+      "         [[-6.7546e-02]],\n",
+      "\n",
+      "         [[-6.6442e-03]],\n",
+      "\n",
+      "         [[-3.2821e-01]],\n",
+      "\n",
+      "         [[ 7.3938e-02]],\n",
+      "\n",
+      "         [[-4.5479e-02]],\n",
+      "\n",
+      "         [[ 2.3007e-02]],\n",
+      "\n",
+      "         [[-4.2523e-02]],\n",
+      "\n",
+      "         [[-3.7573e-01]],\n",
+      "\n",
+      "         [[-2.1566e-02]],\n",
+      "\n",
+      "         [[ 8.3664e-02]],\n",
+      "\n",
+      "         [[-6.6512e-02]],\n",
+      "\n",
+      "         [[-7.3759e-03]],\n",
+      "\n",
+      "         [[ 2.1988e-03]],\n",
+      "\n",
+      "         [[-4.4665e-02]],\n",
+      "\n",
+      "         [[-6.4440e-02]],\n",
+      "\n",
+      "         [[ 3.8314e-02]],\n",
+      "\n",
+      "         [[-2.7164e-02]],\n",
+      "\n",
+      "         [[-7.6654e-02]],\n",
+      "\n",
+      "         [[ 6.5754e-02]],\n",
+      "\n",
+      "         [[-2.0349e-02]],\n",
+      "\n",
+      "         [[ 1.1305e-02]],\n",
+      "\n",
+      "         [[-8.0830e-02]],\n",
+      "\n",
+      "         [[-1.5759e-02]],\n",
+      "\n",
+      "         [[ 7.1256e-02]],\n",
+      "\n",
+      "         [[ 1.7668e-02]],\n",
+      "\n",
+      "         [[-7.3159e-02]],\n",
+      "\n",
+      "         [[-5.0034e-01]],\n",
+      "\n",
+      "         [[-4.8064e-02]],\n",
+      "\n",
+      "         [[ 6.3521e-02]],\n",
+      "\n",
+      "         [[ 4.8550e-02]],\n",
+      "\n",
+      "         [[-2.6721e-03]],\n",
+      "\n",
+      "         [[-1.6901e-02]],\n",
+      "\n",
+      "         [[ 4.2881e-02]],\n",
+      "\n",
+      "         [[-2.0164e-01]],\n",
+      "\n",
+      "         [[ 5.4494e-02]],\n",
+      "\n",
+      "         [[-6.4782e-03]],\n",
+      "\n",
+      "         [[ 8.3833e-02]],\n",
+      "\n",
+      "         [[ 4.3227e-02]],\n",
+      "\n",
+      "         [[-6.9890e-02]],\n",
+      "\n",
+      "         [[-2.4355e-01]],\n",
+      "\n",
+      "         [[ 7.2328e-02]],\n",
+      "\n",
+      "         [[-5.6824e-02]],\n",
+      "\n",
+      "         [[-1.1431e-02]],\n",
+      "\n",
+      "         [[-3.2780e-02]],\n",
+      "\n",
+      "         [[-1.0231e-03]],\n",
+      "\n",
+      "         [[-3.0533e-01]],\n",
+      "\n",
+      "         [[ 6.2010e-02]],\n",
+      "\n",
+      "         [[-8.7640e-02]],\n",
+      "\n",
+      "         [[-6.9797e-02]],\n",
+      "\n",
+      "         [[ 2.2578e-02]],\n",
+      "\n",
+      "         [[-5.3727e-02]],\n",
+      "\n",
+      "         [[ 3.0940e-02]],\n",
+      "\n",
+      "         [[-4.9770e-02]],\n",
+      "\n",
+      "         [[-6.2294e-02]],\n",
+      "\n",
+      "         [[ 4.1887e-02]],\n",
+      "\n",
+      "         [[ 7.0607e-02]],\n",
+      "\n",
+      "         [[-1.3174e-02]],\n",
+      "\n",
+      "         [[-2.0366e-02]],\n",
+      "\n",
+      "         [[ 8.2964e-02]],\n",
+      "\n",
+      "         [[ 1.1860e-02]],\n",
+      "\n",
+      "         [[-1.2043e-01]],\n",
+      "\n",
+      "         [[-1.9685e-02]],\n",
+      "\n",
+      "         [[-7.2999e-02]],\n",
+      "\n",
+      "         [[ 7.6896e-02]],\n",
+      "\n",
+      "         [[-1.8962e-02]],\n",
+      "\n",
+      "         [[ 2.1313e-02]],\n",
+      "\n",
+      "         [[-1.0410e-02]],\n",
+      "\n",
+      "         [[ 4.2868e-02]],\n",
+      "\n",
+      "         [[-6.7397e-02]],\n",
+      "\n",
+      "         [[-2.0987e-02]],\n",
+      "\n",
+      "         [[-9.1884e-02]],\n",
+      "\n",
+      "         [[-3.7199e-02]],\n",
+      "\n",
+      "         [[-1.8285e-02]],\n",
+      "\n",
+      "         [[-7.7935e-01]],\n",
+      "\n",
+      "         [[-8.7245e-02]],\n",
+      "\n",
+      "         [[ 5.1746e-02]],\n",
+      "\n",
+      "         [[-3.0370e-02]],\n",
+      "\n",
+      "         [[ 9.3855e-03]],\n",
+      "\n",
+      "         [[ 7.3413e-02]],\n",
+      "\n",
+      "         [[ 6.9489e-02]],\n",
+      "\n",
+      "         [[-1.6262e-01]],\n",
+      "\n",
+      "         [[-1.1302e-01]],\n",
+      "\n",
+      "         [[ 2.4612e-02]],\n",
+      "\n",
+      "         [[-8.4774e-02]],\n",
+      "\n",
+      "         [[-9.3469e-02]],\n",
+      "\n",
+      "         [[-7.8980e-02]],\n",
+      "\n",
+      "         [[-5.5855e-02]],\n",
+      "\n",
+      "         [[-7.8711e-02]],\n",
+      "\n",
+      "         [[ 4.1590e-03]],\n",
+      "\n",
+      "         [[ 9.7141e-04]],\n",
+      "\n",
+      "         [[-2.8917e-02]],\n",
+      "\n",
+      "         [[-8.6165e-02]],\n",
+      "\n",
+      "         [[-1.0577e-01]],\n",
+      "\n",
+      "         [[-4.4477e-01]],\n",
+      "\n",
+      "         [[ 7.1530e-02]],\n",
+      "\n",
+      "         [[-6.4355e-03]],\n",
+      "\n",
+      "         [[-7.1903e-01]],\n",
+      "\n",
+      "         [[ 3.8782e-02]],\n",
+      "\n",
+      "         [[-3.8433e-02]],\n",
+      "\n",
+      "         [[-9.4327e-03]],\n",
+      "\n",
+      "         [[ 4.0614e-03]],\n",
+      "\n",
+      "         [[-7.6002e-02]],\n",
+      "\n",
+      "         [[ 6.1283e-02]],\n",
+      "\n",
+      "         [[ 7.1095e-02]],\n",
+      "\n",
+      "         [[ 5.7111e-02]],\n",
+      "\n",
+      "         [[ 6.0969e-02]],\n",
+      "\n",
+      "         [[-3.6994e-02]],\n",
+      "\n",
+      "         [[-7.0564e-03]],\n",
+      "\n",
+      "         [[-9.2495e-02]],\n",
+      "\n",
+      "         [[-4.6470e-02]],\n",
+      "\n",
+      "         [[ 7.4364e-03]],\n",
+      "\n",
+      "         [[ 1.1656e-01]],\n",
+      "\n",
+      "         [[ 6.3048e-02]],\n",
+      "\n",
+      "         [[ 2.6737e-03]],\n",
+      "\n",
+      "         [[ 4.9795e-02]],\n",
+      "\n",
+      "         [[ 6.6458e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-3.5530e-01]],\n",
+      "\n",
+      "         [[-3.7817e-02]],\n",
+      "\n",
+      "         [[-1.2427e-02]],\n",
+      "\n",
+      "         [[-4.5986e-02]],\n",
+      "\n",
+      "         [[-1.0099e-01]],\n",
+      "\n",
+      "         [[-8.0610e-02]],\n",
+      "\n",
+      "         [[-2.5278e-02]],\n",
+      "\n",
+      "         [[-3.7117e-02]],\n",
+      "\n",
+      "         [[-2.4276e-02]],\n",
+      "\n",
+      "         [[ 8.3077e-03]],\n",
+      "\n",
+      "         [[ 4.2096e-02]],\n",
+      "\n",
+      "         [[-4.9043e-02]],\n",
+      "\n",
+      "         [[-4.1045e-02]],\n",
+      "\n",
+      "         [[ 3.1521e-02]],\n",
+      "\n",
+      "         [[-1.8966e-01]],\n",
+      "\n",
+      "         [[-5.7292e-02]],\n",
+      "\n",
+      "         [[-6.8269e-02]],\n",
+      "\n",
+      "         [[ 1.3186e-02]],\n",
+      "\n",
+      "         [[-6.5959e-03]],\n",
+      "\n",
+      "         [[-4.1009e-01]],\n",
+      "\n",
+      "         [[-6.3114e-02]],\n",
+      "\n",
+      "         [[ 5.2794e-02]],\n",
+      "\n",
+      "         [[-2.1223e-02]],\n",
+      "\n",
+      "         [[ 1.7929e-02]],\n",
+      "\n",
+      "         [[ 1.4616e-02]],\n",
+      "\n",
+      "         [[-3.4842e-03]],\n",
+      "\n",
+      "         [[-1.1102e-02]],\n",
+      "\n",
+      "         [[ 1.2391e-02]],\n",
+      "\n",
+      "         [[-8.2775e-02]],\n",
+      "\n",
+      "         [[-1.1319e-01]],\n",
+      "\n",
+      "         [[ 6.1439e-02]],\n",
+      "\n",
+      "         [[-3.7376e-02]],\n",
+      "\n",
+      "         [[ 6.2318e-03]],\n",
+      "\n",
+      "         [[-6.4582e-02]],\n",
+      "\n",
+      "         [[-1.1513e-02]],\n",
+      "\n",
+      "         [[ 1.7647e-02]],\n",
+      "\n",
+      "         [[-9.2969e-02]],\n",
+      "\n",
+      "         [[-4.1524e-02]],\n",
+      "\n",
+      "         [[-3.9844e-01]],\n",
+      "\n",
+      "         [[-7.0361e-02]],\n",
+      "\n",
+      "         [[ 6.4272e-02]],\n",
+      "\n",
+      "         [[ 3.6390e-02]],\n",
+      "\n",
+      "         [[-5.3428e-02]],\n",
+      "\n",
+      "         [[-5.3801e-02]],\n",
+      "\n",
+      "         [[ 4.5382e-02]],\n",
+      "\n",
+      "         [[-5.1762e-02]],\n",
+      "\n",
+      "         [[-5.1228e-02]],\n",
+      "\n",
+      "         [[-2.6309e-03]],\n",
+      "\n",
+      "         [[-7.2009e-02]],\n",
+      "\n",
+      "         [[-4.1694e-02]],\n",
+      "\n",
+      "         [[-1.5958e-01]],\n",
+      "\n",
+      "         [[-2.7422e-01]],\n",
+      "\n",
+      "         [[ 1.6703e-02]],\n",
+      "\n",
+      "         [[-5.3506e-02]],\n",
+      "\n",
+      "         [[ 6.7224e-02]],\n",
+      "\n",
+      "         [[ 9.5907e-03]],\n",
+      "\n",
+      "         [[-2.9119e-02]],\n",
+      "\n",
+      "         [[-1.8504e+00]],\n",
+      "\n",
+      "         [[-7.5489e-03]],\n",
+      "\n",
+      "         [[ 5.0003e-02]],\n",
+      "\n",
+      "         [[-2.8963e-02]],\n",
+      "\n",
+      "         [[-8.1165e-02]],\n",
+      "\n",
+      "         [[-1.0088e-01]],\n",
+      "\n",
+      "         [[-4.5248e-02]],\n",
+      "\n",
+      "         [[-1.4354e-01]],\n",
+      "\n",
+      "         [[-3.0296e-02]],\n",
+      "\n",
+      "         [[-2.1073e-02]],\n",
+      "\n",
+      "         [[-1.2140e-02]],\n",
+      "\n",
+      "         [[-3.5226e-02]],\n",
+      "\n",
+      "         [[-4.8103e-02]],\n",
+      "\n",
+      "         [[-7.6851e-02]],\n",
+      "\n",
+      "         [[ 1.1410e-04]],\n",
+      "\n",
+      "         [[-1.6614e-01]],\n",
+      "\n",
+      "         [[-8.6354e-02]],\n",
+      "\n",
+      "         [[ 4.2876e-03]],\n",
+      "\n",
+      "         [[-7.7227e-02]],\n",
+      "\n",
+      "         [[ 1.6630e-02]],\n",
+      "\n",
+      "         [[-2.1491e-02]],\n",
+      "\n",
+      "         [[-4.0423e-02]],\n",
+      "\n",
+      "         [[ 3.2621e-02]],\n",
+      "\n",
+      "         [[-1.4866e-02]],\n",
+      "\n",
+      "         [[ 3.7514e-02]],\n",
+      "\n",
+      "         [[-2.5391e-01]],\n",
+      "\n",
+      "         [[ 5.9099e-02]],\n",
+      "\n",
+      "         [[-7.8094e-03]],\n",
+      "\n",
+      "         [[-1.2043e-02]],\n",
+      "\n",
+      "         [[-3.5424e-02]],\n",
+      "\n",
+      "         [[-5.5615e-02]],\n",
+      "\n",
+      "         [[-4.8890e-02]],\n",
+      "\n",
+      "         [[-4.0087e-03]],\n",
+      "\n",
+      "         [[ 1.3921e-02]],\n",
+      "\n",
+      "         [[ 2.6682e-02]],\n",
+      "\n",
+      "         [[-1.5402e-01]],\n",
+      "\n",
+      "         [[-1.0398e-01]],\n",
+      "\n",
+      "         [[-7.3690e-02]],\n",
+      "\n",
+      "         [[-8.2164e-02]],\n",
+      "\n",
+      "         [[-5.0644e-02]],\n",
+      "\n",
+      "         [[-5.9608e-03]],\n",
+      "\n",
+      "         [[-7.6079e-02]],\n",
+      "\n",
+      "         [[-1.0056e-01]],\n",
+      "\n",
+      "         [[ 7.7277e-02]],\n",
+      "\n",
+      "         [[ 3.5423e-02]],\n",
+      "\n",
+      "         [[-1.3654e-01]],\n",
+      "\n",
+      "         [[-1.1118e-01]],\n",
+      "\n",
+      "         [[-2.4266e-02]],\n",
+      "\n",
+      "         [[-1.2708e-01]],\n",
+      "\n",
+      "         [[ 2.9908e-02]],\n",
+      "\n",
+      "         [[-5.8156e-02]],\n",
+      "\n",
+      "         [[-9.6013e-01]],\n",
+      "\n",
+      "         [[-5.8060e-02]],\n",
+      "\n",
+      "         [[-2.0974e-01]],\n",
+      "\n",
+      "         [[-1.4966e-02]],\n",
+      "\n",
+      "         [[-4.5122e-03]],\n",
+      "\n",
+      "         [[ 3.7963e-02]],\n",
+      "\n",
+      "         [[ 6.3585e-03]],\n",
+      "\n",
+      "         [[-5.5203e-02]],\n",
+      "\n",
+      "         [[-5.0223e-02]],\n",
+      "\n",
+      "         [[-2.4901e-02]],\n",
+      "\n",
+      "         [[-1.0939e-01]],\n",
+      "\n",
+      "         [[-6.9559e-02]],\n",
+      "\n",
+      "         [[-2.7611e-01]],\n",
+      "\n",
+      "         [[-9.2595e-02]],\n",
+      "\n",
+      "         [[ 2.3910e-02]],\n",
+      "\n",
+      "         [[-4.6859e-02]],\n",
+      "\n",
+      "         [[-3.9199e-02]],\n",
+      "\n",
+      "         [[ 3.8463e-03]],\n",
+      "\n",
+      "         [[ 1.8010e-02]],\n",
+      "\n",
+      "         [[-2.9721e-02]]]])), ('proposal_net.tidy1.bias', tensor([-1.1114, -1.1112, -1.1115, -1.1111, -1.1106, -1.1111])), ('proposal_net.tidy2.weight', tensor([[[[-8.0477e-02]],\n",
+      "\n",
+      "         [[-2.0023e-01]],\n",
+      "\n",
+      "         [[-1.7225e-02]],\n",
+      "\n",
+      "         [[-1.3076e-01]],\n",
+      "\n",
+      "         [[-9.2572e-02]],\n",
+      "\n",
+      "         [[-5.7005e-02]],\n",
+      "\n",
+      "         [[-1.0408e-01]],\n",
+      "\n",
+      "         [[-5.8218e-02]],\n",
+      "\n",
+      "         [[-1.5770e-01]],\n",
+      "\n",
+      "         [[-1.5924e-01]],\n",
+      "\n",
+      "         [[-2.4349e-01]],\n",
+      "\n",
+      "         [[-3.3101e-02]],\n",
+      "\n",
+      "         [[-9.7559e-02]],\n",
+      "\n",
+      "         [[-8.5818e-02]],\n",
+      "\n",
+      "         [[-2.1943e-02]],\n",
+      "\n",
+      "         [[-1.6202e-01]],\n",
+      "\n",
+      "         [[-7.9022e-02]],\n",
+      "\n",
+      "         [[-5.9019e-02]],\n",
+      "\n",
+      "         [[-2.1145e-01]],\n",
+      "\n",
+      "         [[ 8.7814e-03]],\n",
+      "\n",
+      "         [[-6.0705e-02]],\n",
+      "\n",
+      "         [[ 8.9255e-03]],\n",
+      "\n",
+      "         [[-8.8956e-02]],\n",
+      "\n",
+      "         [[-2.3642e-01]],\n",
+      "\n",
+      "         [[ 2.8414e-02]],\n",
+      "\n",
+      "         [[ 1.2103e-03]],\n",
+      "\n",
+      "         [[-2.2611e-02]],\n",
+      "\n",
+      "         [[-8.1874e-02]],\n",
+      "\n",
+      "         [[-8.9184e-02]],\n",
+      "\n",
+      "         [[ 4.9771e-02]],\n",
+      "\n",
+      "         [[-7.1458e-02]],\n",
+      "\n",
+      "         [[-4.8428e-02]],\n",
+      "\n",
+      "         [[-6.3512e-02]],\n",
+      "\n",
+      "         [[ 3.5640e-02]],\n",
+      "\n",
+      "         [[-1.7558e-02]],\n",
+      "\n",
+      "         [[-3.3747e-02]],\n",
+      "\n",
+      "         [[-1.1463e-01]],\n",
+      "\n",
+      "         [[-3.5418e-02]],\n",
+      "\n",
+      "         [[-2.6720e-02]],\n",
+      "\n",
+      "         [[ 6.5470e-03]],\n",
+      "\n",
+      "         [[ 2.2025e-03]],\n",
+      "\n",
+      "         [[-3.6243e-02]],\n",
+      "\n",
+      "         [[-1.1292e-01]],\n",
+      "\n",
+      "         [[-8.6744e-02]],\n",
+      "\n",
+      "         [[-7.9629e-02]],\n",
+      "\n",
+      "         [[-4.9251e-02]],\n",
+      "\n",
+      "         [[ 4.4096e-02]],\n",
+      "\n",
+      "         [[-2.4729e-01]],\n",
+      "\n",
+      "         [[-8.7796e-02]],\n",
+      "\n",
+      "         [[-4.3458e-02]],\n",
+      "\n",
+      "         [[-3.6880e-01]],\n",
+      "\n",
+      "         [[-1.3875e-01]],\n",
+      "\n",
+      "         [[-1.9625e-01]],\n",
+      "\n",
+      "         [[-2.4208e-02]],\n",
+      "\n",
+      "         [[-6.1899e-02]],\n",
+      "\n",
+      "         [[-7.7677e-02]],\n",
+      "\n",
+      "         [[-7.7596e-02]],\n",
+      "\n",
+      "         [[-9.4111e-02]],\n",
+      "\n",
+      "         [[ 8.9191e-03]],\n",
+      "\n",
+      "         [[-1.8986e-01]],\n",
+      "\n",
+      "         [[-2.0597e-01]],\n",
+      "\n",
+      "         [[-1.3684e-01]],\n",
+      "\n",
+      "         [[-7.3058e-02]],\n",
+      "\n",
+      "         [[-3.3481e-01]],\n",
+      "\n",
+      "         [[-1.7675e-01]],\n",
+      "\n",
+      "         [[-4.5252e-02]],\n",
+      "\n",
+      "         [[ 1.3256e-01]],\n",
+      "\n",
+      "         [[ 7.2642e-02]],\n",
+      "\n",
+      "         [[-2.3251e-01]],\n",
+      "\n",
+      "         [[-1.5098e-01]],\n",
+      "\n",
+      "         [[-3.4766e-02]],\n",
+      "\n",
+      "         [[-1.9243e-02]],\n",
+      "\n",
+      "         [[-1.1078e-01]],\n",
+      "\n",
+      "         [[-5.9156e-02]],\n",
+      "\n",
+      "         [[-3.8903e-02]],\n",
+      "\n",
+      "         [[-1.0623e-01]],\n",
+      "\n",
+      "         [[-5.5351e-02]],\n",
+      "\n",
+      "         [[-1.1458e-01]],\n",
+      "\n",
+      "         [[-1.6215e-01]],\n",
+      "\n",
+      "         [[-4.0475e-02]],\n",
+      "\n",
+      "         [[-1.0924e-01]],\n",
+      "\n",
+      "         [[-7.2752e-02]],\n",
+      "\n",
+      "         [[-7.0962e-02]],\n",
+      "\n",
+      "         [[-6.1024e-02]],\n",
+      "\n",
+      "         [[-7.6341e-03]],\n",
+      "\n",
+      "         [[-1.4743e-01]],\n",
+      "\n",
+      "         [[-2.6057e-02]],\n",
+      "\n",
+      "         [[-1.0595e-01]],\n",
+      "\n",
+      "         [[ 3.5206e-02]],\n",
+      "\n",
+      "         [[-1.3142e-01]],\n",
+      "\n",
+      "         [[-1.7467e-01]],\n",
+      "\n",
+      "         [[ 1.2129e-02]],\n",
+      "\n",
+      "         [[ 6.1617e-02]],\n",
+      "\n",
+      "         [[-9.3459e-02]],\n",
+      "\n",
+      "         [[-1.3334e-01]],\n",
+      "\n",
+      "         [[-1.2061e-01]],\n",
+      "\n",
+      "         [[-1.9873e-01]],\n",
+      "\n",
+      "         [[-2.2848e-02]],\n",
+      "\n",
+      "         [[-1.5837e-01]],\n",
+      "\n",
+      "         [[-1.1886e-01]],\n",
+      "\n",
+      "         [[-7.8116e-02]],\n",
+      "\n",
+      "         [[-7.9747e-02]],\n",
+      "\n",
+      "         [[-3.4296e-02]],\n",
+      "\n",
+      "         [[-1.2898e-01]],\n",
+      "\n",
+      "         [[-1.6822e-02]],\n",
+      "\n",
+      "         [[-3.5255e-01]],\n",
+      "\n",
+      "         [[-3.5274e-01]],\n",
+      "\n",
+      "         [[ 4.3896e-02]],\n",
+      "\n",
+      "         [[-1.6214e-01]],\n",
+      "\n",
+      "         [[ 5.4645e-02]],\n",
+      "\n",
+      "         [[-3.9567e-02]],\n",
+      "\n",
+      "         [[-1.4130e-01]],\n",
+      "\n",
+      "         [[-2.1951e-01]],\n",
+      "\n",
+      "         [[-6.4027e-02]],\n",
+      "\n",
+      "         [[-3.5438e-02]],\n",
+      "\n",
+      "         [[-9.0584e-02]],\n",
+      "\n",
+      "         [[-7.4776e-02]],\n",
+      "\n",
+      "         [[-8.8803e-03]],\n",
+      "\n",
+      "         [[-4.0899e-02]],\n",
+      "\n",
+      "         [[-1.4770e-02]],\n",
+      "\n",
+      "         [[-4.7847e-04]],\n",
+      "\n",
+      "         [[-8.3741e-02]],\n",
+      "\n",
+      "         [[ 2.2199e-02]],\n",
+      "\n",
+      "         [[-1.8768e-01]],\n",
+      "\n",
+      "         [[ 6.0069e-02]],\n",
+      "\n",
+      "         [[-2.0815e-01]],\n",
+      "\n",
+      "         [[ 1.9118e-02]],\n",
+      "\n",
+      "         [[ 2.1511e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-9.8980e-02]],\n",
+      "\n",
+      "         [[-7.6253e-02]],\n",
+      "\n",
+      "         [[-2.5988e-01]],\n",
+      "\n",
+      "         [[-6.7082e-02]],\n",
+      "\n",
+      "         [[-6.2870e-02]],\n",
+      "\n",
+      "         [[-1.0027e-01]],\n",
+      "\n",
+      "         [[ 1.2535e-02]],\n",
+      "\n",
+      "         [[-1.3951e-02]],\n",
+      "\n",
+      "         [[-1.9432e-01]],\n",
+      "\n",
+      "         [[-2.5305e-02]],\n",
+      "\n",
+      "         [[-1.8891e-01]],\n",
+      "\n",
+      "         [[-1.2105e-01]],\n",
+      "\n",
+      "         [[-4.2380e-02]],\n",
+      "\n",
+      "         [[-6.4395e-02]],\n",
+      "\n",
+      "         [[ 1.0385e-02]],\n",
+      "\n",
+      "         [[-3.4118e-01]],\n",
+      "\n",
+      "         [[ 6.1538e-02]],\n",
+      "\n",
+      "         [[-3.0562e-02]],\n",
+      "\n",
+      "         [[-9.9119e-02]],\n",
+      "\n",
+      "         [[ 9.8917e-03]],\n",
+      "\n",
+      "         [[-1.3839e-01]],\n",
+      "\n",
+      "         [[ 5.0970e-02]],\n",
+      "\n",
+      "         [[-3.0058e-03]],\n",
+      "\n",
+      "         [[-1.7109e-01]],\n",
+      "\n",
+      "         [[-1.5369e-02]],\n",
+      "\n",
+      "         [[-2.8555e-01]],\n",
+      "\n",
+      "         [[-1.5441e-01]],\n",
+      "\n",
+      "         [[ 3.8034e-02]],\n",
+      "\n",
+      "         [[ 3.2406e-02]],\n",
+      "\n",
+      "         [[-5.3578e-02]],\n",
+      "\n",
+      "         [[-1.2091e-01]],\n",
+      "\n",
+      "         [[-7.9474e-02]],\n",
+      "\n",
+      "         [[-7.0410e-02]],\n",
+      "\n",
+      "         [[ 1.0577e-02]],\n",
+      "\n",
+      "         [[-4.0023e-02]],\n",
+      "\n",
+      "         [[-3.0580e-01]],\n",
+      "\n",
+      "         [[-5.5629e-02]],\n",
+      "\n",
+      "         [[-2.8269e-03]],\n",
+      "\n",
+      "         [[-4.1523e-02]],\n",
+      "\n",
+      "         [[-1.8930e-01]],\n",
+      "\n",
+      "         [[-1.6788e-02]],\n",
+      "\n",
+      "         [[ 5.3499e-02]],\n",
+      "\n",
+      "         [[-5.1127e-02]],\n",
+      "\n",
+      "         [[ 4.8567e-03]],\n",
+      "\n",
+      "         [[-6.8076e-02]],\n",
+      "\n",
+      "         [[-6.2661e-02]],\n",
+      "\n",
+      "         [[-7.5427e-02]],\n",
+      "\n",
+      "         [[-9.4810e-02]],\n",
+      "\n",
+      "         [[ 2.1817e-02]],\n",
+      "\n",
+      "         [[-1.3134e-01]],\n",
+      "\n",
+      "         [[-1.4616e-01]],\n",
+      "\n",
+      "         [[ 1.5553e-02]],\n",
+      "\n",
+      "         [[-8.9202e-02]],\n",
+      "\n",
+      "         [[-2.6338e-01]],\n",
+      "\n",
+      "         [[-1.3885e-01]],\n",
+      "\n",
+      "         [[ 4.0157e-02]],\n",
+      "\n",
+      "         [[ 2.0721e-02]],\n",
+      "\n",
+      "         [[-2.4266e-01]],\n",
+      "\n",
+      "         [[-5.9348e-02]],\n",
+      "\n",
+      "         [[-5.3525e-01]],\n",
+      "\n",
+      "         [[-1.8861e-02]],\n",
+      "\n",
+      "         [[-4.0941e-02]],\n",
+      "\n",
+      "         [[-5.5792e-02]],\n",
+      "\n",
+      "         [[-5.1989e-02]],\n",
+      "\n",
+      "         [[-1.1458e-01]],\n",
+      "\n",
+      "         [[ 6.0923e-02]],\n",
+      "\n",
+      "         [[-8.7078e-02]],\n",
+      "\n",
+      "         [[-8.8479e-03]],\n",
+      "\n",
+      "         [[-1.4447e-01]],\n",
+      "\n",
+      "         [[-1.3578e-02]],\n",
+      "\n",
+      "         [[-6.4217e-03]],\n",
+      "\n",
+      "         [[-6.5761e-02]],\n",
+      "\n",
+      "         [[-2.9299e-02]],\n",
+      "\n",
+      "         [[-1.7468e-01]],\n",
+      "\n",
+      "         [[ 1.2390e-02]],\n",
+      "\n",
+      "         [[-5.9245e-02]],\n",
+      "\n",
+      "         [[-7.1419e-02]],\n",
+      "\n",
+      "         [[-5.2452e-02]],\n",
+      "\n",
+      "         [[-1.2493e-01]],\n",
+      "\n",
+      "         [[-1.0561e-01]],\n",
+      "\n",
+      "         [[-3.5194e-02]],\n",
+      "\n",
+      "         [[-5.0285e-02]],\n",
+      "\n",
+      "         [[-1.0266e-01]],\n",
+      "\n",
+      "         [[ 6.1141e-02]],\n",
+      "\n",
+      "         [[-1.8981e-02]],\n",
+      "\n",
+      "         [[-6.7683e-02]],\n",
+      "\n",
+      "         [[-8.7969e-02]],\n",
+      "\n",
+      "         [[ 5.5069e-02]],\n",
+      "\n",
+      "         [[ 5.7901e-02]],\n",
+      "\n",
+      "         [[-2.0781e-01]],\n",
+      "\n",
+      "         [[ 2.9633e-02]],\n",
+      "\n",
+      "         [[ 5.7816e-02]],\n",
+      "\n",
+      "         [[-4.1514e-02]],\n",
+      "\n",
+      "         [[-5.3967e-02]],\n",
+      "\n",
+      "         [[-2.4727e-01]],\n",
+      "\n",
+      "         [[ 4.5979e-02]],\n",
+      "\n",
+      "         [[-1.8411e-02]],\n",
+      "\n",
+      "         [[-5.1459e-02]],\n",
+      "\n",
+      "         [[-8.6916e-02]],\n",
+      "\n",
+      "         [[-7.1957e-03]],\n",
+      "\n",
+      "         [[-1.8294e-02]],\n",
+      "\n",
+      "         [[ 6.0245e-02]],\n",
+      "\n",
+      "         [[-1.0658e-01]],\n",
+      "\n",
+      "         [[-4.3675e-02]],\n",
+      "\n",
+      "         [[-4.7375e-02]],\n",
+      "\n",
+      "         [[-1.0941e-01]],\n",
+      "\n",
+      "         [[-1.3212e-01]],\n",
+      "\n",
+      "         [[-1.3092e-02]],\n",
+      "\n",
+      "         [[-3.8031e-02]],\n",
+      "\n",
+      "         [[-3.6958e-02]],\n",
+      "\n",
+      "         [[-4.0486e-02]],\n",
+      "\n",
+      "         [[-8.8234e-02]],\n",
+      "\n",
+      "         [[-4.4750e-02]],\n",
+      "\n",
+      "         [[ 4.7135e-02]],\n",
+      "\n",
+      "         [[-1.3180e-01]],\n",
+      "\n",
+      "         [[-6.1223e-02]],\n",
+      "\n",
+      "         [[ 5.6571e-02]],\n",
+      "\n",
+      "         [[ 4.7626e-04]],\n",
+      "\n",
+      "         [[-6.2008e-02]],\n",
+      "\n",
+      "         [[-4.9569e-02]],\n",
+      "\n",
+      "         [[ 7.0682e-02]],\n",
+      "\n",
+      "         [[-5.9246e-02]],\n",
+      "\n",
+      "         [[ 5.0386e-02]],\n",
+      "\n",
+      "         [[-6.3261e-02]],\n",
+      "\n",
+      "         [[ 3.5186e-02]],\n",
+      "\n",
+      "         [[-4.2830e-02]],\n",
+      "\n",
+      "         [[-3.3258e-02]],\n",
+      "\n",
+      "         [[-1.7851e-01]]],\n",
+      "\n",
+      "\n",
+      "        [[[-1.0324e-01]],\n",
+      "\n",
+      "         [[-9.5289e-02]],\n",
+      "\n",
+      "         [[-1.4699e-01]],\n",
+      "\n",
+      "         [[-4.4895e-02]],\n",
+      "\n",
+      "         [[ 2.5484e-02]],\n",
+      "\n",
+      "         [[-6.8418e-02]],\n",
+      "\n",
+      "         [[-1.3461e-02]],\n",
+      "\n",
+      "         [[ 1.2964e-02]],\n",
+      "\n",
+      "         [[-1.5065e-01]],\n",
+      "\n",
+      "         [[ 1.3813e-02]],\n",
+      "\n",
+      "         [[-1.8726e-01]],\n",
+      "\n",
+      "         [[-4.5206e-02]],\n",
+      "\n",
+      "         [[-8.1777e-02]],\n",
+      "\n",
+      "         [[ 1.5450e-02]],\n",
+      "\n",
+      "         [[-6.1435e-02]],\n",
+      "\n",
+      "         [[-1.6277e-01]],\n",
+      "\n",
+      "         [[-2.9927e-01]],\n",
+      "\n",
+      "         [[-7.2331e-02]],\n",
+      "\n",
+      "         [[-5.8475e-02]],\n",
+      "\n",
+      "         [[-8.0777e-03]],\n",
+      "\n",
+      "         [[-8.4431e-02]],\n",
+      "\n",
+      "         [[-8.4907e-02]],\n",
+      "\n",
+      "         [[ 1.9298e-02]],\n",
+      "\n",
+      "         [[-2.4508e-01]],\n",
+      "\n",
+      "         [[ 6.5591e-02]],\n",
+      "\n",
+      "         [[-1.8505e-01]],\n",
+      "\n",
+      "         [[-4.6787e-02]],\n",
+      "\n",
+      "         [[-2.6721e-02]],\n",
+      "\n",
+      "         [[-7.8232e-02]],\n",
+      "\n",
+      "         [[-1.3798e-02]],\n",
+      "\n",
+      "         [[-6.4425e-02]],\n",
+      "\n",
+      "         [[-9.3179e-02]],\n",
+      "\n",
+      "         [[-2.8075e-02]],\n",
+      "\n",
+      "         [[-1.8265e-02]],\n",
+      "\n",
+      "         [[-6.5352e-02]],\n",
+      "\n",
+      "         [[-2.5564e-01]],\n",
+      "\n",
+      "         [[-7.8054e-02]],\n",
+      "\n",
+      "         [[-7.4332e-02]],\n",
+      "\n",
+      "         [[-4.9958e-02]],\n",
+      "\n",
+      "         [[-3.2925e-01]],\n",
+      "\n",
+      "         [[-1.7887e-03]],\n",
+      "\n",
+      "         [[-2.0176e-02]],\n",
+      "\n",
+      "         [[-3.5679e-02]],\n",
+      "\n",
+      "         [[ 3.5812e-02]],\n",
+      "\n",
+      "         [[-8.7482e-02]],\n",
+      "\n",
+      "         [[-1.4568e-02]],\n",
+      "\n",
+      "         [[ 6.0748e-02]],\n",
+      "\n",
+      "         [[-9.9898e-02]],\n",
+      "\n",
+      "         [[-4.8735e-02]],\n",
+      "\n",
+      "         [[-5.4597e-02]],\n",
+      "\n",
+      "         [[-1.0450e-01]],\n",
+      "\n",
+      "         [[-2.4591e-02]],\n",
+      "\n",
+      "         [[-4.8969e-03]],\n",
+      "\n",
+      "         [[-1.2179e-01]],\n",
+      "\n",
+      "         [[-1.1214e-01]],\n",
+      "\n",
+      "         [[-1.1753e-02]],\n",
+      "\n",
+      "         [[ 5.3129e-02]],\n",
+      "\n",
+      "         [[-2.0195e-01]],\n",
+      "\n",
+      "         [[-7.4434e-02]],\n",
+      "\n",
+      "         [[-2.1587e-01]],\n",
+      "\n",
+      "         [[-5.2781e-02]],\n",
+      "\n",
+      "         [[-9.5882e-02]],\n",
+      "\n",
+      "         [[ 6.9503e-02]],\n",
+      "\n",
+      "         [[ 3.3490e-02]],\n",
+      "\n",
+      "         [[-5.9427e-03]],\n",
+      "\n",
+      "         [[ 5.7152e-02]],\n",
+      "\n",
+      "         [[-1.0126e-01]],\n",
+      "\n",
+      "         [[ 7.7198e-02]],\n",
+      "\n",
+      "         [[-1.2919e-01]],\n",
+      "\n",
+      "         [[-8.5019e-02]],\n",
+      "\n",
+      "         [[-1.7059e-02]],\n",
+      "\n",
+      "         [[-5.8078e-02]],\n",
+      "\n",
+      "         [[ 7.0467e-03]],\n",
+      "\n",
+      "         [[-2.3741e-01]],\n",
+      "\n",
+      "         [[-7.5821e-02]],\n",
+      "\n",
+      "         [[-6.9460e-02]],\n",
+      "\n",
+      "         [[-4.4030e-02]],\n",
+      "\n",
+      "         [[-5.7763e-02]],\n",
+      "\n",
+      "         [[-1.3156e-01]],\n",
+      "\n",
+      "         [[-7.0981e-02]],\n",
+      "\n",
+      "         [[-1.5652e-02]],\n",
+      "\n",
+      "         [[-6.4662e-02]],\n",
+      "\n",
+      "         [[-1.4058e-01]],\n",
+      "\n",
+      "         [[-8.4529e-02]],\n",
+      "\n",
+      "         [[-7.3140e-02]],\n",
+      "\n",
+      "         [[-1.4741e-01]],\n",
+      "\n",
+      "         [[-3.5139e-01]],\n",
+      "\n",
+      "         [[ 2.5064e-02]],\n",
+      "\n",
+      "         [[ 9.3973e-03]],\n",
+      "\n",
+      "         [[-2.8304e-02]],\n",
+      "\n",
+      "         [[-9.4937e-02]],\n",
+      "\n",
+      "         [[ 4.5797e-02]],\n",
+      "\n",
+      "         [[-5.3880e-02]],\n",
+      "\n",
+      "         [[ 1.4921e-02]],\n",
+      "\n",
+      "         [[-1.6342e-01]],\n",
+      "\n",
+      "         [[-5.5980e-02]],\n",
+      "\n",
+      "         [[-7.5290e-03]],\n",
+      "\n",
+      "         [[ 5.4650e-02]],\n",
+      "\n",
+      "         [[ 1.3729e-03]],\n",
+      "\n",
+      "         [[-1.5503e-02]],\n",
+      "\n",
+      "         [[-7.3589e-02]],\n",
+      "\n",
+      "         [[-9.2370e-03]],\n",
+      "\n",
+      "         [[ 3.0074e-02]],\n",
+      "\n",
+      "         [[-9.1699e-02]],\n",
+      "\n",
+      "         [[-8.7537e-02]],\n",
+      "\n",
+      "         [[-2.9240e-02]],\n",
+      "\n",
+      "         [[-8.7722e-02]],\n",
+      "\n",
+      "         [[-9.5416e-03]],\n",
+      "\n",
+      "         [[-9.1058e-02]],\n",
+      "\n",
+      "         [[ 8.2676e-03]],\n",
+      "\n",
+      "         [[-7.7412e-02]],\n",
+      "\n",
+      "         [[-8.4927e-02]],\n",
+      "\n",
+      "         [[-1.1028e-01]],\n",
+      "\n",
+      "         [[ 6.1841e-02]],\n",
+      "\n",
+      "         [[-7.1875e-02]],\n",
+      "\n",
+      "         [[-7.2866e-02]],\n",
+      "\n",
+      "         [[-9.2129e-03]],\n",
+      "\n",
+      "         [[-8.3950e-02]],\n",
+      "\n",
+      "         [[-5.0730e-02]],\n",
+      "\n",
+      "         [[-1.0449e-02]],\n",
+      "\n",
+      "         [[-2.2238e-02]],\n",
+      "\n",
+      "         [[-3.0864e-02]],\n",
+      "\n",
+      "         [[-6.1262e-02]],\n",
+      "\n",
+      "         [[-5.7725e-02]],\n",
+      "\n",
+      "         [[ 3.3538e-02]],\n",
+      "\n",
+      "         [[-4.6766e-02]],\n",
+      "\n",
+      "         [[-5.6217e-02]],\n",
+      "\n",
+      "         [[-9.3345e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 1.3352e-01]],\n",
+      "\n",
+      "         [[-1.2118e-01]],\n",
+      "\n",
+      "         [[-8.9039e-02]],\n",
+      "\n",
+      "         [[-1.2069e-01]],\n",
+      "\n",
+      "         [[ 3.5949e-02]],\n",
+      "\n",
+      "         [[-7.0048e-02]],\n",
+      "\n",
+      "         [[-2.0441e-02]],\n",
+      "\n",
+      "         [[ 5.6738e-02]],\n",
+      "\n",
+      "         [[-1.4103e-01]],\n",
+      "\n",
+      "         [[-1.6813e-03]],\n",
+      "\n",
+      "         [[-1.7954e-01]],\n",
+      "\n",
+      "         [[-6.3560e-02]],\n",
+      "\n",
+      "         [[-7.0780e-02]],\n",
+      "\n",
+      "         [[-3.9727e-02]],\n",
+      "\n",
+      "         [[-9.0235e-02]],\n",
+      "\n",
+      "         [[-1.2618e-01]],\n",
+      "\n",
+      "         [[-1.1854e-01]],\n",
+      "\n",
+      "         [[-1.2347e-01]],\n",
+      "\n",
+      "         [[-2.1782e-01]],\n",
+      "\n",
+      "         [[-6.7164e-02]],\n",
+      "\n",
+      "         [[-8.8830e-02]],\n",
+      "\n",
+      "         [[-1.0955e-02]],\n",
+      "\n",
+      "         [[-3.0465e-03]],\n",
+      "\n",
+      "         [[-5.7547e-02]],\n",
+      "\n",
+      "         [[-9.6684e-04]],\n",
+      "\n",
+      "         [[-1.4918e-01]],\n",
+      "\n",
+      "         [[-1.9555e-01]],\n",
+      "\n",
+      "         [[ 1.2206e-02]],\n",
+      "\n",
+      "         [[-3.6194e-02]],\n",
+      "\n",
+      "         [[-1.9534e-01]],\n",
+      "\n",
+      "         [[-3.6948e-02]],\n",
+      "\n",
+      "         [[ 3.3900e-02]],\n",
+      "\n",
+      "         [[-1.2335e-02]],\n",
+      "\n",
+      "         [[ 8.7314e-03]],\n",
+      "\n",
+      "         [[-4.8962e-02]],\n",
+      "\n",
+      "         [[-2.0719e-01]],\n",
+      "\n",
+      "         [[-1.0712e-01]],\n",
+      "\n",
+      "         [[-4.6896e-02]],\n",
+      "\n",
+      "         [[-4.3262e-02]],\n",
+      "\n",
+      "         [[-1.7808e-01]],\n",
+      "\n",
+      "         [[-6.4690e-02]],\n",
+      "\n",
+      "         [[-3.0194e-02]],\n",
+      "\n",
+      "         [[-3.7443e-01]],\n",
+      "\n",
+      "         [[-2.1009e-01]],\n",
+      "\n",
+      "         [[ 1.7584e-02]],\n",
+      "\n",
+      "         [[-4.7456e-02]],\n",
+      "\n",
+      "         [[-5.5825e-02]],\n",
+      "\n",
+      "         [[-7.5853e-02]],\n",
+      "\n",
+      "         [[-1.7383e-01]],\n",
+      "\n",
+      "         [[-1.2057e-01]],\n",
+      "\n",
+      "         [[-1.0177e-01]],\n",
+      "\n",
+      "         [[-5.0184e-02]],\n",
+      "\n",
+      "         [[-6.6520e-02]],\n",
+      "\n",
+      "         [[-4.1791e-02]],\n",
+      "\n",
+      "         [[-9.9685e-02]],\n",
+      "\n",
+      "         [[-9.8434e-02]],\n",
+      "\n",
+      "         [[ 2.2192e-02]],\n",
+      "\n",
+      "         [[-1.8562e-01]],\n",
+      "\n",
+      "         [[-5.6740e-02]],\n",
+      "\n",
+      "         [[-2.6536e-01]],\n",
+      "\n",
+      "         [[ 3.3564e-02]],\n",
+      "\n",
+      "         [[-2.5902e-02]],\n",
+      "\n",
+      "         [[-2.8261e-02]],\n",
+      "\n",
+      "         [[-1.0957e-01]],\n",
+      "\n",
+      "         [[-9.0837e-02]],\n",
+      "\n",
+      "         [[ 5.2470e-02]],\n",
+      "\n",
+      "         [[-6.7314e-02]],\n",
+      "\n",
+      "         [[ 6.1017e-02]],\n",
+      "\n",
+      "         [[-4.6002e-01]],\n",
+      "\n",
+      "         [[-1.8480e-01]],\n",
+      "\n",
+      "         [[-1.0839e-03]],\n",
+      "\n",
+      "         [[-1.3469e-02]],\n",
+      "\n",
+      "         [[-5.7565e-02]],\n",
+      "\n",
+      "         [[-7.5849e-02]],\n",
+      "\n",
+      "         [[-7.0050e-02]],\n",
+      "\n",
+      "         [[ 2.5803e-02]],\n",
+      "\n",
+      "         [[-3.7752e-03]],\n",
+      "\n",
+      "         [[-2.2556e-01]],\n",
+      "\n",
+      "         [[-6.0957e-02]],\n",
+      "\n",
+      "         [[-1.7447e-01]],\n",
+      "\n",
+      "         [[-2.5550e-02]],\n",
+      "\n",
+      "         [[-1.3204e-01]],\n",
+      "\n",
+      "         [[-4.6743e-02]],\n",
+      "\n",
+      "         [[ 1.1360e-02]],\n",
+      "\n",
+      "         [[-4.7732e-02]],\n",
+      "\n",
+      "         [[-2.4164e-01]],\n",
+      "\n",
+      "         [[-2.2762e-02]],\n",
+      "\n",
+      "         [[-5.2639e-02]],\n",
+      "\n",
+      "         [[-1.0876e-02]],\n",
+      "\n",
+      "         [[-1.8894e-01]],\n",
+      "\n",
+      "         [[-8.2734e-02]],\n",
+      "\n",
+      "         [[-6.6531e-02]],\n",
+      "\n",
+      "         [[ 5.3488e-02]],\n",
+      "\n",
+      "         [[-7.0185e-03]],\n",
+      "\n",
+      "         [[-8.5071e-03]],\n",
+      "\n",
+      "         [[ 5.0659e-02]],\n",
+      "\n",
+      "         [[-4.6336e-02]],\n",
+      "\n",
+      "         [[-1.8003e-02]],\n",
+      "\n",
+      "         [[-9.8936e-02]],\n",
+      "\n",
+      "         [[-4.0490e-02]],\n",
+      "\n",
+      "         [[-7.3188e-02]],\n",
+      "\n",
+      "         [[-5.7322e-03]],\n",
+      "\n",
+      "         [[-8.1133e-02]],\n",
+      "\n",
+      "         [[-1.2982e-01]],\n",
+      "\n",
+      "         [[-7.7480e-02]],\n",
+      "\n",
+      "         [[-8.2027e-02]],\n",
+      "\n",
+      "         [[-9.1402e-02]],\n",
+      "\n",
+      "         [[-1.4671e-01]],\n",
+      "\n",
+      "         [[-5.0097e-02]],\n",
+      "\n",
+      "         [[-1.2038e-02]],\n",
+      "\n",
+      "         [[-2.0402e-02]],\n",
+      "\n",
+      "         [[-5.3708e-02]],\n",
+      "\n",
+      "         [[-8.0807e-02]],\n",
+      "\n",
+      "         [[-1.1083e-01]],\n",
+      "\n",
+      "         [[-1.4035e-01]],\n",
+      "\n",
+      "         [[-9.7761e-02]],\n",
+      "\n",
+      "         [[-5.9854e-02]],\n",
+      "\n",
+      "         [[-1.4262e-01]],\n",
+      "\n",
+      "         [[ 5.1721e-04]],\n",
+      "\n",
+      "         [[-1.5437e-02]],\n",
+      "\n",
+      "         [[ 5.1523e-02]],\n",
+      "\n",
+      "         [[-1.8362e-04]],\n",
+      "\n",
+      "         [[-6.8369e-02]],\n",
+      "\n",
+      "         [[-9.1513e-02]],\n",
+      "\n",
+      "         [[-3.6029e-02]],\n",
+      "\n",
+      "         [[-2.7632e-01]],\n",
+      "\n",
+      "         [[-1.4863e-01]],\n",
+      "\n",
+      "         [[-2.5162e-02]]],\n",
+      "\n",
+      "\n",
+      "        [[[-2.0013e+00]],\n",
+      "\n",
+      "         [[-3.4998e-02]],\n",
+      "\n",
+      "         [[-8.1394e-02]],\n",
+      "\n",
+      "         [[ 2.5305e-02]],\n",
+      "\n",
+      "         [[-3.9676e-02]],\n",
+      "\n",
+      "         [[-4.3759e-02]],\n",
+      "\n",
+      "         [[-1.5055e-03]],\n",
+      "\n",
+      "         [[-1.0450e-01]],\n",
+      "\n",
+      "         [[-7.4064e-02]],\n",
+      "\n",
+      "         [[-5.5408e-04]],\n",
+      "\n",
+      "         [[-1.2293e-01]],\n",
+      "\n",
+      "         [[-1.6201e-02]],\n",
+      "\n",
+      "         [[-1.1383e-01]],\n",
+      "\n",
+      "         [[-7.1850e-02]],\n",
+      "\n",
+      "         [[-4.3351e-02]],\n",
+      "\n",
+      "         [[-1.5002e-01]],\n",
+      "\n",
+      "         [[-1.2095e-01]],\n",
+      "\n",
+      "         [[ 3.0993e-02]],\n",
+      "\n",
+      "         [[-4.9655e-01]],\n",
+      "\n",
+      "         [[-5.0199e-02]],\n",
+      "\n",
+      "         [[-9.3593e-02]],\n",
+      "\n",
+      "         [[ 1.8626e-03]],\n",
+      "\n",
+      "         [[ 1.5333e-02]],\n",
+      "\n",
+      "         [[-2.2227e+00]],\n",
+      "\n",
+      "         [[ 9.9106e-03]],\n",
+      "\n",
+      "         [[-1.8556e+00]],\n",
+      "\n",
+      "         [[-6.1090e-02]],\n",
+      "\n",
+      "         [[ 5.4285e-02]],\n",
+      "\n",
+      "         [[-3.0363e-02]],\n",
+      "\n",
+      "         [[-3.1346e-02]],\n",
+      "\n",
+      "         [[-2.7407e-02]],\n",
+      "\n",
+      "         [[-3.3828e-02]],\n",
+      "\n",
+      "         [[ 4.5824e-03]],\n",
+      "\n",
+      "         [[-4.0222e-02]],\n",
+      "\n",
+      "         [[-9.5647e-03]],\n",
+      "\n",
+      "         [[-5.8571e-02]],\n",
+      "\n",
+      "         [[-6.2301e-02]],\n",
+      "\n",
+      "         [[-5.8086e-02]],\n",
+      "\n",
+      "         [[-5.5571e-02]],\n",
+      "\n",
+      "         [[-9.1419e-02]],\n",
+      "\n",
+      "         [[ 9.0486e-02]],\n",
+      "\n",
+      "         [[-1.8786e-02]],\n",
+      "\n",
+      "         [[-5.3916e-02]],\n",
+      "\n",
+      "         [[-4.8792e-02]],\n",
+      "\n",
+      "         [[ 9.6247e-02]],\n",
+      "\n",
+      "         [[-1.3130e-02]],\n",
+      "\n",
+      "         [[ 4.4260e-02]],\n",
+      "\n",
+      "         [[-3.2432e-02]],\n",
+      "\n",
+      "         [[-7.2302e-02]],\n",
+      "\n",
+      "         [[-8.9833e-02]],\n",
+      "\n",
+      "         [[-5.5980e-01]],\n",
+      "\n",
+      "         [[-4.9147e-02]],\n",
+      "\n",
+      "         [[-7.3608e-02]],\n",
+      "\n",
+      "         [[-2.4414e-02]],\n",
+      "\n",
+      "         [[-2.1719e-01]],\n",
+      "\n",
+      "         [[-8.2034e-02]],\n",
+      "\n",
+      "         [[ 4.7509e-02]],\n",
+      "\n",
+      "         [[-1.8068e+00]],\n",
+      "\n",
+      "         [[-6.3851e-03]],\n",
+      "\n",
+      "         [[-1.6989e+00]],\n",
+      "\n",
+      "         [[-4.3634e-02]],\n",
+      "\n",
+      "         [[-5.3993e-02]],\n",
+      "\n",
+      "         [[ 7.4584e-02]],\n",
+      "\n",
+      "         [[-1.9315e-02]],\n",
+      "\n",
+      "         [[-7.7403e-02]],\n",
+      "\n",
+      "         [[-9.2740e-03]],\n",
+      "\n",
+      "         [[-8.2428e-02]],\n",
+      "\n",
+      "         [[ 2.0820e-02]],\n",
+      "\n",
+      "         [[-1.2670e+00]],\n",
+      "\n",
+      "         [[-8.7746e-02]],\n",
+      "\n",
+      "         [[-1.0280e-01]],\n",
+      "\n",
+      "         [[-6.1330e-02]],\n",
+      "\n",
+      "         [[-3.0515e-03]],\n",
+      "\n",
+      "         [[-5.8657e-02]],\n",
+      "\n",
+      "         [[-8.3857e-02]],\n",
+      "\n",
+      "         [[ 2.4053e-02]],\n",
+      "\n",
+      "         [[ 2.6363e-02]],\n",
+      "\n",
+      "         [[-3.3533e+00]],\n",
+      "\n",
+      "         [[-7.6377e-02]],\n",
+      "\n",
+      "         [[-5.7111e-02]],\n",
+      "\n",
+      "         [[-1.7121e-02]],\n",
+      "\n",
+      "         [[-2.9396e-02]],\n",
+      "\n",
+      "         [[-2.6344e-02]],\n",
+      "\n",
+      "         [[-1.1184e-02]],\n",
+      "\n",
+      "         [[ 2.2307e-03]],\n",
+      "\n",
+      "         [[ 2.9432e-02]],\n",
+      "\n",
+      "         [[-3.5005e-02]],\n",
+      "\n",
+      "         [[ 2.0944e-02]],\n",
+      "\n",
+      "         [[-1.4348e-02]],\n",
+      "\n",
+      "         [[-1.7734e-01]],\n",
+      "\n",
+      "         [[ 5.9533e-03]],\n",
+      "\n",
+      "         [[ 6.2666e-03]],\n",
+      "\n",
+      "         [[ 9.6851e-02]],\n",
+      "\n",
+      "         [[-4.3327e-02]],\n",
+      "\n",
+      "         [[-3.7170e-02]],\n",
+      "\n",
+      "         [[ 3.7548e-02]],\n",
+      "\n",
+      "         [[-1.4750e-02]],\n",
+      "\n",
+      "         [[-3.7913e-02]],\n",
+      "\n",
+      "         [[-3.5177e-02]],\n",
+      "\n",
+      "         [[ 4.6250e-02]],\n",
+      "\n",
+      "         [[-7.7254e-02]],\n",
+      "\n",
+      "         [[ 1.0660e-02]],\n",
+      "\n",
+      "         [[-3.1763e-02]],\n",
+      "\n",
+      "         [[-8.6218e-02]],\n",
+      "\n",
+      "         [[-1.8006e-03]],\n",
+      "\n",
+      "         [[-9.8745e-03]],\n",
+      "\n",
+      "         [[-1.0347e-01]],\n",
+      "\n",
+      "         [[-1.3125e-01]],\n",
+      "\n",
+      "         [[-6.6503e-02]],\n",
+      "\n",
+      "         [[-2.1404e-02]],\n",
+      "\n",
+      "         [[-8.7761e-02]],\n",
+      "\n",
+      "         [[ 2.5058e-02]],\n",
+      "\n",
+      "         [[-7.6993e-02]],\n",
+      "\n",
+      "         [[-5.1682e-02]],\n",
+      "\n",
+      "         [[-2.8924e-02]],\n",
+      "\n",
+      "         [[-8.4629e-02]],\n",
+      "\n",
+      "         [[-1.2473e-02]],\n",
+      "\n",
+      "         [[-2.3878e-02]],\n",
+      "\n",
+      "         [[-2.6343e-02]],\n",
+      "\n",
+      "         [[-3.3097e-02]],\n",
+      "\n",
+      "         [[ 9.8770e-03]],\n",
+      "\n",
+      "         [[ 8.0269e-03]],\n",
+      "\n",
+      "         [[ 3.6419e-02]],\n",
+      "\n",
+      "         [[ 3.6288e-02]],\n",
+      "\n",
+      "         [[ 4.1074e-02]],\n",
+      "\n",
+      "         [[-3.5325e-02]],\n",
+      "\n",
+      "         [[-8.3843e-02]],\n",
+      "\n",
+      "         [[-7.5270e-03]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 2.8705e-02]],\n",
+      "\n",
+      "         [[ 1.9030e-03]],\n",
+      "\n",
+      "         [[-2.1252e-01]],\n",
+      "\n",
+      "         [[-3.0098e-02]],\n",
+      "\n",
+      "         [[-2.1146e-01]],\n",
+      "\n",
+      "         [[-5.0251e-02]],\n",
+      "\n",
+      "         [[-2.2847e-01]],\n",
+      "\n",
+      "         [[-8.6851e-02]],\n",
+      "\n",
+      "         [[-9.0501e-02]],\n",
+      "\n",
+      "         [[-4.0928e-02]],\n",
+      "\n",
+      "         [[-4.4366e-01]],\n",
+      "\n",
+      "         [[-7.2852e-02]],\n",
+      "\n",
+      "         [[-4.7888e-01]],\n",
+      "\n",
+      "         [[-8.5208e-02]],\n",
+      "\n",
+      "         [[-9.2782e-02]],\n",
+      "\n",
+      "         [[-1.6271e-01]],\n",
+      "\n",
+      "         [[-7.2745e-02]],\n",
+      "\n",
+      "         [[-6.5858e-02]],\n",
+      "\n",
+      "         [[-3.4433e-01]],\n",
+      "\n",
+      "         [[ 2.0484e-02]],\n",
+      "\n",
+      "         [[-8.8063e-02]],\n",
+      "\n",
+      "         [[ 3.9564e-02]],\n",
+      "\n",
+      "         [[ 4.5387e-02]],\n",
+      "\n",
+      "         [[-2.6624e-01]],\n",
+      "\n",
+      "         [[-1.5628e-02]],\n",
+      "\n",
+      "         [[ 3.7912e-02]],\n",
+      "\n",
+      "         [[-4.6339e-02]],\n",
+      "\n",
+      "         [[ 5.1863e-02]],\n",
+      "\n",
+      "         [[-1.2427e-01]],\n",
+      "\n",
+      "         [[ 3.3048e-02]],\n",
+      "\n",
+      "         [[-1.3108e-01]],\n",
+      "\n",
+      "         [[-3.0137e-02]],\n",
+      "\n",
+      "         [[-4.5183e-02]],\n",
+      "\n",
+      "         [[ 8.0172e-02]],\n",
+      "\n",
+      "         [[-3.6005e-02]],\n",
+      "\n",
+      "         [[-7.3235e-01]],\n",
+      "\n",
+      "         [[-6.9957e-02]],\n",
+      "\n",
+      "         [[ 4.9209e-02]],\n",
+      "\n",
+      "         [[-2.1903e-02]],\n",
+      "\n",
+      "         [[ 1.3429e-02]],\n",
+      "\n",
+      "         [[-7.5959e-02]],\n",
+      "\n",
+      "         [[-6.9341e-02]],\n",
+      "\n",
+      "         [[-1.4988e-01]],\n",
+      "\n",
+      "         [[-1.5968e-01]],\n",
+      "\n",
+      "         [[ 1.8686e-02]],\n",
+      "\n",
+      "         [[-6.2509e-02]],\n",
+      "\n",
+      "         [[-3.4924e-01]],\n",
+      "\n",
+      "         [[-1.0350e-01]],\n",
+      "\n",
+      "         [[-3.2709e-02]],\n",
+      "\n",
+      "         [[-3.8899e-02]],\n",
+      "\n",
+      "         [[-8.2357e-02]],\n",
+      "\n",
+      "         [[-1.0069e-01]],\n",
+      "\n",
+      "         [[-1.0853e-01]],\n",
+      "\n",
+      "         [[-6.1943e-02]],\n",
+      "\n",
+      "         [[-1.8268e-01]],\n",
+      "\n",
+      "         [[-4.9556e-02]],\n",
+      "\n",
+      "         [[ 1.9942e-02]],\n",
+      "\n",
+      "         [[-9.8316e-02]],\n",
+      "\n",
+      "         [[-5.1602e-01]],\n",
+      "\n",
+      "         [[-2.1932e-01]],\n",
+      "\n",
+      "         [[-9.7055e-02]],\n",
+      "\n",
+      "         [[-3.2056e-01]],\n",
+      "\n",
+      "         [[-2.2748e-02]],\n",
+      "\n",
+      "         [[-1.8872e-01]],\n",
+      "\n",
+      "         [[-3.2791e-01]],\n",
+      "\n",
+      "         [[ 4.5911e-02]],\n",
+      "\n",
+      "         [[-2.4049e-01]],\n",
+      "\n",
+      "         [[-6.2513e-02]],\n",
+      "\n",
+      "         [[-2.8446e-01]],\n",
+      "\n",
+      "         [[-1.2846e-01]],\n",
+      "\n",
+      "         [[-6.5502e-02]],\n",
+      "\n",
+      "         [[ 5.1776e-02]],\n",
+      "\n",
+      "         [[-5.5960e-02]],\n",
+      "\n",
+      "         [[-3.6179e-02]],\n",
+      "\n",
+      "         [[-7.8751e-02]],\n",
+      "\n",
+      "         [[-5.2599e-02]],\n",
+      "\n",
+      "         [[-4.3132e-03]],\n",
+      "\n",
+      "         [[-1.8659e-02]],\n",
+      "\n",
+      "         [[-1.7199e-01]],\n",
+      "\n",
+      "         [[-1.3572e+00]],\n",
+      "\n",
+      "         [[-7.6618e-02]],\n",
+      "\n",
+      "         [[-6.4916e-02]],\n",
+      "\n",
+      "         [[ 8.1260e-04]],\n",
+      "\n",
+      "         [[ 2.6345e-03]],\n",
+      "\n",
+      "         [[-1.7723e-01]],\n",
+      "\n",
+      "         [[-9.7216e-01]],\n",
+      "\n",
+      "         [[-2.4596e-01]],\n",
+      "\n",
+      "         [[ 2.7793e-02]],\n",
+      "\n",
+      "         [[-5.0299e-03]],\n",
+      "\n",
+      "         [[ 3.3633e-03]],\n",
+      "\n",
+      "         [[-2.5719e-03]],\n",
+      "\n",
+      "         [[ 8.1467e-04]],\n",
+      "\n",
+      "         [[-2.1765e-01]],\n",
+      "\n",
+      "         [[-1.1274e-02]],\n",
+      "\n",
+      "         [[-1.3700e-01]],\n",
+      "\n",
+      "         [[-4.0246e-02]],\n",
+      "\n",
+      "         [[-2.7580e-02]],\n",
+      "\n",
+      "         [[-1.1310e-02]],\n",
+      "\n",
+      "         [[-8.8240e-02]],\n",
+      "\n",
+      "         [[-7.0429e-02]],\n",
+      "\n",
+      "         [[-1.4676e-01]],\n",
+      "\n",
+      "         [[-3.8645e-02]],\n",
+      "\n",
+      "         [[-7.3364e-02]],\n",
+      "\n",
+      "         [[-4.4927e-02]],\n",
+      "\n",
+      "         [[-1.2201e-01]],\n",
+      "\n",
+      "         [[-8.0535e-02]],\n",
+      "\n",
+      "         [[-8.2393e-02]],\n",
+      "\n",
+      "         [[ 6.1269e-02]],\n",
+      "\n",
+      "         [[-6.3417e-02]],\n",
+      "\n",
+      "         [[-9.9569e-02]],\n",
+      "\n",
+      "         [[ 1.6239e-02]],\n",
+      "\n",
+      "         [[-1.2329e-01]],\n",
+      "\n",
+      "         [[-1.9958e-01]],\n",
+      "\n",
+      "         [[-3.1563e-02]],\n",
+      "\n",
+      "         [[-1.2088e-01]],\n",
+      "\n",
+      "         [[-4.2063e-02]],\n",
+      "\n",
+      "         [[-1.3170e-01]],\n",
+      "\n",
+      "         [[-4.0668e-02]],\n",
+      "\n",
+      "         [[-8.0820e-03]],\n",
+      "\n",
+      "         [[ 3.8395e-02]],\n",
+      "\n",
+      "         [[ 4.5726e-04]],\n",
+      "\n",
+      "         [[-3.6461e-02]],\n",
+      "\n",
+      "         [[-4.1835e-02]],\n",
+      "\n",
+      "         [[-9.2139e-02]],\n",
+      "\n",
+      "         [[ 2.9144e-02]],\n",
+      "\n",
+      "         [[-4.4972e-02]],\n",
+      "\n",
+      "         [[-2.1514e-02]],\n",
+      "\n",
+      "         [[-1.9166e-02]]]])), ('proposal_net.tidy2.bias', tensor([ 1.1925, -0.1054, -0.2491, -0.1111, -0.3087,  0.0428])), ('proposal_net.tidy3.weight', tensor([[[[-0.0337]],\n",
+      "\n",
+      "         [[-0.0248]],\n",
+      "\n",
+      "         [[-0.3444]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.1020]],\n",
+      "\n",
+      "         [[-0.0030]],\n",
+      "\n",
+      "         [[ 0.0354]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.1397]],\n",
+      "\n",
+      "         [[-0.0037]],\n",
+      "\n",
+      "         [[-0.0703]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0469]],\n",
+      "\n",
+      "         [[ 0.1321]],\n",
+      "\n",
+      "         [[ 0.0250]]],\n",
+      "\n",
+      "\n",
+      "        [[[ 0.0557]],\n",
+      "\n",
+      "         [[-0.0640]],\n",
+      "\n",
+      "         [[-0.1220]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[-0.1988]],\n",
+      "\n",
+      "         [[ 0.0149]],\n",
+      "\n",
+      "         [[ 0.0932]]],\n",
+      "\n",
+      "\n",
+      "        ...,\n",
+      "\n",
+      "\n",
+      "        [[[-0.0512]],\n",
+      "\n",
+      "         [[ 0.0302]],\n",
+      "\n",
+      "         [[-0.1198]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0459]],\n",
+      "\n",
+      "         [[ 0.0696]],\n",
+      "\n",
+      "         [[-0.0202]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0433]],\n",
+      "\n",
+      "         [[ 0.0004]],\n",
+      "\n",
+      "         [[-0.0215]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0099]],\n",
+      "\n",
+      "         [[ 0.0320]],\n",
+      "\n",
+      "         [[ 0.0563]]],\n",
+      "\n",
+      "\n",
+      "        [[[-0.0576]],\n",
+      "\n",
+      "         [[-0.0837]],\n",
+      "\n",
+      "         [[-0.0814]],\n",
+      "\n",
+      "         ...,\n",
+      "\n",
+      "         [[ 0.0024]],\n",
+      "\n",
+      "         [[ 0.0051]],\n",
+      "\n",
+      "         [[ 0.0770]]]])), ('proposal_net.tidy3.bias', tensor([ 2.1029,  0.7462,  1.4719, -0.0613,  0.0504, -0.0080, -0.0379,  2.0119,\n",
+      "        -0.0873])), ('concat_net.weight', tensor([[-7.9563e-05,  1.7814e-02, -3.7675e-03,  ..., -8.1145e-03,\n",
+      "         -8.5045e-04, -7.1598e-04],\n",
+      "        [-2.4547e-03,  1.8721e-03,  2.7516e-02,  ..., -4.0951e-04,\n",
+      "          3.9360e-03, -5.7231e-03],\n",
+      "        [ 5.4368e-03, -2.8596e-03,  1.0897e-03,  ...,  5.8513e-04,\n",
+      "          1.0337e-02, -1.4575e-03],\n",
+      "        ...,\n",
+      "        [ 2.4548e-02, -6.5712e-03,  7.3281e-03,  ...,  1.5436e-02,\n",
+      "          1.1961e-02,  2.2369e-02],\n",
+      "        [-5.3739e-03, -1.9125e-03, -1.8802e-03,  ...,  1.3540e-02,\n",
+      "         -1.6960e-02,  9.7791e-03],\n",
+      "        [ 7.1646e-03,  4.8437e-03, -1.0669e-02,  ...,  2.1190e-03,\n",
+      "          4.9607e-03, -3.6302e-03]])), ('concat_net.bias', tensor([-6.8732e-03,  5.5537e-03,  9.6117e-03,  6.3048e-03,  1.3107e-02,\n",
+      "         3.9859e-05, -1.2610e-02,  2.7273e-03, -1.4045e-03,  5.9489e-03,\n",
+      "        -3.0792e-03, -3.6637e-03,  7.2461e-03, -5.3602e-04, -2.7274e-03,\n",
+      "        -1.4292e-02, -8.4960e-03, -2.9338e-03,  3.6432e-03, -2.6311e-03,\n",
+      "         6.3656e-05,  1.1016e-03,  1.1028e-02, -3.6038e-03,  5.4403e-03,\n",
+      "        -5.3956e-03,  2.2708e-03, -1.8870e-03, -9.1458e-03,  1.0188e-02,\n",
+      "         1.3579e-02,  1.3091e-02,  9.8644e-03, -2.0856e-03, -1.9166e-03,\n",
+      "        -4.6232e-03,  2.0556e-02, -3.2954e-03, -6.2717e-03,  7.4375e-03,\n",
+      "         1.1489e-02, -7.8489e-03, -4.7532e-03,  5.8928e-03,  1.4741e-02,\n",
+      "        -5.3441e-03, -1.4934e-02, -1.5477e-02, -8.0493e-04, -2.6123e-03,\n",
+      "         3.3510e-03, -9.4171e-03,  1.4061e-02, -1.5011e-03, -3.4191e-03,\n",
+      "        -3.5429e-03, -9.8983e-03, -7.0888e-03,  4.7826e-03,  3.4644e-03,\n",
+      "        -7.3663e-03,  4.4853e-03,  7.2080e-03,  6.6843e-03, -9.8034e-03,\n",
+      "         1.6680e-03, -2.9668e-03,  1.2799e-02,  2.3091e-03,  1.0957e-02,\n",
+      "         1.8884e-02,  1.2690e-02, -7.9524e-03, -8.1295e-03, -1.1978e-03,\n",
+      "        -2.1331e-03,  5.2893e-03, -4.7455e-03, -3.4499e-03,  4.6519e-03,\n",
+      "        -6.2396e-04, -4.9279e-03, -5.3811e-05, -4.9103e-03,  3.8775e-03,\n",
+      "         2.4928e-03, -1.1066e-02, -3.8692e-03, -1.4520e-02, -1.0347e-02,\n",
+      "        -1.0475e-02,  2.3994e-03, -1.2051e-02, -5.0844e-04, -3.6441e-03,\n",
+      "        -2.7874e-04, -1.5295e-03, -1.0634e-02, -1.7465e-03, -1.1233e-02,\n",
+      "         2.7444e-04,  1.3960e-02,  1.2773e-02, -6.5995e-03,  1.0852e-02,\n",
+      "        -3.7076e-03, -2.2254e-03,  1.6380e-02,  7.2269e-03,  4.0793e-03,\n",
+      "         7.2725e-03,  1.6540e-02,  9.1545e-03,  8.6931e-03,  1.5945e-02,\n",
+      "         1.1606e-02, -2.0319e-03, -7.8853e-05, -5.1735e-03,  5.9940e-04,\n",
+      "        -8.3644e-03, -1.6196e-02, -9.0929e-04, -1.7618e-03,  1.0180e-02,\n",
+      "         5.1577e-03, -5.2269e-03,  2.3108e-03, -1.1935e-03, -3.8042e-04,\n",
+      "         1.0900e-02, -4.8427e-03, -3.0117e-03, -4.7715e-03,  1.3097e-02,\n",
+      "         1.1163e-03,  1.4838e-02,  1.1147e-02, -1.1653e-04,  2.4457e-03,\n",
+      "         6.6565e-03,  1.6734e-03,  1.8444e-02,  1.5842e-02,  1.4116e-02,\n",
+      "         4.1742e-03, -5.3571e-03, -8.8704e-03, -9.8519e-03,  1.2082e-03,\n",
+      "         1.0681e-02, -8.0657e-03, -6.1671e-03, -1.0971e-02, -5.5512e-03,\n",
+      "        -9.9669e-03, -7.0809e-04, -1.2553e-03,  4.0989e-03, -6.0019e-03,\n",
+      "         1.6540e-02,  8.2870e-03, -1.0093e-02,  2.7600e-03,  1.1086e-02,\n",
+      "        -8.0910e-03, -5.4846e-04, -1.7985e-03, -1.4320e-02, -4.1533e-03,\n",
+      "        -3.9756e-03, -3.4934e-03, -7.5545e-05, -8.2256e-03,  2.6150e-03,\n",
+      "         2.8056e-03,  1.1677e-02,  1.4956e-02,  7.7311e-03, -1.7457e-03,\n",
+      "         5.4426e-03,  3.7786e-03, -1.5567e-03,  5.4859e-03,  4.1582e-04,\n",
+      "        -4.4117e-03,  5.3647e-04,  5.9398e-03, -1.2689e-02,  8.3232e-04,\n",
+      "        -1.3785e-02,  2.4046e-04,  6.2992e-03, -2.8308e-03,  1.3572e-03,\n",
+      "        -6.5423e-03,  1.1558e-02, -8.5304e-03, -7.3614e-03, -5.7108e-04])), ('partcls_net.weight', tensor([[-0.0130,  0.0098, -0.0179,  ...,  0.0126,  0.0152, -0.0270],\n",
+      "        [-0.0031, -0.0311,  0.0583,  ..., -0.0219,  0.0091, -0.0205],\n",
+      "        [ 0.0140,  0.0045,  0.0159,  ..., -0.0215, -0.0033,  0.0054],\n",
+      "        ...,\n",
+      "        [ 0.0239, -0.0387, -0.0211,  ...,  0.0239,  0.0030,  0.0379],\n",
+      "        [-0.0363, -0.0470,  0.0015,  ...,  0.0117, -0.0234,  0.0333],\n",
+      "        [-0.0184, -0.0451, -0.0120,  ...,  0.0169,  0.0043,  0.0119]])), ('partcls_net.bias', tensor([-1.6920e-02,  6.2333e-03,  3.7799e-02,  3.7212e-02,  2.7753e-02,\n",
+      "        -1.1093e-02, -1.7900e-03, -1.6896e-02,  7.5441e-03,  1.3421e-02,\n",
+      "         4.3757e-03,  2.6858e-03, -1.7434e-02,  1.4399e-02, -1.9769e-02,\n",
+      "        -2.9911e-02,  2.7282e-03, -1.1391e-02, -2.0517e-02, -8.4176e-03,\n",
+      "         8.9809e-04,  3.6509e-03,  1.2682e-02,  1.7272e-02, -9.8771e-03,\n",
+      "         3.0772e-02,  1.7012e-02,  5.6308e-03,  8.2706e-03,  1.5557e-02,\n",
+      "         2.9627e-02,  1.5639e-02, -4.0555e-03,  2.9363e-03, -1.1607e-02,\n",
+      "        -4.0485e-02,  2.2655e-02, -1.6770e-02,  1.2548e-03, -6.9641e-04,\n",
+      "         4.7991e-02, -9.0841e-03, -1.9627e-02, -6.8594e-03,  1.9727e-02,\n",
+      "        -3.5284e-03,  9.0041e-03,  3.5846e-03,  4.6817e-03, -2.2512e-02,\n",
+      "        -3.0768e-02, -1.6593e-02, -2.6064e-02,  1.9088e-02, -2.5508e-03,\n",
+      "        -2.8743e-02, -2.0116e-02,  4.0736e-03,  8.4721e-03, -4.7608e-03,\n",
+      "         1.2353e-02,  2.3530e-02,  3.7265e-02,  4.2343e-03, -8.7961e-04,\n",
+      "         9.5624e-03, -9.6694e-03,  2.0280e-02,  9.0175e-04,  7.9428e-03,\n",
+      "         1.7611e-02, -1.1435e-02, -1.0735e-02,  1.1232e-02, -6.4572e-03,\n",
+      "         2.6990e-03, -2.3524e-02,  1.0548e-02, -2.4800e-06, -1.5874e-02,\n",
+      "        -1.0450e-02, -1.9789e-02,  8.8269e-03, -5.8451e-03,  5.7328e-03,\n",
+      "        -2.7616e-02, -4.9039e-02, -3.0563e-02, -3.4557e-02, -1.7650e-02,\n",
+      "        -1.9698e-02,  3.6962e-03,  1.0152e-02,  2.7680e-02,  8.9859e-04,\n",
+      "        -2.9988e-02,  4.5644e-03, -1.5404e-02, -1.4123e-02, -2.8228e-02,\n",
+      "        -5.6804e-03, -5.3441e-03, -1.5259e-02, -7.6612e-03,  3.6227e-02,\n",
+      "         1.6494e-02,  1.6285e-03,  4.0551e-02,  6.1113e-03,  1.8233e-03,\n",
+      "        -1.5166e-02,  1.1574e-02,  2.1114e-02,  1.4873e-02,  5.7330e-03,\n",
+      "         5.8828e-03,  6.5715e-03, -8.9728e-03, -1.2684e-02, -2.9627e-02,\n",
+      "         1.5081e-02,  7.9858e-03, -1.8218e-02,  3.7841e-02, -1.2779e-02,\n",
+      "        -3.0373e-03, -1.0850e-04,  6.4306e-03, -6.7507e-03,  7.1562e-03,\n",
+      "         2.7276e-02, -1.4527e-03,  3.7904e-03, -2.5831e-02,  1.5877e-02,\n",
+      "         2.3799e-02,  1.1561e-02, -3.8274e-03, -3.1422e-02,  1.4474e-02,\n",
+      "         1.0285e-02,  1.4209e-02,  3.3481e-02,  2.6677e-02, -2.0017e-03,\n",
+      "         3.5914e-02, -2.0768e-02, -9.5051e-03, -9.0100e-03, -2.2193e-02,\n",
+      "         2.6691e-02, -8.8147e-03, -2.1123e-02, -2.0565e-03, -1.2661e-02,\n",
+      "        -1.6734e-02, -2.0087e-02, -2.8605e-02, -1.3410e-02,  1.6775e-03,\n",
+      "         8.1077e-03, -5.3433e-03, -1.8880e-02, -7.2961e-04, -2.4292e-04,\n",
+      "        -5.6079e-03, -9.9064e-03,  9.4696e-03, -3.2715e-02, -1.3665e-02,\n",
+      "        -1.2457e-03, -8.3437e-04,  9.8827e-03,  4.1805e-03,  1.2720e-02,\n",
+      "        -6.4588e-04, -4.5893e-03,  4.3155e-02, -5.7083e-04, -5.0032e-03,\n",
+      "        -2.1897e-03, -1.5659e-02,  1.7822e-02,  2.1880e-02,  2.4448e-03,\n",
+      "         1.3971e-02,  7.3715e-03,  8.4387e-03, -1.4883e-02, -1.5953e-04,\n",
+      "        -1.5212e-02, -2.4044e-02,  1.3137e-02, -1.1120e-02, -3.9044e-03,\n",
+      "         6.6536e-03,  6.2974e-03, -7.9783e-03,  1.4537e-02,  1.3238e-02]))])\n"
+     ]
+    }
+   ],
+   "source": [
+    "model = load_state_dict_from_ipfs('QmSQNrvnuqqfN8NpiXKBwjLnLhNFpbKRPajhgGZ8gYVjua', model_dir=\"./\", file_name=\"bird-model.pth\")\n",
+    "print(model)"
+   ]
+  }
+ ],
+ "metadata": {
+  "interpreter": {
+   "hash": "916dbcbb3f70747c44a77c7bcd40155683ae19c65e1c03b4aa3499c5328201f1"
+  },
+  "kernelspec": {
+   "display_name": "Python 3.8.10 64-bit",
+   "language": "python",
+   "name": "python3"
+  },
+  "language_info": {
+   "codemirror_mode": {
+    "name": "ipython",
+    "version": 3
+   },
+   "file_extension": ".py",
+   "mimetype": "text/x-python",
+   "name": "python",
+   "nbconvert_exporter": "python",
+   "pygments_lexer": "ipython3",
+   "version": "3.8.10"
+  },
+  "orig_nbformat": 4
+ },
+ "nbformat": 4,
+ "nbformat_minor": 2
+}

+ 120 - 0
load_model_ipfs.py

@@ -0,0 +1,120 @@
+import errno
+import os
+import sys
+import torch
+import io
+import errno
+import hashlib
+import os
+import shutil
+import sys
+import tempfile
+import torch
+import requests
+import tarfile
+
+
+def download_cid_to_file(url, cid, dst, hash_prefix=None):
+    r"""Download object at the given CID to a local path.
+
+    Args:
+        url (string): URL of the IPFS instance
+        cid (string): CID of the model to download
+        dst (string): Full path where object will be saved, e.g. ``/tmp/temporary_file``
+        hash_prefix (string, optional): If not None, the SHA256 downloaded file should start with ``hash_prefix``.
+            Default: None
+        progress (bool, optional): whether or not to display a progress bar to stderr
+            Default: True
+
+    Example:
+        >>> torch.hub.download_url_to_file('the-models-ipfs-cid-here', '/tmp/temporary_file')
+
+    """
+    # We deliberately save it in a temp file and move it after
+    # download is complete. This prevents a local working checkpoint
+    # being overridden by a broken download.
+    dst = os.path.expanduser(dst)
+    dst_dir = os.path.dirname(dst)
+    f = tempfile.NamedTemporaryFile(delete=False, dir=dst_dir)
+    response = requests.post(url+"/get?arg="+cid)
+    contents = response.content
+    tar = tarfile.open(fileobj=io.BytesIO(contents))
+    for member in tar.getmembers():
+        if member.isfile:
+            extractedFile = tar.extractfile(member)
+            if extractedFile is not None:
+                f.write(extractedFile.read())
+    try:
+        if hash_prefix is not None:
+            sha256 = hashlib.sha256()
+        f.close()
+        if hash_prefix is not None:
+            digest = sha256.hexdigest()
+            if digest[:len(hash_prefix)] != hash_prefix:
+                raise RuntimeError('invalid hash value (expected "{}", got "{}")'
+                                   .format(hash_prefix, digest))
+        shutil.move(f.name, dst)
+    finally:
+        f.close()
+        if os.path.exists(f.name):
+            os.remove(f.name)
+
+
+def load_state_dict_from_ipfs(cid, model_dir=None, url="http://127.0.0.1:5001/api/v0", map_location=None, check_hash=False, file_name=None):
+    r"""Loads the Torch serialized object at the given IPFS CID.
+
+    If downloaded file is a zip file, it will be automatically
+    decompressed.
+
+    If the object is already present in `model_dir`, it's deserialized and
+    returned.
+    The default value of ``model_dir`` is ``<hub_dir>/checkpoints`` where
+    ``hub_dir`` is the directory returned by :func:`~torch.hub.get_dir`.
+
+    Args:
+        cid (string): CID of the model to download
+        url (string): URL of the IPFS instance
+        model_dir (string, optional): directory in which to save the object
+        map_location (optional): a function or a dict specifying how to remap storage locations (see torch.load)
+        progress (bool, optional): whether or not to display a progress bar to stderr.
+            Default: True
+        check_hash(bool, optional): If True, the filename part of the URL should follow the naming convention
+            ``filename-<sha256>.ext`` where ``<sha256>`` is the first eight or more
+            digits of the SHA256 hash of the contents of the file. The hash is used to
+            ensure unique names and to verify the contents of the file.
+            Default: False
+        file_name (string, optional): name for the downloaded file. Filename from ``url`` will be used if not set.
+
+    Example:
+        >>> state_dict = torch.hub.load_state_dict_from_ipfs('my-cid-goes-here')
+
+    """
+    if model_dir is None:
+        hub_dir = torch.hub.get_dir()
+        model_dir = os.path.join(hub_dir, 'checkpoints')
+
+    try:
+        os.makedirs(model_dir)
+    except OSError as e:
+        if e.errno == errno.EEXIST:
+            # Directory already exists, ignore.
+            pass
+        else:
+            # Unexpected OSError, re-raise.
+            raise
+    filename = cid
+    if file_name is not None:
+        filename = file_name
+
+    cached_file = os.path.join(model_dir, filename)
+    if not os.path.exists(cached_file):
+        sys.stderr.write('Downloading: "{}" to {}\n'.format(url, cached_file))
+        hash_prefix = None
+        if check_hash:
+            r = torch.hub.HASH_REGEX.search(filename)
+            hash_prefix = r.group(1) if r else None
+        download_cid_to_file(url, cid, cached_file, hash_prefix)
+
+    if torch.hub._is_legacy_zip_format(cached_file):
+        return torch.hub._legacy_zip_load(cached_file, model_dir, map_location)
+    return torch.load(cached_file, map_location=map_location)

+ 8 - 0
readme.md

@@ -0,0 +1,8 @@
+# PyTorch load IPFS model
+
+See the jupyter notepad for how it works 
+
+You need to be running a local IPFS daemon (`ipfs daemon`) or passing a valid IPFS url to the dataset
+
+        model = load_state_dict_from_ipfs('a-models-cid-goes-here', model_dir="./my-models", file_name="some-fancy-model.pth")
+        print(model)